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ABSTRACT: A methodology for analyzing the response of geometrically nonlinear structural systems in presence of both system
parameters uncertainties and model uncertainties is presented in the context of the robust identification of uncertainnonlinear
computational models using experiments. This methodologyrequires the knowledge of a reference calculation issued from the
mean model in order to obtain the POD-basis used for the construction of the mean reduced nonlinear computational model.This
explicit construction is carried out in the context of three-dimensional solid finite elements. This allows the uncertain nonlinear
computational model to be constructed in any general case with the nonparametric probabilistic approach. A numerical example is
then carried out in order to show the efficiency of the method.
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1 INTRODUCTION

In structural mechanics, a recent challenge of interest is
to have advanced numerical methodologies for constructing
robust computational models in order to efficiently predictthe
mechanical behavior of structures. In numerous industrial
applications, the effects of geometrical nonlinearities induced
by large strains and by large displacements have to be taken
into account in the numerical modeling. For instance, such
nonlinear mechanical behavior is exhibited in aeronauticsfor
the case of helicopter rotating blades [1], [2] or in automotive
or aerospatial industries for the case of slender beams or thin
shells [3], [4], [5]. In the context of complex structures,
large finite element computational models are needed. Given
the numerical difficulties inherent to the complexity of such
computational models, many recent researches have focused
on the construction of reduced order models in this nonlinear
context [6], [7]. In particular, the ELSTEP procedure [8],
[9] has been developed in order to explicitly construct all
the linear, quadratic, cubic stiffness terms related to reduced
nonlinear models. The methodology is based on the smart
use of an industrial finite element code for which no further
numerical developments are needed. It only requires a series of
basic nonlinear numerical calculations with judicious prescribed
displacements taken as a linear combination of given basis
vectors.

Moreover, deterministic nonlinear computational models are
in general not sufficient to accurately predict the mechanical
behavior of such complex structures. The uncertainties have
then to be taken into account in the computational models by
using probabilistic models as soon as the probability theory
can be used. Let us recall that there exist two classes of
uncertainties: (1) the system parameter uncertainties result from
the variability of the parameters of the computational model

induced for instance by the manufacturing process, (2) the
model uncertainties are the features of the mechanical system
not captured by the computational model, e.g. the introduction
of reduced kinematics in the numerical modeling. Parametric
probabilistic approaches are particularly adapted to takeinto
account system parameter uncertainties as shown in [10], [11]
is the context of the post-buckling of cylindrical shells. This
last decade, the nonparametric probabilistic approach adapted to
the modeling of both model uncertainties and system parameter
uncertainties has been introduced in [12], [13] for the linear case
and has been extended more recently in [9], [14] in the context
of geometrical nonlinearities. In the present paper, a direct
procedure is proposed in the context of geometrical nonlinear
structural mechanical systems. In this methodology, the explicit
construction of the uncertain nonlinear computational model
is proposed for any type of structure modeled with three-
dimensional solid finite elements.

In the first Section, the equations of the geometrical nonlinear
problem are written in the context of a total Lagrangian
formulation. The second Section is devoted to the construction
of a mean reduced nonlinear computational model required by
the implementation of the nonparametric probabilistic approach.
This mean reduced nonlinear computational model is obtained
using the Proper Orthogonal Decomposition method known
to be particularly efficient in nonlinear cases [6]. The POD-
basis is then easily deduced from a reference solution taken
as the deterministic response of the structure. The mean
reduced nonlinear computational model, which results from
the projection of all the linear, quadratic and cubic stiffness
terms on this POD-basis is then explicitly constructed in the
context of three-dimensional solid finite elements. The third
Section is devoted to the construction of the uncertain nonlinear
computational model using the nonparametric probabilistic ap-
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proach. Such nonparametric probabilistic approach is based on
the construction of a probability model for random matriceswith
values in the set of symmetric positive-definite matrices whose
mean value is deduced from the mean reduced computational
model. Let us recall that the nonlinear quadratic stiffnessterm
of the mean reduced nonlinear computational model is defined
as the sum of three nonlinear terms. In the present geometrical
nonlinear context, the nonparametric probabilistic modelis
implemented from a deterministic symmetric positive-definite
matrix whose components are notably described by each of
these three nonlinear terms. Note that its explicit construction is
then needed. In the fourth Section, the procedure for the robust
identification of the uncertain nonlinear computational model
with respect to available experimental responses is carried out
[15], [16]. Finally, the fifth Section is devoted to a numerical
example in order to demonstrate the efficiency of the proposed
methodology.

2 FORMULATION OF THE GEOMETRIC NONLINEAR
PROBLEM

The structure under consideration is made up of a linear elastic
material and is assumed to undergo large deformations induced
by geometrical nonlinearity. LetΩ be the three-dimensional
bounded domain of the physical spaceR3 corresponding to
the reference configuration taken as a natural state without
prestresses. The boundary∂Ω is such that∂Ω = Γ

⋃
Σ with

Γ
⋂

Σ = /0 and the external unit normal to boundary∂Ω is
denoted asn. The boundary partΓ corresponds to the fixed
part of the structure whereas the boundary partΣ is submitted to
an external surface force field. A total Lagrangian formulation
is chosen. Consequently, the mechanical equations are written
with respect to the reference configuration. Letx be the position
of a point belonging to domainΩ. The displacement field
expressed with respect to the reference configuration is denoted
as u(x). It should be noted that the surface force fieldG(x)
acting on boundaryΣ and that the body force fieldg(x) acting
on domainΩ corresponds to the Lagrangian transport of the
physical surface force field and to the physical body force
field applied on the deformed configuration into the reference
configuration. LetC be the admissible space defined by

C = {v ∈ Ω , v sufficiently regular, v = 0 on Γ} . (1)

The weak formulation of the geometric nonlinear static
boundary problem consists in finding the unknown displacement
field u of admissible spaceC such that, for any admissible
displacement fieldv ∈ C

∫

Ω
vi,k Fi j Sjk dx =

∫

Ω
vi gi dx+

∫

Σ
vi Gi ds , (2)

in whichF is the deformation gradient tensor whose components
Fi j are defined by

Fi j = ui, j + δi j , (3)

in which δi j is the Kronecker symbol such thatδi j = 1 if i = j
and δi j = 0 if not, and whereS is the second Piola-Kirchoff
symmetric stress tensor defined for any elastic material by the
linear relation

Si j = ai jkl Ekl . (4)

In Eq. (4), the fourth order elasticity tensora satisfies the
classical symmetry and positive definiteness properties. The
Green strain tensorE is then written as the sum of a linear term
and of a nonlinear term such that

Ei j = εi j +ηi j , (5)

in which

εi j =
1
2

(
ui, j +u j ,i

)
and ηi j =

1
2

us,i us, j . (6)

The weak formulation Eq. (2) is reformulated as finding the
unknown displacement fieldu of admissible spaceC such that,
for any admissible displacement fieldv ∈ C we have

k(1)(u,v) + k(2)(u,u,v) + k(3)(u,u,u,v) = l(v) , (7)

in which the multilinear formsl(v), k(1)(u,v), k(2)(u,u,v) and
k(3)(u,u,u,v) are defined for allu,v ∈ C by

l(v) =
∫

Ω
vi gi dx+

∫

Σ
vi Gi ds , (8)

k(1)(u,v) =
∫

Ω
a jklmεlm(u)ε jk(v)dx , (9)

k(2)(u,u,v) =
∫

Ω
a jklmηlm(u)ε jk(v)dx+

∫

Ω
a jklmus, jvs,kεlm(u)dx (10)

k(3)(u,u,u,v) =
∫

Ω
a jklm us, j vs,k ηlm(u)dx . (11)

3 CONSTRUCTION OF A MEAN REDUCED COMPUTA-
TIONAL MODEL FOR THE GEOMETRICAL NONLIN-
EAR PROBLEM

This Section concerns the construction of the mean reduced
computational model adapted to the geometrical nonlinear
context. The methodology is based on the explicit construc-
tion of each term constituting this mean reduced nonlinear
computational model. It is recalled that such mean reduced
nonlinear computational model is required by the nonparametric
probabilistic modeling of uncertainties. First, the general
equations yielding the mean reduced nonlinear computational
model are written for any given projection basis. Then,
the Proper Orthogonal Decomposition method is used for
constructing the projection basis in the context of large finite
elements systems [17], [6]. This POD-basis is deduced from a
reference calculation using a finite element code. Finally,each
linear, quadratic and cubic stiffness component constituting
the mean reduced nonlinear computational model is explicitly
constructed in the context of three-dimensional solid finite
elements.

3.1 General equations of the mean reduced model

Let �α(x) , α = {1, . . . ,N}, be a given set of basis functions
such that

u(x) =
N

∑
β =1

�β (x)qβ , (12)
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in which theRN-vector q = (q1, . . . ,qN) is the vector of the
generalized coordinates. Letv(x) be a test function such that

v(x) = �α(x)qα (13)

Replacing Eq.(13) in Eq.(7) yields the following set of nonlinear
equations

K(1)
αβ qβ + K(2)

αβ γ qβ qγ + K(3)
αβ γδ qβ qγ qδ = Fα , (14)

in which
K(1)

αβ =

∫

Ω
a jklm ϕα

j ,k ϕβ
l ,mdx , (15)

K(2)
αβ γ =

1
2

(
K̂(2)

αβ γ + K̂(2)
β γα + K̂(2)

γαβ

)
, (16)

K̂(2)
αβ γ =

∫

Ω
a jklm ϕα

j ,k ϕβ
s,l ϕγ

s,mdx , (17)

K̂(3)
αβ γδ =

∫

Ω
a jklm ϕα

r, j ϕβ
r,k ϕγ

s,l ϕδ
s,mdx , (18)

Fα =

∫

Σ
Giϕα

i ds +
∫

Ω
giϕα

i dx . (19)

It can easily be seen that the symmetry properties of the fourth
order elasticity tensor yield the following properties

K(1)
αβ = K(1)

β α (20)

K̂(2)
αβ γ = K̂(2)

αγβ (21)

K(2)
αβ γ = K(2)

β γα = K(2)
γαβ (22)

K(3)
αβ γδ = K(3)

αβ δγ = K(3)
β αγδ = K(3)

γδαβ (23)

Moreover, using the positive-definite property of the fourth-

order elasticity tensor, it can be shown that the tensorsK(1)
αβ and

K(3)
αβ δγ are positive-definite.

3.2 Numerical construction of the reduced order basis using
Proper Orthogonal Decomposition

The set of basis vectors used for constructing the mean reduced
nonlinear computational model is obtained with the Proper
Orthogonal Decomposition method which is known to be
efficient for nonlinear cases. The determination of this basis
necessarily requires a reference response. Indeed such basis
is defined by the eigenvalue problem of the spatial correlation
operator related to the displacement field of this reference
response. It should be noted that this basis does not only depend
on the operators of the computational model but also strongly
depends on the external applied loads used for exciting the
structure. Below, the numerical construction of the POD-basis
is summarized in the context of the finite element method. The
finite element discretization of Eq. (7) can be written as

[K(1)]u + fNL(u) = f , (24)

in which the Rn-vector u is the vector of the unknown
displacements. In Eq. (24), the(n× n) symmetric positive
definite matrix[K(1)] is the linear finite element stiffness matrix,
theRn-vectorfNL(u) is the vector of the restoring forces induced
by the geometrical nonlinear effects and theRn-vectorf is the

vector of the external applied loads. It should be noted that
there are specific numerical algorithms for solving this nonlinear
equation (see for instance [18]) which are particularly efficient
as the curvature of the nonlinear response changes (see for
instance [19] for algorithms based on arc-length methods or[20]
for algorithms based on asymptotic methods).

Let sj ∈ [0,1], j ∈ {1, . . . , p} with sj < sj+1 be the scalar
denoting the incremental weight numberj of the external load
vectorf. The(n× p) real matrix[V] is then introduced as

[V]i j = ui(sj)
√

∆sj , ∆sj = sj − sj−1 with s0 = 0 .
(25)

The spatial correlation matrix related to the nonlinear reference
response is defined by the symmetric positive-definite(n× n)
real matrix[A] such that

[A] = [V] [V]T . (26)

The POD-basis is then obtained in solving the following
eigenvalue problem

[A] [Φ] = [Φ] [Λ] , (27)

in which [Λ] is the diagonal matrix whose components are the
eigenvalues ordered by decreasing values and where[Φ] is the
modal matrix whose columns are the POD-basis vectors. It
should be noted that such numerical construction can not be
carried out as the dimensionn of the system increases. The
following methodology introduced by [17], [6] and adapted to
large computational models is then used. The singular value
decomposition of matrix[V] is written as

[V] = [B] [S] [C] , (28)

in which [S] = [Λ]1/2 and where the columns of the(n× n)
real matrices[B] and [C] are the left and right singular vectors
related to the corresponding singular values. Let[B]N be the
(n×N) matrix issued from the truncation of matrix[B] with
respect to theN largest singular values. Matrix[B]N can be
easily computed. The(N×N) symmetric positive-definite real
matrix [A]N is then introduced as

[AN] = [WN] [WN]T , with [WN] = [BN]T [V] . (29)

Denoting as[ΦN] the (n × N) real matrix defined by the
truncation of matrix[Φ] with respect to theN largest singular
values, we then have

[ΦN] = [BN] [ΨN] , (30)

in which [ΨN] is the modal matrix solution of the eigenvalue
problem

[AN] [ΨN] = [ΨN] [ΛN] , (31)

where[ΛN] is the(N×N) real diagonal matrix defined as the
truncation of matrix[Λ] with respect to theN largest singular
values.

3.3 Construction of the mean reduced nonlinear computa-
tional model

In this subsection, the mean reduced nonlinear computational
model is explicitly constructed from the knowledge of the POD-
basis. The construction is carried out in the context of the
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three-dimensional finite element method. The finite elements
used are isoparametric solid finite elements with 8 nodes and
the numerical integration is carried out withr Gauss integration
points.

Let [D] be the(6×6) real matrix which represents the usual
Hooke matrix related to the fourth-order elasticity tensor. For
the considered isoparametric finite element, the displacement
field ũ(y) with y ∈ [−1,1]3, is defined by

ũ(y) = [N(y)] ũ , (32)

in which the(3×24) real matrix[N(y)] defines the interpolation
functions and where theR24-vectorũ is made up of the degrees
of freedom of the finite element. LetI be the set of indices
defined byI = {(i, j)∈ {(11),(22),(33),(12),(13),(23)}}and
corresponding with the setI = {1,2,3,4,5,6}. From Eq. (32),
it can be deduced that

εi j (ũ)(1− δi j )+ ε ji (ũ) = [B(y)]Ik ũk ,(i, j) ∈ I , I ∈ I ,
(33)

in which [B(y)] is the(6×24) real matrix whose components
are obtained by the calculation of partial derivatives of the
interpolation functions contained in matrix[N(y)].

The first step consists in calculating for each finite element
the elementary contributions of the linear, quadratic and cubic
internal forces projected on the POD-basis. Then, for a given
finite element, theR24-vector constituted of the internal forces
induced by the POD-basis vector�β and related to the linear
stiffness term is written as

f̃
(1)
(�̃β ) =

r

∑
i=1

[B(yi)]
T [D] [B(yi)] �̃β (detJ)wi , (34)

in which �̃β is the spatial restriction of POD-basis vector�β

to the considered finite element, whereyi , i = {1, . . . , r} are
the locations of ther Gauss integration points related to the
isoparametric finite element withwi the corresponding weights
and where(detJ) is the Jacobian of the transformation from the
considered finite element to the isoparametric one. Let[Ck(y)]
be the(3×24) real matrix defined by

ũs,l(y) ũs,m(y) = ũT [Cl (y)]
T [Cm(y)] ũ . (35)

We then introduce the real(6× 24) matrix [Eβ (y)] whose row
numberI ∈ I is defined by�̃β ,T

(
[Ci(y)]T [Cj(y)] (1− δi j )+ [Cj(y)]T [Ci(y)]

)
. (36)

Then, for a given finite element, theR24-vector constituted of
the internal forces induced by the POD-basis vectors�β and�γ

related to the quadratic stiffness term is written as

f̃(2)(�̃β , �̃γ) =
r

∑
i=1

[B(yi)]
T [D] [Eβ (yi)] �̃γ (detJ)wi) . (37)

In the same way, for a given finite element, theR24-vector
constituted of the internal forces induced by the POD-basis
vectors�β , �γ and�δ and related to the cubic stiffness term
is written as

f̃(3)(�̃β , �̃γ , �̃δ ) =
r

∑
i=1

[Eβ (yi)]
T [D] [Eγ (yi)] �̃δ (detJ)wi .

(38)

In a second step, for each type of stiffness, we proceed with
the assembly of each of these elementary contributions. We
then denote byf(1)(�β ), f(2)(�β ,�γ) and f(3)(�β ,�γ ,�δ ) theRn-vectors of these internal loads. The mean reduced nonlinear
computational model is then described by

K(1)
αβ = �α ,T f(1)(�β ) , (39)

K̂(2)
αβ γ = �α ,T f(2)(�β ,�γ ) , (40)

K(3)
αβ γδ = �α ,T f(3)(�β ,�γ ,�δ ) . (41)

The quadratic stiffness contributionK(2)
αβ γ of the mean reduced

nonlinear computational model is then build from Eq. (16). It

should be noted that theK(1)
αβ , K̂(2)

αβ γ andK(3)
αβ γδ contributions

have to be explicitly known for constructing the uncertain
nonlinear computational model in the general case of complex
structures.

4 NONPARAMETRIC STOCHASTIC MODELING OF UN-
CERTAINTIES

In this Section, it is assumed that the mean reduced
nonlinear computational model contains both system parameter
uncertainties and model uncertainties which justifies the use
of the nonparametric probabilistic approach for modeling these
uncertainties in the computational model. The main idea of the
nonparametric probabilistic approach consists in replacing each
of the matrices of a given mean reduced computational model by
a random matrix whose probability model is constructed from
the maximum entropy principle using the available information
[12], [13]. In the usual linear case, the random matrices issued
from the mechanical system are with values in the set of the
symmetric positive-definite matrices. In the present geometrical
nonlinear context, the nonlinear equations involve nonlinear
operators. In this case, we then introduce the matrix[K] [9]
as the real(P×P) matrix withP = N(N+1) defined by

[K] =

[
[K(1)] [K̂(2)

]

[K̂(2)
]T 2[K(3)]

]
, (42)

in which [K̂(2)
] and [K(3)] are respectively the(N × N2) and

(N2×N2) real matrices resulting from the following reshaping
operation defined by

[K̂(2)
]α J = K̂(2)

αβ γ , with J = (β −1)N + γ , (43)

[K(3)]I J = K(3)
αβ γδ with I = (α −1)N+β andJ = (γ −1)N+δ .

(44)
It is shown in [9] that matrix[K] is a symmetric positive-
definite matrix. Consequently, the nonparametric probabilistic
approach can easily be adapted to the geometrically nonlinear
context as follows. The mean reduced matrix[K] is replaced
by the random matrix[K] such thatE{[K]} = [K] in which
E is the mathematical expectation. The random matrix[K] is
then written as[K] = [LK ]

T [GK ] [LK ] in which [LK ] is a(P×P)
real upper matrix such that[K] = [LK ]

T [LK ] and where[GK ] is
a full random matrix with value in the set of all the positive-
definite symmetric(P× P) matrices. The probability model
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of random matrix[GK ] is constructed by using the maximum
entropy principle with the available information. All details
concerning the construction of this probability model can be
found in [12], [13]. The dispersion of random matrix[GK ]
is controlled by one real positive parameterδ ∈ D called the
dispersion parameter. In addition, there exists an algebraic
representation of this random matrix useful to the Monte Carlo
numerical simulation. From random matrix[K] the random

linear, quadratic and stiffness termsK(1)
αβ , K̂(2)

αβ γ andK(3)
αβ γδ can

easily be deduced. The random matrix model is then defined by

U = [ΦN]Q , (45)

in which Q = (Q1, . . . ,QN) is the RN-valued vector of the
random generalized coordinates solution of the random equation

K(1)
αβ Qβ +K(2)

αβ γQβ Qγ +K(3)
αβ γδ Qβ Qγ Qδ = Fα , (46)

with

K(2)
αβ γ =

1
2

(K̂(2)
αβ γ + K̂(2)

β γα + K̂(2)
γαβ

)
. (47)

5 IDENTIFICATION OF THE UNCERTAIN NONLINEAR
COMPUTATIONAL MODEL

In this Section, the identification of the uncertain nonlinear
computational model from experimental data is formulated.It
is assumed that the mean reduced nonlinear computational is
known and that the identification focuses on the parameterδ
controlling the uncertainty level in the uncertain computational
model. This robust updating problem consists then in
minimizing a cost function with respect to parameterδ .
The formulation of the optimization problem requires the
definition of a cost function relevant to the uncertain nonlinear
computational model and to the experimental data. In the
present case, it is proposed here to introduce penalty terms
only in areas for which the experimental data is not within
the confidence region constructed with the uncertain nonlinear
computational model. It is assumed that a collection ofnexp

experimental responses are available atnobs spatial locations.
We then denote asUexp

j (s,θk) the experimental response number
k at dof number j as a function of the load increment
s. The corresponding observation issued from the uncertain
computational model is denoted asU j(δ ,s) and is a function of
the parameterδ to be updated. LetU+

j (δ ,s) (resp. U−
j (δ ,s))

and Uexp,+
j (s) (resp. Uexp,−

j (s)) be the upper (resp. lower)
envelope of the confidence region of observationU j(δ ,s)
obtained with a probability levelα = 0.95 and the upper (resp.
lower) envelope of experimentsUexp

j (s). The cost functionj(δ )
is then defined by

j(δ ) = ||D+(δ , ·)||2B + ||D−(δ , ·)||2B , (48)

in which || · ||B is theL2 norm over the load incremental bandB = [0,b] and whereD+(δ ,s) andD−(δ ,s) are theRnobs-
vectors whose component numberj is defined by

∆+
j (δ ,s) = {U+

j (δ ,s)−Uexp,+
j (s)}×

{1−H(U+
j (δ ,s)−Uexp,+

j (s))} , (49)

∆−
j (δ ,s) = {U−

j (δ ,s)−Uexp,−
j (s)}×

{H(U−
j (δ ,s)−Uexp,+

j (s)))} , (50)

wherex 7→ H(x) is the Heaviside function. The identification
of the uncertain nonlinear computational model consists then in
solving the optimization problem

find δ opt ∈D such thatj(δ opt)≤ j(δ ) , ∀δ ∈ D.

6 NUMERICAL APPLICATION

The objective of this application is to show the capability
of the presented methodology in the context of the robust
identification of an uncertain nonlinear computational model
with respect to given experimental data. The numerical example
consists in a three-dimensional linear elastostatic problem in
the geometrically nonlinear context. For clarity, the material
is chosen to be homogeneous and isotropic, the extension
to the nonhomogeneous case and to the anisotropic case is
straightforward. A preliminary calculation is carried outwith
MD NASTRAN in order to get the reference solution from
which the POD-basis is deduced. The uncertain nonlinear
computational model is then constructed as a function of
identification parameterδ as described in the theoretical part
of the paper. The experimental data basis has been obtained
by numerical simulations with MD NASTRAN. Note that the
geometrical characteristics of the structure have been modified
and that the material characteristics have been chosen to
be inhomogeneous so that it is impossible for the uncertain
nonlinear computational model to be identified to match the
experimental data.

6.1 Mean finite element model

X

Y

Z

Figure 1. Finite element model

The three-dimensional bounded domainΩ is a slender
domain such thatΩ =]0,L[×]0,b[×]0,h[ in a cartesian system
defined by(0,e1,e2,e3) with L = 10m, b = 1mandh = 1.5m.
Let Γ0 ⊂ ∂Ω be the boundary described as{x1 = 0, x2 ∈
[0,b] , x3 ∈ [0,h]}. Since the structure is fixed on sectionx1 = 0,
we have a Dirichlet condition on boundaryΓ0. The structure is
free on sectionx1 = 10m. The structure is subjected to external
surface loads applied along both directionse1 ande2 in the end
section defined byx1 = 10m. The Young modulus and the
Poisson coefficient related to the homogeneous and isotropic
linear elastic material areE = 1010N.m−2 andν = 0.15. The
finite element model is a regular mesh of 9477 nodes and
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80×8×12 = 7680 finite elements constituted of 8-nodes solid
elements withr = 8 Gauss integration points. Therefore, the
mean computational model hasn = 28080 degrees of freedom
(see figure 1). The discretization of the external loads yields
point loads applied on the nodes of the end section along the
direction e2 with intensity f = 4000000N and yields point
loads applied on the nodes of the end section along the direction
e1 with intensity f = −500000N. An initial imperfection
with a maximum amplitude of 200µm is added to the initial
structure in order to construct the mean nonlinear computational
model. This initial imperfection is defined by the first buckling
mode of the initial structure. In the present case, the first
buckling mode is a bending mode with eigenvalueλc = 0.371
corresponding to a critical loadfc = 1484000N along the
directione2 (respectivelyfc = −185000N along the direction
e1). Then, the mean nonlinear computational model corresponds
to a slightly curved beam whose shape is zoomed and shown in
the figure 2.
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Figure 2. Finite element model of the curved beam.

In order to simulate the post-buckling mechanical behavior,
the static nonlinear calculations are carried out by solving
Eq. (25) using MD NASTRAN with algorithms based on
the arc-length method. The displacement field is calculated
using nt = 110 load increments. Figure 3 shows the static
displacement field of the structure in the geometrically nonlinear
case.
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Figure 3. static displacement field of the structure

6.2 Construction of the experimental data basis

It is assumed thatnexp = 6 experimental measurements of the
static nonlinear response are available. The measurementsare
performed atnobs= 1 observation point at the middle of the end
section in the direction(0,e2). The experimental static response
is denoted byuexp,k

obs (s), k ∈ 1, . . . ,nexp. The corresponding
quantity defined for the mean nonlinear computational model
is denoted asuobs(s). The experimental data is generated as
follows. Assuming the existence of geometrical tolerances
of 5% around the geometrical characteristics, the maximum
entropy principle transform the geometrical parametersL, b and
h by the random variablesL, B andH with uniform probability
density function centered around the mean characteristicsand

with standard deviation taken asσL =
0.05L√

3
, σb =

0.05b√
3

andσh =
0.05h√

3
respectively. Moreover, assuming the Young

modulus to be inhomogeneous with 10% of variation around its
mean value is achieved by replacing its deterministic valueby a
stochastic fieldE(x). The stochastic field is simply modeled by

E(x) = E+
J

∑
j=1

ξ jb j(x) , (51)

in which ξ j , j ∈ {1, . . . ,J} are independent uniform random

variables with zero mean and standard deviationσ =
0.1E√

3
and where the functionsb j(x) are given basis functions. For
convenience, these smooth functions are taken as the spatial
average over each element of the eigenvectors related to theJ
lowest eigenvalues of the usual linear generalized eigenvalue
problem.
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Figure 4. response of the observation point as a function of the
incremental load: mean computational model (thick line),
experimental data (thin lines)

Figure 4 compares the static nonlinear response as a function
of the incremental load for both mean nonlinear computational
model and experimental measurements. Since the experimental
nonlinear responses are widespread around the response of the
mean nonlinear computational model, it can be seen that the
use of an uncertain nonlinear computational model is perfectly
justified.
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6.3 Construction of the reduced order basis

The nonlinear response shown in Figure 3 is then used for
calculating the POD-basis as described in Section 3. LetConv−
POD(N) be the function defined by

Conv−POD(N) = 1− tr([ΛN])

tr([A])
, (52)

for which the calculation oftr([A]) is obtained without
computing matrix[A]. Figure 5 shows the graphN 7→ Conv−
POD(N). It can be seen that the convergence is quickly
obtained. Henceforth, all the numerical calculations are carried
out withN = 4 POD-basis vectors. The mean reduced nonlinear
computational model is then constructed and the static nonlinear
equations are solved using the numerical algorithm of Crisfield
[19] based on the arc-length method. It can be seen that
the prediction error between the mean nonlinear computational
model and between its reduced counterpart at the observation
point is less than 0.06%.
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Figure 5. Convergence analysis : graph ofN 7→ Conv−
POD(N).

6.4 Experimental identification of the uncertain nonlinear
computational model
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Figure 6. Convergence analysis : graph ofns 7→Conv(ns).

The construction of the uncertain nonlinear computational
model using the nonparametric probabilistic approach is
performed as explained in Section 4. A stochastic convergence
analysis is then carried out to define the numberns of Monte

Carlo realizations to be kept in the numerical simulation. Let
ns 7→Conv(ns) be the function defined by

Conv(ns) =
1
ns

{ ns

∑
j=1

|||U(θ j)|||2
}1/2

, (53)

in which |||U(θ j )||| = maxs ||U(θ j ,s))||, ||U(θ j ,s))||2 =

∑n
k=1 U2

k (θ j ,s) with Uk(θ j ,s) the realization numberj of the
random response at dof numberk for a given load increment
s. Figure 6 displays the graphns 7→ Conv(ns) obtained with
a dispersion parameterδ = 0.6. Convergence is reached for
ns = 3000. The robust identification is then carried out by
studying the non-differentiable cost functionδ 7→ j(δ ) with
direct Monte Carlo numerical simulations. Since only one
observation point is available, this means that the cost function
is a positive decreasing function of the parameterδ . As soon as
the experimental data basis belongs to the confidence regionof
the random observation, the cost function is equal to zero.
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Figure 7. Robust identification : graph ofδ 7→ j(δ ).
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Figure 8. Robust identification : graph of the experimental
datas 7→ uexp,k

obs (s) (thin dashed lines), graph of the mean
responses 7→ uobs(s) (thick dashed line), graph of the
confidence region of the random responses 7→ Uobs(s)
(grey region).

Figure 7 shows the cost functionδ 7→ j(δ ). It can be seen that
the optimal value is given byδ opt = 0.56. Figure 8 displays the
graph of the confidence region of the optimal random response
Uobs(δ opt,s) as a function of the load increments. It can be seen
that there is a good agreement between the optimal uncertain
nonlinear computational model and between the experimental
data basis.
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7 CONCLUSION

In the present paper, a methodology has been proposed
for constructing an uncertain nonlinear computational model
for any three-dimensional structure in the context of linear
elastostatics with geometric nonlinearity. The mean reduced
nonlinear computational model is constructed by projection on
the POD-basis obtained from a reference calculation. All the
integrals involved in the weak formulation after projection on
the POD-basis are explicitly estimated using three-dimensional
solid finite elements. The construction of each contribution in
the quadratic term allows the uncertain nonlinear computational
model based on the nonparametric probabilistic theory to be
constructed in any case. A numerical example carried out
in the context of the robust identification of an uncertain
computational model with respect to an experimental basis
shows the efficiency of the method.
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