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ABSTRACT: The first part of the present investigation focuses on the formulation of a novel stochastic model of uncertain 
properties of media homogenous in the mean which are represented as stationary processes. In keeping with standard spatial 
discretization methods (e.g. finite elements), the process is discrete. It is further required to exhibit a specified mean, standard 
deviation, and a global measure of correlation, i.e. correlation length.  The specification of the random process is completed by 
imposing that it yields a maximum of the entropy. If no constraint on the sign of the process exists, the maximum entropy is 
achieved for a Gaussian process the autocorrelation of which is constructed. The case of a process with constant sign is 
considered next and an algorithm is formulated to simulate the non-Gaussian process yielding the maximum entropy. In the 
second part of the paper, this non-Gaussian model is used to represent the uncertain friction coefficient in a simple, lumped mass 
model of an elastic structure resting on a frictional support. The dynamic response of this uncertain system to a random 
excitation at its end is studied, focusing in particular on the occurrence of slip and stick. 
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1 INTRODUCTION 
The dramatic growth in computational capabilities over the 
last 20 years coupled with the continued development and 
refinement of finite element capabilities permits now the 
prediction of the dynamic response of very complex structures 
not only in their linear regime but also in the presence of local 
and global nonlinearities, either geometric (large deflections) 
or material. In fact, it could be argued that the accuracy with 
which the response can now be predicted is in general better 
or much better than the accuracy with which the system 
characteristics (geometry and material behavior) are known. 
This observation has led to a recently growing interest in 
incorporating geometry/material uncertainty in structural 
dynamic predictions. 

This effort has often in the past been accomplished by 
modeling the uncertain properties as random variables, 
stochastic processes, or random fields (e.g. see [1-3]). In many 
practical situations, a key challenge in using such models to 
represent uncertain material or geometrical properties is the 
significant lack of information available on the uncertainty. 
The mean value of the property is often believed to be known 
from past experience and/or available data (e.g. Young’s 
modulus of a particular material). The level (for example 
standard deviation) of uncertainty is often less clearly known 
and may in fact be considered as a variable in a parametric 
study. Sometimes, an upper and/or lower bound may also be 
known because of an acceptance/rejection test carried out on 
all samples. However, more detailed information is very often 
not available. 

This perspective has led [4,5] to propose that the stochastic 
description of the uncertainty model be derived not assumed 
and further that it be derived by maximizing the statistical 
entropy under constraints representing the true knowledge on 
the stochastic model.  The maximization of the entropy 

induces a maximum spread of the uncertainty (consistently 
with the constraints) in the tail of the distribution and thus to 
the consideration of “wide-spread” uncertainty that provides a 
good perspective on the effects of variations of the system 
properties, even those that are “far” from the mean. Thus, this 
approach, which is referred to as the nonparametric stochastic 
modeling approach, requires only partial knowledge of the 
system uncertainty complemented by the single assumption of 
maximization of entropy.  

In its original formulation [4,5], the nonparametric 
stochastic modeling approach was used for characterization of 
the mass, damping, and stiffness matrices of reduced 
order/modal models, not to the detailed characterization of 
any specific property (mass density, Young’s modulus, etc.). 
Thus, the resulting formulation is able to globally model all of 
them, as well as geometric uncertainties. More recently, this 
approach has been extended to matrix-valued fields, in 
particular for the modeling for the elasticity tensor of random 
media [6]. The present effort complement this work by 
addressing the modeling of random properties, of variable or 
constant sign, of media homogenous in the mean as stationary 
processes. In keeping with standard spatial discretization 
methods (e.g. finite elements), the process is discrete. The 
methodology relies on the specification of only the mean and 
standard deviation of the property as well as on a global 
measure of the correlation, i.e. a correlation length. The 
maximization of the entropy then provides the description of 
the process consistent with this prescribed information. 

In regards to application, it is desired here to exemplify this 
modeling strategy on a property seldom considered and yet 
exhibiting well known uncertainty, i.e. friction. When two 
deformable bodies are in extended contact with each other, as 
in joints, turbomachinery blade friction dampers, brakes, etc., 
the coefficient of friction between them must be defined over 
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the contact zone, i.e. as a spatially varying property which 
governs the occurrence of stick, microslip, or macroslip [7-
11]. After an appropriate spatial discretization of the contact 
zone, it becomes then necessary to specify the coefficient of 
friction at a set of discrete locations. The uncertainty in the 
values of this coefficients resulting from unknown spatial 
variations of roughness, temperature, composition, etc. then 
calls for the stochastic modeling considered in the first part of 
the paper. To demonstrate this application and presents a first 
perspective in this problem, a simple dynamic model of this 
contact problem is adopted here as a cascade of 5 Iwan 
oscillators. The response of this system to a white noise 
excitation at one end, the other one being fixed, is numerically 
determined and the effects of the uncertainty level (standard 
deviation) and correlation length are assessed. 

2 MAXIMUM ENTROPY DISCRETE PROCESS 

2.1 General derivation 

Let  denote a discrete stationary process defined over the 
domain  and define the random vector 

nX
{ ullIn ,,1, K+=∈ }

[ T
ull XXXX K1+= ]  where T  denotes the operation of 

matrix/vector transposition. Then, the entropy S is a statistic 
of X that measures its dispersion/variability in a manner 
different from the variance. It is defined as 

            ( )( )[ ] ( )( ) ( ) xdxpxpXpES XXX ∫Ω−=−≡ lnln           (1) 

where E[.] denotes the operation of mathematical expectation 
and Ω is the domain of support of the values of the process. If 
no signature constraint is enforced, both positive and negative 
values of the process are allowed and thus 
    ( ) ( ) ( ) ({ )}∞∞−×∞∞−×∞∞−∈=Ω + ,,,,,, 1 KK ull xxx .   (2) 
If a positive sign of the process is required,  
            ( ) [ ) [ ) [ ){ }∞×∞×∞∈=Ω + ,0,0,0,,, 1 KK ull xxx .       (3) 
In Eq. (1), ( )xpX  denotes the probability density function of 
the random vector X evaluated at a possible realization point 
x. Since the process  underlying the random vector nX X  is 
stationary, the joint probability density function ( )xpX  must 
satisfy the usual independence under a uniform shift along I, 
e.g. 

( ) ( )xpxp
nn XX 1+

=   and  ( ) ( )yxpyxp
mnmn XXXX ,,

11 ++
= . (4) 

It is desired here to determine ( )xpX  that maximizes the 
entropy, Eq. (1), under the constraints that 
(1) that the total probability is one, i.e. 

           ( ) 1=∫
Ω

xdxpX            (5) 

(2) that the mean value is given and constant (since the 
process is stationary) 

         [ ] ( ) XXnn xdxpxXE μ== ∫
Ω

              (6) In∈

(3) that the variance is given and constant (again, relying on 
the stationary of the process) 

( )[ ] ( ) ( ) 222
XXXnXn xdxpxXE σ=μ−=μ− ∫

Ω

   In∈      (7) 

(4) and that a given measure of the correlation, i.e. a 
correlation length is given. Two such measures that have been 
introduced in the past are 

( )

)0(
1

0
XX

m
XX

K

mK
L

∑
∞

==    and  
( )

( )∑

∑
∞

=

∞

==

0

0
1

m
XX

m
XX

mK

mKm
L       (8),(9) 

where 
( ) ( ) ( )( )[ ]

( )( ) ( ) (10)             any for 

,

   Inxdxpxx

XXEmnnmK

XXmnXn

XmnXnXXXX

∈μ−μ−=

μ−μ−=+Γ=

∫
Ω

+

+

is the stationary autocovariance function. Numerically, the 
series involved in Eqs (8) and (9) will be approximate by 
finite sum for m = 0 to . Then, Eqs (8) and (9) can both 
be written as 

maxm

( ) 0
max

0
=∑

=

m

m
XXmm mKsa     or as    

         for any n     (11a),(11b) 

( ) 0,
max

0
, =+Γ∑

=

m

m
XXnmm mnnsa

where 
( )( )mKs XXm sgn=      ([ mnns XXnm +Γ )]= ,sgn,    (12a),(12b) 

and for appropriate coefficients . Specifically, ma
        ( ) 11 00 −δ+= mm La                   (13) [ ]max,0 mm∈
for the correlation length  while for  0L 1L
    mLam −= 1                        (14) [ max,0 mm∈ ]
In the next section, it will be shown that the maximization of 
the entropy under the constraints of Eqs (5), (6), (7), and (11b) 
exhibits a generally undesirable behavior. To prevent this 
issue, the variance constraint of Eq. (7) will be replaced by the 
general scaling condition 

               ( ) ( ) NmmKUK
m

p
xxxx =+ ∑

∞

=1
0            (15) 

or, in terms of ( )mnXX ,Γ  and truncating the summation to 

maxmm =  

     ( ) ( ) NmmnnUnn
m

m

p
XXXX =+Γ+Γ ∑

=

max

1
,,    for any n    (16) 

where N is finite. Although the motivation for this condition is 
presented below, note here that for U = 0, Eq. (16) reduces 
exactly to Eq. (7) of which it can thus be recognized as a 
generalization. 

For the optimization of the entropy, it is convenient to 
rewrite Eqs (5), (6), (11b), and (16) in the generic form 
   
 ( ) ( ) 0=−≡Ξ ∫

Ω
iXinin Cxdxpxf           (17) 

where 
            ( ) Xnnn xxf μ−=1     and      01 =C             (18a), 
(18b) 

( ) ( )( )∑
=

+ μ−μ−=
max

0
2

m

m
XmnXnmmn xxsaxf 02 =C (19a), (19b) 
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( ) ( )( ) ( )2
1

3
max

Xn

m

m
XmnXn

p
n xxxmUxf μ−+μ−μ−= ∑

=
+   

   NC =3               (20a), (20b) 
and finally           14 =f      and       14 =C .        (21a), (21b) 

Then, the maximization of the entropy, Eq. (1) under the 
constraints of Eqs (17)-(21) can be accomplished in the 
Lagrange multiplier framework through the unconstrained 
maximization of 
   44332211

* Ξλ−Ξλ−Ξλ−Ξλ−= ∑∑∑
n

nn
n

nn
n

nnSS    (22) 

where n1λ , n2λ , n3λ , and 4λ are the Lagrange multipliers 
associated with the above constraints. This process leads to 
the probability density function 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
λ−λ−λ−λ−= ∑∑∑ 44332211exp1 ffff

e
xp

n
nn

n
nn

n
nnX  

      Ω∈x .         (23) 
Next, note that the term in bracket is a quadratic form of the 
vector Ex Xμ− , where E is the vector whose components are 

all equal to 1, i.e. [ ]TE KK 111= . Thus, Eq. (23) can be 
rewritten as 

( ) ( ) ( ) ( ⎥⎦
⎤

⎢⎣
⎡ μ−−μ−′μ−−′= ExVExGExCxp X

T
X

T
XX 2

1exp )

      Ω∈x         (24) 
where           )1exp( 4 −λ−=′C          (25) 

( ) [ ] [ ]032 22 m
p

nmmnmnn mUsaG δ+λ+λ=′ + [ ]max,0 mm∈

                  (26) 
0 otherwise, and    
   .         (27) nnV 1λ=
Note in Eq. (26) that  denotes the Kronecker symbol. 
Assuming that the matrix G is not singular, Eq. (24) can 
finally be rewritten as 

ijδ

       ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ μ−μ−−= xGxCxp T

X 2
1exp  Ω∈x             (28) 

where  ⎥⎦
⎤

⎢⎣
⎡′= − VGVCC T 1

2
1exp             (29) 

                    VGEX
1−−μ=μ          (30) 

                      ( )TGGG ′+′=
2
1

.         (31) 

To complete the characterization of the distribution of Eq. 
(28), it remains to evaluate the parameters it involves, i.e. the 
Lagrange multipliers n1λ , n2λ , n3λ , and 4λ , from the 
constraints they represent, i.e. Eqs (5), (6), (11b), and (16). In 
that regard, note that it is more convenient to directly focus on 
the evaluation of C, μ , n2λ , and n3λ  the latter two defining 

the matrices  and G. G′
Of special interest here is the situation where the size of the 

domain I becomes large, i.e.  and −∞→l ∞→u . In this 
case, each random variable  exhibits the same properties, 

none of them being closer or further from the boundaries l and 
u of the domain I and thus the dependence of 

nX

( )xpX  on any 

variable  should be the same. This condition is matched 
when 

nx

    Eμ=μ ,    22 λ=λ n     and      (32a),(32b),(32c) 33 λ=λ n

in which case the matrix G is Toeplitz and symmetric. With 
Eqs (32b) and (32c), the matrix  becomes G′

( ) ( ) { }mm
p

mmnn samUG δ++δλ=′ + 032 [ ]max,0 mm∈   (33) 

where the parameter 32 /λλ=δ  is introduced in place of 2λ . 
Note here that the signs  are dependent on the 
autocorrelation function, see Eq. (12a), and thus are unknown 
at this point. This issue will be addressed in the ensuing 
sections. 

1±=ms

Equations (28), (31), (32a), and (33) represent the 
maximum entropy distribution sought. To be useful in 
practical situations, it remains to address the following three 
issues: 
(1) the determination of the parameters C, , μ 3λ , , and δ 
from Eqs (5), (6), (7), and (11a) (at this stage, the 
normalization condition of Eq. (7) is reinstated in place of Eq. 
(16), although the parameters U and p continue to appear in 
Eq. (33)) and the efficient simulation of realization of the 
random values  when  

ms

nX
( ) ( ) ( ) ( ){ }∞∞−×∞∞−×∞∞−∈=Ω + ,,,,,, 1 KK ull xxx . 

(2) the selection of the parameters U and p following a 
discussion of the need to introduce Eq. (16). 
(3) the determination of the parameters C, , μ 3λ , , and δ 
from Eqs (5), (6), (7), and (11a) and the efficient simulation of 
realization of the random values  when 

ms

nX
 ( ) [ ) [ ) [ ){ }∞×∞×∞∈=Ω + ,0,0,0,,, 1 KK ull xxx . 
These 3 issues are addressed in the ensuing sections. 

2.2 Process without sign constraint 
The case of a process without sign constraint, i.e. with the 
domain Ω defined by Eq. (2) is considered first because of its 
simplicity. Under this assumption, it is concluded from Eq. 
(28) that the random vector X is Gaussian with mean μ and 
with covariance matrix  
               1ˆ −=GK XX .         (34) 

Note that XXK̂  is expected to exhibit a Toeplitz structure, as 
G does, owing to the stationarity of the process in its 
autocorrelation function. 

To satisfy the constraints of Eqs (5) and (6), one obtains 
directly 

          ( )
( )P

GC
π

=
2

det          (35) 

where P denotes the  number of values of the process 
considered and 
               Xμ=μ .          (36) 

Next, consider the parameter 3λ  and note that it scales (for 

a fixed value of δ) the matrices G and XXK̂ . In fact, the latter 
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is inversely proportional to it demonstrating that the effect of 
3λ  is to uniformly scale the values of the process by the 

factor 3/1 λ  and to modify the sign of the autocovariance 
function. Thus, this parameter does not affect the correlation 
length which is a ratio of autocorrelation values and 
accordingly is only a function of δ and the selected sign 
sequence (see Eq. (12a)). Once these quantities have been 
determined from either Eq. (8) or (9) and Eq. (12a), i.e. by 
solving  

ms

 ( ) 00 , LsL m =δ  or ( ) 11 , LsL m =δ         (37) 

where 0L  or 1L  is the imposed correlation length, the value 
of 3λ  can then be selected to match the variance condition, 
Eq. (7). 

The numerical evaluation of ( msL ,0 δ )  and ( )msL ,1 δ  for 
specified values of , U and p, and for a given value of δ 
and of the sign sequence  was achieved as follows. The 
matrix  was first formed for P = 2*M +1 random 
variables . The parameter M was selected “large enough”, 

i.e. much larger than  for the inverse 

maxm

ms

3/λG

nX

maxm ( ) XXKG ~/ 1
2 =λ −   

to exhibit a near Toeplitz structure. Since the convergence to 
this structure occurred faster for the elements near the center 
of the matrix, the M + 1st row was considered representative 
of the true infinite Toeplitz matrix and was used for the 
estimation of the autocorrelation values as 

          ( ) ( ) mMMXXXX KmK
+++λ

= 1,1
3

~1 .        (38) 

Since the variance  must be positive, the sign of ( )0XXK 3λ  
was determined to enforce that condition on the 
autocorrelation sequence of Eq. (38), i.e. 

( ) ( )[ 1,13
~sgnsgn

++
=λ MMXXK ] . Then, the correlation length, 

( msL ,0 δ )  or ( msL ,1 δ ) , and the sign ( )( mKXXsgn )  were 

estimated and compared to 0L  or 1L  and . A matched of 
both indicated that an acceptable solution of the values δ and 

 was found. Next, the magnitude of 

ms

ms 3λ , was determined to 
satisfy the variance normalization condition, Eq. (7). Finally, 
the constants μ and C were obtained from Eqs (35) and (36) 
completing the determination of the probability density 
function. 

Multiple solutions (acceptable values δ and ) were 
occasionally found. In such cases, the solution yielding the 
lowest value of the entropy was retained. In this regard, 
introducing the expression of the probability density function 
given by Eq. (28) in Eq. (1) yields 

ms

      ( ) ( )[ ]μ−μ−+−= XGXECS T
2
1ln          (39) 

or, using Eq. (36), 

          
2

ln PCS +−=  .            (40) 

The simulation of random values  can be achieved by 
standard algorithms. In particular, samples of the random 

vector 

nX

X can be obtained from the relation 
           WLX +μ=              (41) 

where L is the Cholesky decomposition of , i.e. 
, and the components of the vector 

1−G
TLLG =−1 W are 

independent zero mean and unit variance Gaussian random 
variables.  

2.3 Normalization condition: Eq. (16) vs. Eq. (7) 
The discussion carried out in the previous section is applicable 
for any values of U and p of the constraint of Eq. (16) and 
thus are also valid for U = 0, i.e. when the variance constraint 
of Eq. (7) is directly imposed. This special case was 
considered here first for the 2 definitions of the correlation 
length, Eqs (8) and (9), for 0L  or 1L  =0.3, and for several 
values of , e.g. see Fig 1. maxm

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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m
)

m
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 M m ax5
 M m ax4
 M m ax3

 
Figure 1. Autocovariance functions obtained for U = 0, 

1=σX , 1L =0.3, and various . maxm
 
An inspection of this figure (note the logarithmic scale) 

indicates that the autocorrelation function values for lags 
 are steadily decreasing values, e.g. the peak value away 

from zero is monotonically decreasing. Extrapolating this 
behavior to 

1≥m

∞→maxm  suggests that the autocovariance 
values will converge to near zero values, i.e. that the process 
will converge to a white noise, which is the solution of the 
problem in the absence of the correlation length constraint. 
Further, this latter condition is satisfied by the autocovariance 
function exhibiting a near constant value (for the  
definition, not shown here fro brevity) or a growing behavior 
in 

0L

[ ]max,1 mm∈   (for the  definition). 1L
This behavior is clearly not the one which is desired. The 

truncation of the summations in Eqs (8) and (9) to  was 
motivated by computational requirements and should have 
little effect for  large enough at the contrary of the trend 
shown in Fig 1. The desired behavior is achieved here through 
the U dependent term in Eq. (15) which, with p > 0 for the  
definition and 1 for the  definition, weighs more heavily 
the terms of the autocovariance function near 

maxm

maxm

0L

1L

maxmm =  than 
the correlation length constraint and thus forces this function 
to converge faster. Note however that two new parameters, U 

Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011 2629



and p, appear in this process and their rational selection must 
be formulated. 

If the desired convergence of the autocovariance function is 
achieved, the truncation of the summations in Eq. (8) or (9) 
should have a small effect on the value of the correlation 
length. This effect can be measured by the error 

( ) ( )

)0(

max

11

XX

m

m
XX

M

m
XX

trunc K

mKmK ∑∑
==

−

=ε           or 

  
( )

( )

( )

( )∑

∑

∑

∑

=

=

=

= −=ε
max

max

0

0

0

0
m

m
XX

m

m
XX

M

m
XX

M

m
XX

trunc

mK

mKm

mK

mKm
      (42) 

if the definitions  or  of the correlation length are used. 
Note in the above equations that M is the largest lag that can 
be estimated from the inversion of the matrix G. Then, the 
selection of the parameter U, for a given value of , was 
achieved to yield the lowest value of the truncation error 

. 

0L 1L

maxm

truncε
A similar strategy could be proposed for the determination 

of the best value of p but this process has been observed to 
lead to p converging to its minimum value allowed, i.e. 0 for 
the  definition and 1 for the  definition. Thus, a fixed 
value of p was imposed. Specifically, this parameter was 
chosen equal to 2 as Eq. (15) then leads to a physically-based 
condition. Indeed, recognizing that the power spectral density 
of the process  is defined as 

0L 1L

Xnn XY μ−=

( ) ( ) ( ) ω
π

=ω
π

=ω ∑∑
∞

=

∞

=
mmKmmRS

m
XX

m
YYYY cos

2
1cos

2
1

00
 

             (43) 
and assuming that the convergence is uniform in ω, it is found 
that 

 ( ) ( )
0

2

2

1

2 2
=ω

∞

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ω

ω
π=∑

d
SdmKm YY

m
XX .        (44) 

Thus, Eq. (15) is equivalent to the imposition of a nonzero 
value of the curvature of the spectrum  at zero 
frequency 

( )ωYYS

 
( ) ( )[ 0

2
1

0
2

2

XX
YY KN

Ud
Sd

−
π

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ω

ω

=ω

]         (45) 

thereby preventing the occurrence of a white noise solution 

characterized by  = constant or( )ωYYS ( ) 0
0

2

2
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ω

ω

=ωd
Sd YY . 

In summary, the determination of the parameters of the 
distribution of Eqs (28), (32), (33) and the simulation of 
random values of the process thus proceeded as follows. For 
fixed values of , U, and the autocorrelation sign 
sequence , the parameters δ and  were determined to 
yield the given correlation length value (based on  lags), 
i.e. Eqs (11a) and (37), and the variance constraint of Eq. (7). 
These computations were repeated by specifying in turn each 

sign sequence  and the optimum cases in which this vector 
matched the sign sequence of the computed autocovariance 
function 

maxm

ms 3λ

maxm

ms

( )mK XX  for [ ]max,1 mm∈  were identified. Of this 
set was retained the one leading to the largest entropy as 
evaluated from Eq. (40) and the corresponding truncation 
error, Eq. (42), was determined. This effort was repeated by 
varying U until a minimum of the truncation error was 
achieved. Finally, the above process was repeated for 
increasing values of  and stopped when either a 
decrease of entropy or an increase in truncation error of the 
final solution was obtained. 

maxm
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Figure 2. Autocovariance functions for correlation lengths of 

0.3, 1, and 3 for the definitions of  Eq. (9). 
 
Shown in Fig. 2 are the autocovariance functions obtained 

with this approach for correlation length of 0.3, 1, and 3 and 
for the definitions of the correlation lengths of Eq. (9). 

ly, these autocovariance functions do exhibit the 
expected features and the appropriate convergence as the lag 
number is increased. Note further that the form of this 
function depends on the choice of the correlation length 
definition, the curves obtained with Eq. (8) do not appear to 
oscillate significantly while those obtained with Eq. (9) do. 
With these autocovariance functions, the simulation of 
random values  follows from Eq. (41). 

Clear

nX

2.4 Positive processes 
Many physical properties are positive and thus the modeling 
of their uncertainty must maintain this constraint. In the 
present formulation, this is achieved by restricting the process 
to exhibit  only positive values, i.e. with 

( ) [ ) [ ) [ ){ }∞×∞×∞∈=Ω + ,0,0,0,,, 1 KK ull xxx . In this case, 
Eq. (28) is a truncated Gaussian distribution which does not 
vanish when any of the variable  goes to zero. This feature 
of the obtained distribution is not acceptable for certain 
properties which must be strictly positive and accordingly the 
work carried out in this section is unsuitable to model their 
uncertainties. 

nx

Assuming that strict positiveness is not required, it is next 
necessary to determine the parameters C, , μ 3λ , , δ, and 
U to satisfy the stated constraints.  In this regard, the key 
difference with the case in which the process has no sign 

ms
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constraint is the lack of closed form expressions for the 
normalization constant, mean, and covariance matrix, i.e. Eqs 
(34)−(36) are no longer applicable as the random vector X is 
no longer jointly Gaussian, only truncated Gaussian. 
Accordingly, it will be necessary to simulate values of the 
process  first to impose the matching of the mean, Eq. (6), 
variance, Eq. (7), correlation length, Eq. (11), and sign 
sequence, Eq. (12), constraints. 

nX

The simulation of such values for specified values of μ , 

3λ , , δ, and U will be achieved by rejection from the 
jointly Gaussian vector 

ms
Y, or equivalently the Gaussian 

process , defined as in Eq. (28) but over the entire space, 
i.e. 

nY

( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ μ−μ−−= yGyCyp T

Y 2
1exp  

   ( ) ( ) ( ∞∞−×∞ )∞−×∞∞−∈ ,,, Ky .       (46) 
While this vector could be simulated according to the strategy 
of Eq. (41), this would lead to an expensive rejection process 
as any simulated vector y with at least one negative value 
would be discarded. A better approach is to proceed 
sequentially and to simulate values , n=1, 2, ... (achieved 
here using an autoregressive modeling approach) from which 
the corresponding values  are obtained. Specifically, 

 if  is positive. If this simulated value is negative, 
another  is simulated and checked for positiveness. This 
simulation is repeated at step n until a positive value  is 
obtained and the assignment  carried out. The 
simulation then moves to step n +1 and is repeated until the 
number of samples generated is large enough to conduct a 
statistical analysis giving the stationary mean and 
autocovariance function of the process . These values are 
then used to evaluate the closeness to the mean, Eq. (6), 
variance, Eq. (7), correlation length, Eq. (11), and sign 
sequence, Eq. (12), conditions. These computations are 
iterated for given values of  and U, to obtain the 
parameters , 

ny

nx

nn yx = ny

ny

ny

nn yx =

nX

maxm
μ 3λ , , and δ. As in the case of processes 

without sign constraints, an outer loop is carried out to 
determine the optimum value of U to minimize the truncation 
error and further performed for increasing  as long as 
the entropy increases and the truncation error decreases. 

ms

maxm

As in the case of processes without sign constraint, 
multiple set of values μ , 3λ , , and δ were occasionally 
found to satisfy the mean, variance, correlation length, and 
autocovariance sign sequence constraints. In such cases, the 
solution which was retained was the one yielding the largest 
value of the entropy. This quantity was determined here as in 
Eq. (39). However, since μ is no longer the mean value 

ms

Xμ , 
one obtains 

           ⎥⎦
⎤

⎢⎣
⎡ μ−μ⎥⎦

⎤
⎢⎣
⎡ μ−μ++−= X

T

X GPCS
2

ln       (47) 

where the constant is expressed as 

                ( )
( ) ( )rej

P p
GC

−π
=

1
1

2
det          (48) 

where  is the probability of rejection of samples 
according to the simultaneous simulation algorithm of Eq. 

(41), i.e. 

rejp

[ ]P
rej Yp RProb1 ∈=− . In the autoregressive-

based algorithm, this probability can also be evaluated using 
conditional probabilities. Specifically, 

[ ] ( )∏∏
==

−
− −=∈∈=−
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s
rej
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s

s
ssrej pYYp

1

)(

1

1
1 1R|RProb1       

(49) 
where sY  denotes the vector with the components  with n 

= 1, ..., s and  is the probability of rejecting the sample s 
having accepted the previous one. 

nY
)(s

rejp

The above process was exemplified with the correlation 
length definition of Eq. (8) and with 0L  = 3 with means of 1, 
2, and 3. With the variance fixed at 1, these values of the 
mean led to coefficients of variations equal to 1/3, 1/2, and 1. 
For comparison, the values of  were kept equal to the 
optimum values found in the case of a process without sign 
constraint. The resulting autocovariance functions of the 
positive processes are shown in Fig. 3. Also shown on these 
figures are the autocovariance function in the non positive (no 
sign constraint) case. As expected, these latter values closely 
match their counterpart for the mean of 3 (coefficient of 
variation of 1/3) but in fact, it is found that the autocovariance 
function is almost independent of the mean/coefficient of 
variation even at the highest level of variation used. 
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Figure 3. Autocovariance functions of the optimal positive 

process for correlation lengths of 3 for the definitions of Eq. 
(8) and for coefficients of variation (“c.v.”) of 1/3, 1/2, and 1. 

3 APPLICATION TO FRICTION MODELING IN 
STICK-SLIP AND MICROSLIP RESPONSE 

One objective of the present study was to investigate the 
effects of uncertainty in the friction coefficients on the 
dynamic response of systems exhibiting stick-slip and 
microslip behavior and the methodology developed in the 
previous sections provides the modeling of the uncertain 
friction coefficients.  To demonstrate its application, consider 
the 5-degree-of-freedom system shown in Fig. 4 consisting of 
a chain of Iwan oscillators. Each of the degrees-of-freedom in 
this system are connected to ground through a slider/friction 
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element which slides when the force in the corresponding 
spring is larger than the force of friction. 
 

 
Figure 4. Chain of Iwan oscillators considered. 

 
The parameters of the each oscillator were selected to be 

identical, i.e. the masses were chosen as kg while 
the stiffnesses  and  were selected as 25N/m and 50N/m, 
respectively.  In regards to the friction, the value of the normal 
force N was assumed to equal 10 and the static and kinematic 
coefficients of friction were taken equal, i.e.  for 
each oscillator i =1, ..., 5. Further, the mean model of the 
system was assumed to have coefficients of friction 

= 0.2 for each oscillator i =1, ..., 5. In addition, the 
stuck system was assumed to also exhibit a classical viscous 
damping with a modal damping ratio of 0.5% on all 5 modes. 

1== mmi

1k 2k

)()( i
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i
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)()( i
D

i
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Note that the consideration of viscous damping in addition 
to friction is necessary as the latter does not guarantee alone 
the finiteness of the response (e.g. see discussion of [7]). 
However, the viscous damping is sufficient, i.e. even without 
friction, to ensure this finiteness condition. Thus, the strict 
positiveness of the simulated coefficients of friction is not 
required and accordingly, the uncertainty modeling approach 
described in the previous section is applicable. 

The system was subjected to a concentrated force at its free 
end varying in time as a Gaussian white noise process in the 
range of [0,60] Hz with a specified variance (see below). The 
response of the system was obtained through a Newmark 
integration scheme with a standard time step of 8.4 10-3s. 
Particular care was exercised to accurately pinpoint the 
transitions of the degrees-of-freedom from slip to stick and 
stick to slip. The transition capturing was accomplished by a 
successive halving of the time steps when a transition was 
detected until the step was 215 time smaller than the standard 
time step. At that point, transition was assumed to be at the 
beginning or the end of this small interval depending on the 
closeness of the transition from these end points. The 
validation of the algorithm was accomplished by tracking 
various transitions. 

For these parameter values, it was desired next to select a 
value of the excitation variance that would provide stick-slip 
of the various masses to exemplify microslip. For low values 
of the variance, the system remains stuck and the response is 
linear. As the variance of the excitation is increased, the 
system slowly changes from fully stuck to fully slipping and 
the frequencies at which the peak of the response power 
spectra slowly reduce transitioning from the natural 
frequencies of the stuck system (1.15, 1.31, 1.53, 1.75, and 
1.90Hz) to their counterparts from the slipping one (0.23, 
0.66, 1.04, 1.34, and 1.53Hz). For intermediate values of the 
variance, e.g. 3.7 N2, the desired stick-slip behavior is 
achieved but differently for each oscillator. Specifically, the 
fraction of time spent in slip mode decreases monotonically 

from the degree-of-freedom 5 on which the force is applied to 
the first one, nearest to the wall: 37%, 22%, 12%, 8%, and 
7%, respectively. 

Uncertainty in the coefficients of friction was introduced 
with the positive definite process with correlation length 0L  = 
0.3, 1, and 3 and standard deviations of 0.066, 0.1, and 0.2 
keeping the mean at 0.2, i.e. with coefficients of variation of 
1/3, 1/2, and 1. A series of Monte Carlo analyses were carried 
out under the same excitation but with different realizations of 
the coefficients of friction and for each such analysis the 
power spectral density of the stationary response of the 5 
oscillators was determined. A statistical analysis was then 
performed to obtain, for each frequency, the 5th and 95th 
percentiles of the power spectrum values which form the 
lower and upper boundaries of the “uncertainty band” on the 
response, see Figs 5 and 6. It appears from these figures and 
from results conducted at different excitation levels (not 
shown here for brevity) that the uncertainty bands are most 
affected by the level of variability of the coefficients of 
friction with the correlation length having only a small, 
localization type effect on the response of the oscillators 
closest to the wall. 
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Figure 5. Uncertain bands on the power spectral density of the 
response of oscillators (a) 1 and (b) 5. Correlation length 0L  

= 0.3, various coefficients of variation. 

Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011 2632



0 0.5 1 1.5 2 2.5 3
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

Frequency (Hz)

S
pe

ct
ru

m
 (m

2 /H
z)

 

 
L0=0.3, 5%

L0=0.3, 95%

L0=1, 5%

L0=1, 95%

L0=3, 5%

L0=3, 95%

 

0 0.5 1 1.5 2 2.5 3
10

-8

10
-6

10
-4

10
-2

10
0

Frequency (Hz)

S
pe

ct
ru

m
 (m

2 /H
z)

 

 

L0=0.3, 5%

L0=0.3, 95%

L0=1, 5%

L0=1, 95%

L0=3, 5%

L0=3, 95%

 
Figure 6. Uncertain bands on the power spectral density of the 

response of oscillators (a) 1 and (b) 5. Coefficients of 
variation of 0.3.Various correlation lengths 0L . 

4 SUMMARY 
The focus of this investigation has been on the formulation 
and first assessment of a novel model for the representation of 
uncertain properties as discrete stationary random processes. 
As opposed to postulating the distribution of the random 
process values, this function is here derived to yield the 
maximum of the entropy under the set of constraints 
representing a given mean, a given variance, and a given 
correlation length. In the absence of a sign constraint on the 
process, its distribution is Gaussian with autocovariance 
function that is expressed in terms of the Lagrange multipliers 
of the constraints. A numerical approach was described and 
demonstrated for the evaluation of these Lagrange multipliers 
and the autocovariance functions found exhibit the features 
physically expected. 

For positive processes, the distribution obtained is a 
truncated Gaussian and the above computational strategy was 
extended to allow the determination of the Lagrange 
multipliers and to efficiently simulate realizations of the 
process. Results obtained with different correlation lengths 
and coefficients of variation, up to a value of the latter of 1, 
suggest that the autocovariance function of the positive 

process is very close to its equivalent for the process without 
sign constraint. 

Next, the novel stochastic model of uncertainty proposed 
here was applied to the simulation of uncertain coefficients of 
friction. A chain of Iwan oscillators was considered to model 
the dynamic response of a flexible structure connecting 
through friction to a rigid foundation. Then, the response of 
this system subjected to a random load and with the uncertain 
coefficients of friction was analyzed by Monte Carlo 
simulations. The results of this computational effort confirm 
the sensitivity of the system response to uncertainty in the 
coefficients of friction and suggests that the correlation length 
of these coefficients plays a secondary role in the uncertainty 
on the response. 
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