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We propose new easily computable bounds for di¤erent quantities which are solutions of Markov renewal equations linked to some continuoustime semi-Markov process (SMP). The idea is to construct two new discretetime SMP which bound the initial SMP in some sense. The solution of a Markov renewal equation linked to the initial SMP is then shown to be bounded by solutions of Markov renewal equations linked to the two discrete time SMP. Also, the bounds are proved to converge.

To illustrate the results, numerical bounds are provided for two quantities from the reliability …eld: mean sojourn times and probability transitions.

Introduction

Semi-Markov processes (SMP) are used in reliability to model the time-evolution of a system with a …nite (or countable) state space divided into up-and down-1 states. Among quantities of interest to measure the performance of the system are di¤erent time-dependent ones, such as: the time-dependent availability, namely the probability that the system is in an up-state at some time t; the mean number of failures of the system on some time interval [0; t]; the mean cumulated up-and down-times on [0; t] (see [START_REF] Csenki | Transient Analysis of Semi-Markov Reliability Models -A Tutorial Review with Emphasis on Discrete-Parameter Approaches[END_REF]] e.g. for other quantities). If asymptotic quantities are often easily analytically computable for semi-markovian systems, it is usually not the case for time-dependent ones. Indeed, lots of them are solutions of Markov renewal equations, namely Volterra integral equations of the second kind, and only their Laplace transforms are usually analytically reachable. Due to the instability of the numerical inversion of the Laplace transform [START_REF] Cocozza-Thivent | Processus stochastiques et …abilité des systèmes[END_REF]] or [START_REF] Csenki | Transient Analysis of Semi-Markov Reliability Models -A Tutorial Review with Emphasis on Discrete-Parameter Approaches[END_REF]], this is not always a very good method for their numerical computations. Other methods have then been developed such as the phase method, where the idea is to approach an SMP by a Markov process for which computations are much simpler. The main problem here is with the identi…cation of the phases and their number. Other methods consist in the numerical resolution of the Volterra integral equations, see [START_REF] Csenki | Transient Analysis of Semi-Markov Reliability Models -A Tutorial Review with Emphasis on Discrete-Parameter Approaches[END_REF]] with lots of reference therein or [Fritz, Posgai & Bertsche (2000)].

An algorithm for the computation of the marginal distribution of an SMP has also been developed recently, using …nite volume methods [Cocozza-Thivent & Eymard (2004)].

Other methods consist in approaching continuous time SMP by discrete time SMP for which computations are much simpler (see [START_REF] Csenki | Transient Analysis of Semi-Markov Reliability Models -A Tutorial Review with Emphasis on Discrete-Parameter Approaches[END_REF]] with reference therein). In such methods, the main problem is that the accuracy of the results is generally not known.

In the present paper, we propose some method of the last category, namely approaching continuous time SMP by discrete time SMP. The precision of the approximation is here known, and may be made as small as wanted (at least theoretically): for a given continuous-time (homogeneous) SMP, the principle is to construct two new SMP with the same Markov chain as the initial SMP, but with inter-arrival times which bound the initial ones. This allows to bound solutions of Markov renewal equations linked to the initial SMP by solutions of Markov renewal equations linked to the two new SMP. The convergence of the bounds is established with minimal assumptions on the initial semi-Markov kernel (no assumption of density with respect to Lebesgue measure; no need for the inter-arrival times to be almost surely strictly positive; countable but not necessarily …nite state space). The two new SMP are discrete time processes and jump only at points kh (k 2 N), which allows exact calculation for the resolution of the associated Markov renewal equations as in other methods of the same kind. This provides bounds for di¤erent time-dependent quantities linked to some general SMP.

A similar method has been used in [START_REF] Elkins | On Numerical Solution of the Markov Renewal Equation: Tight Upper and Lower Kernel Bounds[END_REF]] to bound the Markov renewal function (a special case of ours) in case of a …nite state space, though not described in terms of discrete SMP as here. However, this previous paper is mainly concerned with the numerical computation of the bounds and its implementation, and does not take in consideration the mathematical convergence.

An approximating discrete time SMP has also been used in [START_REF] Blasi | Numerical treatment of homogeneous and nonhomogeneous semi-Markov reliability models[END_REF]], [START_REF] Janssen | Numerical solution of non-homogeneous semi-Markov processes in transient case[END_REF]] and [Corradi, Janssen & Manca (2004)], where the almost sure convergence of the approximating discrete time SMP towards the initial continuous-time SMP is proved in the sense of the Skorokhod topology.

Contrary to the present paper, the non-homogeneous case is also envisionned in such papers but the initial semi-Markov kernel is assumed to admit density with respect to Lebesgue measure, the state space is …nite and the inter-arrival times are assumed to be almost surely positive. Under such assumptions, their approximating discrete time SMP roughly meet with one of those considered here. However, the construction of a second one allows us to get here some bounds for the goal quantities whereas the accuracy of the numerical results is not provided in the quoted papers. Also, the link is not made there between the a.s. convergence in the sense of the Skorokhod topology and the convergence of the appproximation for the goal quantity, the transition probabilities in their case (a special case of ours).

Finally, the same bounding method as in the present paper has already been used in [START_REF] Mercier | Encadrement de variables aléatoires réelles et application à la …abilité[END_REF]] and [START_REF] Mercier | Discrete random bounds for general random variables and applications to reliability[END_REF]] to bounds a few other performance measures from the reliability …eld, such as 1) cumulative density functions of sums of i.i.d. nonnegative random variables, 2) renewal functions and 3) cumulative density functions of geometric sums of i.i.d. nonnegative random variables.

Such performance measures may all be interpreted in terms of SMP so that they can be seen as special cases of the present paper.

The paper is organized as follows: the notations and assumptions are given in Section 2, as well as some recalls on SMP. The two discrete SMP are constructed in Section 3 and bounds for solutions of Markov renewal equations associated to the initial SMP are derived. The convergence of the bounds when the step size h goes to 0 is also proved in this section. Solutions for Markov renewal equations associated to the two new discrete SMP are given in Section 4. Applications and numerical examples are provided in Section 5 and numerical bounds are computed for two quantities of interest for semi-markovian systems: mean sojourn times and transition semi-group. Conclusions are derived in Section 6.

Notations, assumptions and recalls

Let E be some …nite or countable space and let (Y n ; T n ) n2N be a (homogeneous) Markov renewal process with T 0 = 0 and Y n 2 E for all n 2 N. Also, let (q (i; j; dt)) i;j2E be the associated semi-Markov kernel, namely some family of non-negative measures such that P j2E q (i; j; dt) is a probability measure (all i 2 E) and such that:

P (Y n+1 = j \ T n+1 T n tjY 0 = i 0 ; T 1 = t 1 ; :::; Y n 1 = i n 1 ; T n = t n ; Y n = i) = P (Y n+1 = j \ T n+1 T n tjY n = i) = P (Y 1 = j \ T 1 tjY 0 = i) = Z [0;t]
q (i; j; du) = q (i; j; [0; t]) ; for all n 2 N, all t 0, all t 1 ; ::; t n 2 R + , all i; j 2 E, all i 0 ; :::; i n 1 2 E such that the conditional probability exists.

The transition matrix for the Markov chain (Y n ) n2N then is

P i;j = P (Y 1 = jjY 0 = i) = P i (Y 1 = j) = q (i; j; R + )
for all i; j 2 E, where P i stands for the conditional probability distribution

P ( jY 0 = i).
We assume that (T n ) n2N is such that sup n2N T n = +1 a.e. (regularity assumption). We recall from [START_REF] Cinlar | Introduction to stochastic processes[END_REF]] that su¢ cient conditions for that are: P i (T 0 = ::: = T n = ::: = 0) = 0 for all i 2 E and …nite number of transient states for the Markov chain (Y n ) n2N , or existence of b; c > 0 such that P i (T 1 > b) > c for all i 2 E (other conditions in [START_REF] Cinlar | Introduction to stochastic processes[END_REF]]).

Symbol (X t ) t 0 stands for the continuous-time (homogeneous) SMP associated with (Y n ; T n ) n2N :

X t = Y n if T n t < T n+1 ;
for all n 2 N, all t 0. The transition semi-group for (X t ) t 0 is (P t ) t 0 with:

P t (i; j) = P i (X t = j) ;
for all i; j 2 E, all t 0. Also, the Markov renewal function (i; j; [0; t]) associated to (X t ) t 0 is

(i; j; [0; t]) = E i 0 @ X n 0 1 fTn tg 1 fYn=jg 1 A
for all i; j 2 E, all t 0, where 1 fg stands for the indicator function.

(i; j; [0; t])
is the mean number of visits to j on [0; t] for (X t ) t 0 starting from i. Note that due to assumption sup n2N T n = +1 a.e., we have P i (T 1 = T 2 = ::: = T n = ::: = 0) = 0 for all i 2 E, so that (i; j; [0; t]) < +1 for all i; j 2 E, all t 0, see [START_REF] Cinlar | Introduction to stochastic processes[END_REF] For all f 2 B + , we set:

(dq f ) (i; t) = X j2E Z [0;t] f (j; t u) q (i; j; du) = X j2E E i f (j; t T 1 ) 1 fT1 tg 1 fY1=jg = E i f (Y 1 ; t T 1 ) 1 fT1 tg and (d f ) (i; t) = X j2E Z [0;t] f (j; t s) (i; j; ds) = X j2E X n 0 E i f (j; t T n ) 1 fTn tg 1 fYn=jg = X n 0 E i f (Y n ; t T n ) 1 fTn tg (1)
with dq f 2 B + and d f 2 B + .

We recall from [START_REF] Cinlar | Introduction to stochastic processes[END_REF]] that, due to the assumption sup n2N T n = +1

a.e., for all g 2 B + , the equation

f = g + dq f
has one single solution f g 2 B + which is:

f g = d g (2)
with f g < +1.

3 Bounding f g 3.1 Construction of X h t t 0 and of X h+ t t 0

Let b:::c be the ‡oor function, namely the function from R to Z such that, for all x 2 R, bxc is the single integer such that:

bxc x < bxc + 1
For any h > 0 and any random variable (r.v.) U with general distribution, we may set:

U h = h U h and U h+ = h U h + h
(same notation in all the paper) with

U h U < U h+ and lim h!0 + U h = lim h!0 + U h+ = U namely: U h (!) U (!) < U h+ (!) and lim h!0 + U h (!) = lim h!0 + U h+ (!) = U (!) for all ! in the domain of U .
Now, let q h (i; j; dt) i;j2E and q h+ (i; j; dt) i;j2E be the semi-Markov kernels associated to h > 0 and (q (i; j; dt)) i;j2E ; and such that:

q h (i; j; [0; t]) = P Y 1 = j \ T h 1 tjY 0 = i (3) q h+ (i; j; [0; t]) = P Y 1 = j \ T h+ 1 tjY 0 = i (4) with T h 1 = h T1 h and T h+ 1 = h T1 h + h = T h 1 + h.
We can then construct two new SMP X h t t 0 and X h+ t t 0 respectively associated to q h (i; j; dt) i;j2E and q h+ (i; j; dt) i;j2E with the same initial distribution as (X t ) t 0 . Both of those SMP have semi-Markov kernels supported by hN. In other words, they are discrete-time SMP. The associated Markov chains are "copies" of the initial Markov chain (Y n ) n2N associated to (X t ) t 0 in the sense that they have the same initial distribution and the same transition matrix, due to q h (i; j; R + ) = q h+ (i; j; R + ) = q (i; j; R + ) = P i;j for all i; j 2 E. The visited states for X h t t 0 and X h+ t t 0 actually are the same for X h t t 0 and X h+ t t 0 as for the initial SMP (X t ) t 0 . Those "copies" of (Y n ) n2N are still denoted by (Y n ) n2N in all the following.

The inter-arrival times for X h t t 0 and X h+ t t 0 respectively are

(T n+1 T n ) h n2N and (T n+1 T n ) h+ n2N
where

(T n+1 T n ) h = h T n+1 T n h T n+1 T n (T n+1 T n ) h+ = (T n+1 T n ) h +h:
Then, the SMP X h t t 0 stays shorter in each state than (X t ) t 0 whereas the SMP X h+ t t 0 stays longer. Note that the approximation is made on the inter-arrival times T n+1 T n and not on the arrival-times T n . Indeed, in order to construct an approximate SMP, the approximate n th inter-arrival time ]

T n+1 f T n given Y 0 = i 0 ; T0 = t 0 ; :::; Y n 1 = i n 1 ; Tn 1 = t n 1 ; Y n = i; Tn = t n and Y n+1 = j should be conditionaly distributed as f T 1 given Y 0 = i and Y 1 = j. This is true if ] T n+1 f T n
depends on T n and on T n+1 only through their increment T n+1 T n (all n 2 N). It is not true any more if the approximation is taken on T n and T n+1 themselves. (For instance, taking f

T n = h Tn h would not lead to a SMP because h j Tn+1 h k h Tn h 6 = h j Tn+1 Tn h k ).
The respective arrival times for X h t t 0 and X h+ t t 0 actually are:

T (h) n = n 1 X i=0 (T i+1 T i ) h T (h+) n = n 1 X i=0 (T i+1 T i ) h+ = T (h) n + nh (5) (note the nh in T (h+) n
).

In the case where E is …nite and q (i; j; dt) admits some density with respect to Lebesgue measure, X h+ t t 0 meets with the approximating discrete time SMP studied in [START_REF] Blasi | Numerical treatment of homogeneous and nonhomogeneous semi-Markov reliability models[END_REF]] and [Corradi, Janssen & Manca (2004)] (with approximate arrival times substituted by (5)).

For all other notations than Y n , T , we add some subscripts h and h+ when referring to the SMP X h t t 0 and X h+ t t 0 , respectively. For instance, for g 2 B + , symbol f h g stands for the single solution of f = g + dq h f (under assumption which ensures existence and singleness, see the following).

We …nally express the semi-Markov kernels q h (i; j; dt) i;j2E and q h+ (i; j; dt) i;j2E with respect to the initial one (q (i; j; dt)) i;j2E .

Lemma 1 For all i; j 2 E, all h > 0, the measures q h (i; j; dt) and q h+ (i; j; dt) have supports included in hN with

q h (i; j; kh) = q (i; j; [kh; (k + 1) h[) q h+ (i; j; kh) = 1 fk 1g q (i; j; [(k 1) h; kh[) = 1 fk 1g q h (i; j; (k 1) h) for all k 2 N.
Proof. It is clear that the supports are included in hN. Besides, for all k 2 N, we have:

h T 1 h kh , (T 1 < h (k + 1))
We get:

q h (i; j; kh) = q h (i; j; [0; kh]) 1 fk 1g q h (i; j; [0; (k 1) h]) = q (i; j; [0; (k + 1) h[) 1 fk 1g q (i; j; [0; kh[) = q (i; j; [kh; (k + 1) h[)
and similar results for q h+ .

A technical lemma

We now give a technical condition which ensures us with sup n2N T

(h) n = +1 a.e.
and in particular with existence and uniqueness of solutions to Markov renewal equations associated to q h (i; j; dt) i;j2E (clear for q h+ (i; j; dt) i;j2E due to

sup n2N T (h+) n sup n2N nh = +1, see (5)). Lemma 2 If C = sup f(i;j):Pi;j 6 =0g E i (exp ( T 1 ) jY 1 = j) < 1, then sup n2N T (h) n = +1
a.e. for all 0 < h < ln C. In case E is …nite, the condition somewhat simpler min f(i;j):Pi;j 6 =0g E i (T 1 jY 1 = j) > 0 is equivalent to the condition C < 1.

Proof. For all n 2 N and t 0, we have:

P T (h) n t P (T n t + nh) = P e (t+nh)
e Tn

e t+nh E e Tn due to Markov inequality. Besides:

E e Tn = E exp n 1 X k=0 (T k+1 T k ) !! = E E n 1 Y k=0 exp ( (T k+1 T k )) jY 0 ; Y 1 ; :::; Y n !! = E n 1 Y k=0 E (exp ( (T k+1 T k )) jY 0 ; Y 1 ; :::; Y n ) ! due to independence of all T k+1 T k (with 0 k n 1) given Y 0 ; Y 1 ; :::; Y n .
By assumption:

E (exp ( (T k+1 T k )) jY 0 ; Y 1 ; :::; Y n ) C < 1
Whence:

P T (h) n t e t+nh C n = e t e n(h+ln C) (6)
and by monotony:

lim n!+1 # P T (h) n t = P sup n2N T (h) n t = 0
for all 0 < h < ln C and t 0. We derive by monotony again that sup n2N T (h) n = +1 a.e. for all 0 < h < ln C. Finally, it is easy to see that, for all i; j 2 E such that P i;j 6 = 0, the condition E i (exp ( T 1 ) jY 1 = j) < 1 is equivalent to

P i (exp ( T 1 ) < 1jY 1 = j) = P i (T 1 > 0jY 1 = j) > 0, which is also equivalent to E i (T 1 jY 1 = j) > 0.
Whence the result in case E is …nite.

Bounds for f g and convergence of the bounds

We now turn to the main result of this paper which provides us with bounds for f g and the convergence of the bounds when h goes to 0.

Theorem 3 Let (X t ) t 0 be a semi-Markov process such that C = sup f(i;j):P (i;j)6 =0g E i (exp ( T 1 ) jY 1 = j) < 1. For all g 2 B + :

1. if t 7 ! g (i; t) is non-decreasing for all i 2 E, then, for all 0 < h < ln C:

f h+ g = d h+ g f g = d g f h g = d h g < +1 (7)
2. if g is of the shape g = g 1 g 2 with g 1 ; g 2 2 B + and t 7 ! g j (i; t) nondecreasing for j = 1; 2 (all i 2 E), then, for all 0 < h < ln C:

f h+ g1 f h g2 f g = f g1 f g2 f h g1 f h+ g2 < +1 (8)
3. if g is uniformly continuous on E [0; t] where t 0 (namely setting " g ( ) = sup j2E sup jx yj

x;y2[0;t] jg (j; x) g (j; y)j, we have lim !0 + " ( ) = 0), then:

lim h!0 + f h g (i; t) = lim h!0 + f h+ g (i; t) = f g (i; t)
Proof. Uniqueness, existence and …niteness of f h+ g , f g and f h g is clear due to Lemma 2 and assumption on (X t ) t 0 , for all 0 < h < ln C. Besides, inequality (7) may easily be derived from the de…nition of d g (see (1)), from the non-increasingness of u 7 ! g (j; t u) 1 fu tg and from the fact that

T (h) n T n < T (h+) n
. This gives the …rst point. The second point is a direct consequence from the …rst point using f g = f g1 f g2 . As for the third point, for 0 < h < ln C and n 0 2 N …xed, we may write:

f h g (i; t) f g (i; t) = X n 0 E i 1 n T (h) n t o g Y n ; t T (h) n 1 fTn tg g (Y n ; t T n ) S 1 (n 0 ; h) + S 2 (n 0 ; h) with S 1 (n 0 ; h) = n0 X n=0 E i 1 n T (h) n t o g Y n ; t T (h) n 1 fTn tg g (Y n ; t T n ) S 2 (n 0 ; h) = X n>n0 E i 1 n T (h) n t o g Y n ; t T (h) n 1 fTn tg g (Y n ; t T n ) Writing 1 n T (h) n t o g Y n ; t T (h) n 1 fTn tg g (Y n ; t T n ) = 1 n T (h) n t o 1 fTn tg g Y n ; t T (h) n + 1 fTn tg g Y n ; t T (h) n g (Y n ; t T n )
in S 1 (n 0 ; h), we get

S 1 (n 0 ; h) n0 X n=0 E i 1 n T (h) n t o 1 fTn tg g Y n ; t T (h) n + n0 X n=0 E i 1 fTn tg g Y n ; t T (h) n g (Y n ; t T n )
Noting that

1 n T (h) n t o 1 fTn tg = 1 n T (h) n t o 1 fTn tg 1 ft<Tn<t+nhg and T n T (h)
n nh n 0 h for all 0 n n 0 ;

and using the function " g ( ) de…ned in the theorem and similar argument as for (6), we get:

S 1 (n 0 ; h) kgk [0;t] n0 X n=0 P i (t < T n < t + nh) + " g (n 0 h) n0 X n=0 P i (T n t) kgk [0;t] n0 X n=0 P i (t < T n < t + nh) + (n 0 + 1) " g (n 0 h) with lim h!0 + P i (t < T n < t + nh) = P i (t < T n t) = 0
for all 0 n n 0 . We derive:

lim h!0 + (S 1 (n 0 ; h)) = 0
for all …xed n 0 . Moreover:

S 2 (n 0 ; h) kgk [0;t] X n>n0 h P i T (h) n t + P i (T n t) i kgk [0;t] X n>n0 C n e t+nh + C n e t kgk [0;t] e h(n0+1) 1 Ce h + 1 1 C e t C n0+1
We derive:

lim sup h!0 + f h g (i; t) f g (i; t) kgk [0;t] 2 1 C e t C n0+1
for all …xed n 0 . Taking the limit when n 0 ! +1, we get lim sup h!0 + f h g (i; t) f g (i; t) = 0 and the result for f h g . The result for f h+ g may be proved similarly, which completes the proof.

In case where the kernel (q (i; j; dt)) i;j2E is triangular, one can provide alternate bounds in some special cases:

Proposition 4 Let (X t ) t 0 be a semi-Markov process such that C = sup f(i;j):P (i;j)6 =0g E i (exp ( T 1 ) jY 1 = j) < 1. Then let v : E ! R + and let

w : E R + ! R + be such that w (i; t) = v (i) P i (T 1 > t)
. Assume E to be equipped with some order relation and the kernel (q (i; j; dt)) i;j2E to be upper triangular. Then if v is non decreasing, we have, for all 0 < h < ln (C), t 0, i 2 E :

f h+ w h+ (i; t) f w (i; t) = E i (v (X t )) f h w h (i; t) (9) with w h (i; t) = v (i) P i T h 1 > t = v (i) P i T 1 t h+ w h+ (i; t) = v (i) P i T h+ 1 > t = v (i) P i T 1 t h
Inequalities are reversed in case (q (i; j; dt)) i;j2E is lower triangular or v is non increasing.

Proof. Setting F Yn (t) = P Yn (T 1 > t) = E 1 fTn+1 Tn>tg jY n , we have:

f w (i; t) = X n2N E i 1 fTn tg v (Y n ) F Yn (t T n ) = X n2N E i 1 fTn tg v (Y n ) 1 fTn+1 Tn>t Tng = X n2N E i v (Y n ) 1 fTn t<Tn+1g (10) = E i (v (X t ))
Beside, starting again from (10):

f w (i; t) = X n2N E i v (Y n ) 1 ft<Tn+1g 1 ft<Tng = X n2N E i (v (Y n ) v (Y n+1 )) 1 ft<Tn+1g
If (q (i; j; dt)) i;j2E is upper triangular, we know that: Y n Y n+1 and consequently, assuming v to be non decreasing, v (Y n ) v (Y n+1 ) 0 for all n 2 N.

Due to

T (h) n T n < T (h+) n
for all n 2 N, we derive:

1 n t<T (h) n+1 o 1 ft<Tn+1g 1 n t<T (h+) n+1
o and (9).

Remark 5 Note that t 7 ! w (i; t) is here non increasing whatever the monotony of v is, so that (7) cannot be applied to g = w. In the case where (q (i; j; dt)) i;j2E

is triangular and v is monotone, (9) provides simpler bounds than (8).

Remark 6

In case E = f1; :::; m + 1g with only possible transitions 1 ! 2 ! ::: ! m ! m + 1, taking v (i) = 1 fm ig and U i a random variable with distribution q (i; i + 1; dt) for 1 i m (U 1 , ..., U m independent), (9) then provides bounds for E 1 (v (X t )) = P 1 (X t m) = P (U 1 + ::: + U m t) which are similar to those obtained in [START_REF] Mercier | Discrete random bounds for general random variables and applications to reliability[END_REF]].

Numerical computations

Under assumptions of Theorem 3, it is known that for all g 2 B + and 0 < h < ln C, the equation f = g + dq h f or equivalently

f h g (i; N h) = g (i; N h)+ X j2E N X k=0 q h (i; j; (N k) h) f h g (j; kh) for all N 0, all i 2 E (11)
has got one single solution f h g = d h g (the same for dq h+ ). We here provide algorithms very easy to emplement for the recursive computation of f h g and f h+ g in case E is …nite (recursion on N ).

Proposition 7 Let us assume E to be …nite and min f(i;j):Pi;j 6 =0g E i (T 1 jY 1 = j) > 0. Let g 2 B + and 0 < h < ln C where C = max fi;j2E:P (i;j)6 =0g E i (exp ( T 1 ) jY 1 = j) <

1. For all n 2 N, we set: q h ( ; ; N ) = q h (i; j; N ) i;j2E , f h g ( ; N h) = f h g (i; N h) i2E columnwise, the same for g ( ; N h) and f h+ g ( ; N h). Let I be the identity matrix with size cardinal(E). The matrix I q h ( ; ; 0) then is non singular and:

f h g ( ; 0) = I q h ( ; ; 0) 1 g ( ; 0) f h+ g ( ; 0) = g ( ; 0)
For all N 2 N, we have:

f h g ( ; N h) = I q h ( ; ; 0) 1 " g ( ; N h) + N 1 X k=0 q h ( ; ; (N k) h) f h g ( ; kh) # (12) f h+ g ( ; N h) = g ( ; N h) + N 1 X k=0 q h ( ; ; (N k 1) h) f h+ g ( ; kh) (13) 
Proof. Let be a eigen value of q h ( ; ; 0). We know that:

j j max i2E 0 @ X j2E q h (i; j; 0) 1 A = max i2E 0 @ X j2E P i (T 1 < hjY 1 = j) P (i; j) 1 A = max i2E 0 @ X j2E P i e T1 > e h jY 1 = j P (i; j) 1 A e h C < 1
for all 0 < h < ln C. We derive that 1 is not an eigenvalue of q h ( ; ; 0) so that I q h ( ; ; 0) is non singular. The other results may easily be derived from (11) and from q h+ ( ; ; N ) = 1 fN 1g q h ( ; ; N 1) for all N 2 N.

Remark 8 The algorithms provided here are the most natural and might surely be improved (see [START_REF] Elkins | On Numerical Solution of the Markov Renewal Equation: Tight Upper and Lower Kernel Bounds[END_REF]]). As for the computation of f h+ g ( ; N h), a similar algorithm as the present one may also be found in [Barbu, Boussemart, Limnios (2004)] e.g.. As for the computation of f h g ( ; N h), the matrix inversion ( I q h ( ; ; 0) 1 ) that appears is actually not computed: an LU factorization is provided for I q h ( ; ; 0) once for all at the beginning of the numerical computations and two successive triangular systems are then solved each time quantities like I q h ( ; ; 0) 1 y are computed (with y a column vector). This saves much computation time.

Applications

We …nally provide numerical bounds for two di¤erent performance measures from the reliability …eld: one in the case where t 7 ! g (i; t) is non-decreasing (the cumulated mean sojourn time), one in the case where g = g 1 g 2 with both g j non-decreasing with respect of t (the transition probabilities).

In all this section, E is …nite, (X t ) t 0 is such that min f(i;j):Pi;j 6 =0g E i (T 1 jY 1 = j) > 0 and h is such that 0 < h < ln (C) = ln max fi;j2E:P (i;j)6 =0g E i (exp ( T 1 ) jY 1 = j) (see Lemma 2).

Cumulated mean sojourn time

For i 2 E, A E and t 0, we are interested in the cumulated mean sojourn time in A on [0; t] starting from i de…ned by:

C A (i; t) = E i Z [0;t] 1 fXu2Ag du ! = X j2A Z [0;t] P u (i; j) du Setting g A (i; t) = 1 fi2Ag Z [0;t] P i (T 1 > u) du
for all i 2 E, all t 0 and using standard methods, one easily gets:

C A = g A + dq C A
and hence:

C A = d g A
where t 7 ! g A (i; t) is non-decreasing for all i 2 E and where u 7 ! g (i; u) is uniformly continuous on [0; t]. We derive from Theorem 3:

f h+ g A C A = f g A f h
g A and the convergence of both bounds when h ! 0 + . The bounds are then computed with the results of Proposition 7.

Example 9 A semi-Markov reparable system is considered, which may be up (i = 1; 2; 3) or down (i = 4; 5) at time t. (The system may go on degrading when down). The system is initially in state 1 and we are interested in the cumulated mean down time on [0; t] starting from 1, namely C A (1; t) with A = f4; 5g. We take:

q ( ; ; dt) = 0 B B B B B B B B B @ 0 (1 ) w 1 (t) dt + 0 0 0 0 0 0 (1 ) w 2 (t) dt + 0 0 0 0 0 0 (1 ) w 3 (t) dt + 0 0 2 3 (1 ) w 4 (t) 1 6 (1 ) w 4 (t) 0 0 1 6 (1 ) w 4 (t) + 0 2 3 w 5 (t) 1 6 w 5 (t) 0 1 6 w 5 (t) 0 1 C C C C C C C C C A
where 0 stands for the Dirac mass at 0 and w i (t) stands for the Weibull p.d.f.of W ( i ; i ):

w i (t) = i i t i 1 e it i 1 R+ (t)
Note that there may be some instantaneous degradation with probability so that q ( ; ; dt) does not admit density with respect of Lebesgue measure.

We here have:

g A (i; t) = 1 fi=4g (1 ) Z [0;t] e 4t 4 dt + 1 fi=5g Z [0;t]
e 5t 5 dt for all i 2 E, t 0 and we take:

1 = 10 6 ; 1 = 1:6; 2 = 10 5 ; 2 = 2:2; 3 = 10 4 ; 3 = 3:3; 4 = 10 3 ; 4 = 4:5; 5 = 10 3 ; 5 = 3:5; = 10 1 which respective means m i and coe¢ cients of variations cv i : m 1 ' 5:042 10 3 ; cv 1 ' 0:64; m 2 ' 1:659 10 2 ; cv 2 ' 0:48; m 3 ' 14:62; cv 3 ' 0:33; m 4 ' 4:236; cv 4 ' 0:25; m 5 ' 6:48; cv 5 ' 0:3165

The numerical results are displayed in Figure 1 for h = 6 as well as the asymptotic direction (see [START_REF] Cinlar | Introduction to stochastic processes[END_REF]] e.g.):

C A (i; t) t!+1 X j2A E j (T 1 ) (1; j; [0; t]) t!+1 t P 5 j=4 E j (T 1 ) (j) P 5 k=1 (k) E k (T 1 ) ' 1:49 10 3 t
where is the stationary distribution for the embedded Markov chain (Y n ) n2N and E k (T 1 ) = ( 1) m k for 1 k 4, E 4 (T 1 ) = m 5 . In order to better study the precision of the results, one also provides the results for di¤ erent values of h and t in Table 1 We can see in such a table that, as expected, the smaller the discretization step h, the tighter the bounds are. Also, for h …xed, the error …rst decreases when t increases (for t . 900) and then increases with t. For small t, one may think that the lack of precision is due to some round-o¤ error. For bigger t, the loss of precision when t increases is clearly due to the method.

Transition semi-group

We are now interested in computing the transiton semi-group P t (i; j) and we set: f j (i; t) = P t (i; j) for i; j 2 E and t 0. We recall that, setting g j (i; t) = 1 fi=jg P i (T 1 > t) for all i; j 2 E, all t 0, we have: [START_REF] Cocozza-Thivent | Processus stochastiques et …abilité des systèmes[END_REF]] e.g. or [START_REF] Cinlar | Introduction to stochastic processes[END_REF]].

f j = g j + dq f j namely f j = f gj = d g j , see
Noting that g j = I j u j with I j (i; t) = 1 fi=jg and u j (i; t) = 1 fi=jg P i (T 1 t), we get P t (i; j) = f gj (i; t) = f Ij (i; t) f uj (i; t) with f Ij (i; t) = (i; j; [0; t]). As I j and u j are both non-decreasing with respect of t for all j 2 E, we derive from (8) :

h+ (i; j; [0; t]) f h uj (i; t) P t (i; j) = f gj (i; t) h (i; j; [0; t]) f h+ uj (i; t) (14)

and the convergence of both bounds in case t 7 ! P i (T 1 t) is continuous.

The computation of the numerical bounds provided by ( 14) is here much longer than in the previous case where t 7 ! g j (i; t) were non-decreasing. This has lead us to adapt the program in order to take into account only non trivial terms in (12 13). Indeed, in reliability theory, mean down times are often much shorter than mean up times so that non trivial terms (at a given precision) among the q h (i; j; kh)'s may highly depend on i and j. Keeping only the non trivial terms in P N 1 k=0 q h (i; j; (N k) h) f h g (j; kh) then save much computation time.

Example 10 We here consider an example extracted from [Cocozza-Thivent & Eymard (to appear)] denoted by [CTE] in the following: a system is considered with two components in cold stand-by redundancy (see [CTE] for details) and its evolution is described by a SMP with state space E = f1; 2; 3; 4g and semi-Markov kernel:

q ( ; ; dt) = 0 B B B B B B @ 0 w 1 (t) W 0 1 (t) 0 w 0 1 (t) W 1 (t) l 2 (t) W 0 2 (t) 0 w 0 2 (t) L 2 (t) 0 0 0 0 0 0 0 0 0 1 C C C C C C A dt
where W i (t) and L i (t) stand for the respective survival functions of W ( i ; i )

and of log-normal distribution LN ( i ; i ) with p.d.f.

l i; i (t) = 1 t p 2 e (ln(t) i ) 2 2 2 1 R + (t) ;
the same for W 0 i (t) and L 0 i (t) with i and i substituted by 0 i and 0 i . Following [CTE], we take: 1 = 1=2216 1:5 ' 9:59 10 6 ; 1 = 1:5; 0 1 = 1=11284 2 ' 7:85 10 9 ; 0 1 = 2; 2 = 4:5; 2 = 0:5; 0 2 = 1=2000 Here again, the smaller the discretization step h , the tighter the bounds are.

Also, for h …xed, the error …rst increases with t and then decreases.

As for the comparison between the method from [CTE] and the present one, one can look at the asymptotic value: we know that P t (1; 3) is increasing with respect of t (see Figure 2) and that lim t!+1 P t (1; 3) ' 0:386 365 (easy computation using standard method). In Table 2, we can see that the value from

[CTE] for P t (1; 3) and t = 1:99 10 5 is slightly too big (0:395 72) whereas our bounds (0:385 96 and 0:386 06) are coherent with the asymptotic value. A similar remark is valid for P t (1; 4) with P t (1; 4) slightly too small in [CTE] for t = 1:99 10 5 whereas our bounds are coherent.

We can then conclude that, in this example, our bounds seem slightly more accurate than the results from [CTE] (which may however be improved using some smaller discretization step).

In case where the semi-Markov kernel is triangular, we …nally provide a last numerical example to compare the bounds provided by Theorem 3 and by Proposition 4.

Example 11 A semi-Markov unreparable system is considered with state space E = f1; :::; 5g, U = f1; 2; 3g, D = f4; 5g. We want to evaluate the unreliability of the system starting from 1, namely F (t) = P 1 (T t) where T is the time to failure of the system. The semi-Markov kernel is:

q ( ; ; dt) = 0 B B B B B B B B B @ 0 (1 ) w 1 (t) dt + 0 0 0 0 0 0 (1 ) w 2 (t) dt + 0 0 0 0 0 0 (1 ) w 3 (t) dt + 0 0 0 0 0 0 (1 ) w 4 (t) dt + 0 0 0 0 0 0 1 C C C C C C C C C A
with w 1 , w 2 , w 3 , w 4 and the same as in Example 9.

Due to the triangular shape of the kernel, we here have: F (t) = P 1 (X t 4) = f w (t) with w (i; t) = v (i) P i (T 1 t) and v (i) = 1 fi 4g , all i 2 E (see Proposition 4 and Remark 6). As v is non-decreasing and q ( ; ; dt) is upper triangular, we may apply (9). The bounds for the unreliability are plotted in Figure 5 for h = 5 as provided by (14) (bounds 1) and by (9) (bounds 2). We can see that, as expected, the bounds provided by (9) are tighter than those provided by (14). Beside, the computations are quicker for (9) than for (14). Then, it is better to use (9) than (14) when possible.

Conclusion

We have proposed, in this paper, easily computable bounds for di¤erent timedependent quantities for semi-markovian system. The idea used here, namely approximating continuous-time SMP by discrete-time SMP is not new. However, contrary to most of previous works (apart from [START_REF] Elkins | On Numerical Solution of the Markov Renewal Equation: Tight Upper and Lower Kernel Bounds[END_REF]], to our knowledge), the present construction of the approximating processes has allowed us to control the error between the goal quantities and their approximations. The theoretical results have been tested on a few numerical examples, showing the accuracy of the method.

We have focused here in solutions of Markov renewal equations. Note however that the bounding method might be generalized and that for any function non-decreasing e.g. with respect to all T n and such that the expectations exist, we would have: n + nh. More generally, one could also consider h = (h i ) i2E and the semi-Markov kernels q h (i; :; dt) and q h+ (i; :; dt) (both supported by h i N) with: q h (i; j; kh i ) = P i (Y 1 = j; kh i T 1 < (k + 1) h i ) q h+ (i; j; kh i ) = 1 fk 1g q h (i; j; (k 1) h i )

E (Y n ) n2N ; T (h) n n2N E (Y n ) n2N ; (T n ) n2N E (Y n ) n2N ; T (h+)
Here again, the bounding would remain true. However, more general than in the present paper and/or non constant step size h would lead to more complicated computations of the approximate quantities, which only require here a few lines of implementation. 
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Table 1 .

 1 . Example 9: Cumulated Mean Down Time with respect of h and t

	t	h Lower bound Upper bound	t	h Lower bound Upper bound
		20	0.4929	0.6487		20	2.2879	2.4144
		12	0.5431	0.6344		12	2.3215	2.3977
	300	6	0.5803	0.6251	2400 6	2.3480	2.3863
		3	0.5949	0.6171		3	2.3585	2.3776
		1	0.6048	0.6121		1	2.3658	2.3722
		20	0.8088	0.8856		20	3.3479	3.5063
		12	0.8325	0.8773		12	3.3899	3.4853
	600	6	0.8496	0.8716	3300 6	3.4229	3.4708
		3	0.8560	0.8670		3	3.4359	3.4598
		1	0.8605	0.8641		1	3.4450	3.4530
		20	0.9928	1.0585		20	4.5284	4.7165
		12	1.0111	1.0503		12	4.5781	4.6913
	900	6	1.0251	1.0447	4200 6	4.6171	4.6739
		3		1.0404		3	4.6323	4.6607
		1	1.0344	1.0376		1	4.6431	4.6526
		20	1.1894	1.2651		20	5.7825	5.9991
		12	1.2095	1.2552		12	5.8395	5.9699
	1200 6	1.2255	1.2484	5100 6	5.8842	5.9495
		3	1.2318	1.2433		3	5.9015	5.9342
		1	1.2363	1.2401		1	5.9139	5.9248
		20	1.4195	1.5087		20	7.0787	7.3236
		12	1.4430	1.4969		12	7.1429	7.2903
	1500 6	1.4618	1.4889	6000 6	7.1931	7.2670
		3	1.4693	1.4828		3	7.2124	7.2494
		1	1.4745	1.4790		1	7.2260	7.2387

Table 2 .

 2 = 2 and h = 40 for j = 3 and 4. We can see in such a …gure that our results seem to more or less coïncide with those from[CTE].In order to better compare the results, we now give in Table2the results from [CET] and our bounds for P t (1; 3), for di¤ erent values of h and t. Example 10, P t (1; 3) with respect of h and comparison with the results from[CTE] 
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Figure 2. Example 10, P t (1; j) for j = 1::4:

Acknowledgement 12 The author thanks C. Cocozza-Thivent and R. Eymard for allowing her to use the data of a …gure from [Cocozza-Thivent & Eymard (to appear)].