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ABSTRACT: A methodology for analyzing the response of getsimally nonlinear structural systems in presence of bg#tesn
parameters uncertainties and model uncertainties is miexén the context of the robust identification of uncertagmlinear
computational models using experiments. This methodotegyires the knowledge of a reference calculation issuzu the
mean model in order to obtain the POD-basis used for the rantigtn of the mean reduced nonlinear computational motiak
explicit construction is carried out in the context of thidimensional solid finite elements. This allows the undenteonlinear
computational model to be constructed in any general cabethé nonparametric probabilistic approach. A numerigaheple is
then carried out in order to show the efficiency of the method.
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1 INTRODUCTION induced for instance by the manufacturing process, (2) the
model uncertainties are the features of the mechanicadrsyst

In rsltructurdal mec&hamcs, a Irecer;]t dchlallgngef of mterest'd& captured by the computational model, e.g. the intradoct
to have advanced numerical methodologies for constructigg e ,ceqd kinematics in the numerical modeling. Parametri

robust computational models in order to efficiently prediet robabilistic approaches are particularly adapted to fake

mechanical behavior of structures. In numerous industr count system parameter uncertainties as shown in [10], [1
applications, the effects of geometrical nonlinearitieduced is the context of the post-buckling of cylindrical shellshig

.by large S”ai.”s and by Iar.ge displac_ements hgve to be ta;%& decade, the nonparametric probabilistic approaghtad#o
mtol_account |r;] th_e nluk;mre]rlc_al m°de'r'1f_‘t§- dF_or mstanc;,jcsu e modeling of both model uncertainties and system paemet
nonfinear mecnhanical behavior 1S exht lted In aeronaues -, certainties has been introduced in [12], [13] for thedinmase
the case of helicopter rotating blades [1], [2] or in autawet nd has been extended more recently in [9], [14] in the cdntex
or aerospatial industries for the case of slender beamsiror t f geometrical nonlinearities. In the present paper, actiire

Ishellsf_[afg, [Lll]’ [5].t In th? tqont?xt ocfi lcomplex Sgugturg,?;)rocedure is proposed in the context of geometrical noatine
arge finite element computational models are needed. LINGH, oy, ) mechanical systems. In this methodology, tipdiek
the numerical difficulties inherent to the complexity of Buc

. construction of the uncertain nonlinear computational etod
computational models, many recent researches have fO_C N roposed for any type of structure modeled with three-
on the construction of reduced order models in this nonhne&\mensional solid finite elements.

context [6], [7]. In particular, the ELSTEP procedure [8],
[9] has been developed in order to explicitly construct all |n the first Section, the equations of the geometrical nesalin
the linear, quadratic, cubic stiffness terms related taiced problem are written in the context of a total Lagrangian
nonlinear models. The methodology is based on the smigimulation. The second Section is devoted to the constmict
use of an industrial finite element code for which no furthesf a mean reduced nonlinear computational model required by
numerical developments are needed. It only requires assefie the implementation of the nonparametric probabilisticrapph.
basic nonlinear numerical calculations with judiciousgeréoed This mean reduced nonlinear computational model is obdaine
displacements taken as a linear combination of given bagising the Proper Orthogonal Decomposition method known
vectors. to be particularly efficient in nonlinear cases [6]. The POD-
Moreover, deterministic nonlinear computational modeés abasis is then easily deduced from a reference solution taken
in general not sufficient to accurately predict the mechanias the deterministic response of the structure. The mean
behavior of such complex structures. The uncertaintieg haeduced nonlinear computational model, which results from
then to be taken into account in the computational models the projection of all the linear, quadratic and cubic stfa
using probabilistic models as soon as the probability heaterms on this POD-basis is then explicitly constructed ia th
can be used. Let us recall that there exist two classescointext of three-dimensional solid finite elements. Thedthi
uncertainties: (1) the system parameter uncertaintiedtfesm Section is devoted to the construction of the uncertaininear
the variability of the parameters of the computational miodeomputational model using the nonparametric probatul -
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proach. Such nonparametric probabilistic approach ischase In Eq. (4), the fourth order elasticity tensar satisfies the
the construction of a probability model for random matrisith  classical symmetry and positive definiteness propertiese T
values in the set of symmetric positive-definite matrice@seh Green strain tensdt is then written as the sum of a linear term
mean value is deduced from the mean reduced computaticswadl of a nonlinear term such that
model. Let us recall that the nonlinear quadratic stiffriess
of the mean reduced nonlinear computational model is defined Ej =& +nmj , )
as the sum of three nonlinear terms. In the present georaletric
nonlinear context, the nonparametric probabilistic moigel in which
implemented from a deterministic symmetric positive-dédin 1 1
matrix whose components are notably described by each of &j = E(Ui,j +Uj7i) and njj = EUgi Usj - (6)
these three nonlinear terms. Note that its explicit comsitvn is
then needed. In the fourth Section, the procedure for thestobThe weak formulation Eg. (2) is reformulated as finding the
identification of the uncertain nonlinear computationald®o unknown displacement field of admissible spacé such that,
with respect to available experimental responses is chaig for any admissible displacement fiald: C we have
[15], [16]. Finally, the fifth Section is devoted to a numaitic
example in order to demonstrate the efficiency of the pragose kD (u,v) + k@ (u,u,v) + k& (u,u,u,v) = 1(v) , (7)
methodology.

in which the multilinear forms(v), k™ (u,v), k'@ (u,u,v) and
2 FORMULATION OF THE GEOMETRIC NONLINEAR k<3)(u7u’u7v) are defined for a'U,V cC by

PROBLEM

The structure under consideration is made up of a lineatielas

material and is assumed to undergo large deformations @tluc I(v) :/ Vi i dX+/Vi Gids (8)

by geometrical nonlinearity. Le® be the three-dimensional Q z

bounded domain of the physical spaké corresponding to K3 (u,v) :/ Ajkim Em(U) E (V) dx 9)

the reference configuration taken as a natural state without Q

prestresses. The boundalf is such thaQ = JZ with k@ (u,u,v) :/ jkimMim (U)Ejk (V) dX +

FNZ = 0 and the external unit normal to boundad® is Q

denoted as1. The boundary parf corresponds to the fixed / AjkimUs, j Vs k&m (U)dx (10)

part of the structure whereas the boundary pastsubmitted to /Q

an external surface force field. A total Lagrangian forriofat k®(u,u,u,v) = /ajkImU&jVsknlm(U)dX . (11)
JQ ' '

is chosen. Consequently, the mechanical equations aremvrit

with respect to the reference configuration. kéfe the position 3 ~oNSTRUCTION OF A MEAN REDUCED COMPUTA-

of a point belonging to domai®. The displacement field TIONAL MODEL EOR THE GEOMETRICAL NONLIN-
expressed with respect to the reference configuration istddn EAR PROBLEM

asu(x). It should be noted that the surface force fi@gx)

acting on boundary and that the body force fielg(x) acting This Section concerns the construction of the mean reduced
on domainQ corresponds to the Lagrangian transport of tHgomputational model adapted to the geometrical nonlinear
physical surface force field and to the physical body for&®ntext. The methodology is based on the explicit construc-
field applied on the deformed configuration into the refeeengon of each term constituting this mean reduced nonlinear

configuration. Let be the admissible space defined by computational model. It is recalled that such mean reduced
nonlinear computational model is required by the nonpatame
C = {ve Q,vsufficiently regular,v = 0onl'} . (1) probabilistic modeling of uncertainties. First, the geier

equations yielding the mean reduced nonlinear computation
The weak formulation of the geometric nonlinear statigodel are written for any given projection basis. Then,
boundary problem consists in finding the unknown displacémehe Proper Orthogonal Decomposition method is used for
field u of admissible spac€ such that, for any admissibleconstructing the projection basis in the context of largéefin

displacement field € C elements systems [17], [6]. This POD-basis is deduced from a
reference calculation using a finite element code. Finakgh
/ Vi kFij Skdx = / Vi Oi dx+/vi Gids |, (2) linear, quadratic and cubic stiffness component constgut
Q Q z the mean reduced nonlinear computational model is explicit
in whichF is the deformation gradient tensor whose componer@@nstructed in the context of three-dimensional solid dinit
F;j are defined by elements.
Fij = uij+aj ®3)

3.1 General equations of the mean reduced model
in which & is the Kronecker symbol suchthgf = 1ifi = j

and gj = 0 if not, and where5 is the second Piola-Kirchoff
symmetric stress tensor defined for any elastic materiahby N
linear relation u(x) = e (x)q (12)
B >
Sj = ajuEBa - 4) ;3;1

Let ¢?(x),a = {1,...,N}, be a given set of basis functions
tsuch that
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in which the RN-vectorq = (qy,...,qn) is the vector of the vector of the external applied loads. It should be noted that
generalized coordinates. Letx) be a test function such that there are specific numerical algorithms for solving thislimaar
equation (see for instance [18]) which are particularlycedfit
V(X) = ¢q(X)da (13) as the curvature of the nonlinear response changes (see for
instance [19] for algorithms based on arc-length metho{aajr

Replacing Eq.(13) in Eq.(7) yields the following set of rioehar for algorithms based on asymptotic methods).

equations Letsj € [0,1], j € {1,...,p} with s; < sj;1 be the scalar
1) ) ®3) _ denoting the incremental weight numbjeof the external load
Kap9e T Kapy A+ KapsIhyds = Fa o (A4 yooior. The(n x p) real matrix|V] is then introduced as
in which ) 8 [V]ij = Ui(sj) \/A_SJ , Asj=sj—sj_1 withsg =0 .
Ko = | anamfilnox (15) (25)
1 The spatial correlation matrix related to the nonlineagerefice
k@ — (g2 L g@ L g@ (16) response is defined by the symmetric positive-defifrite n)
apy 2( apy T hya yaB) real matrix|A] such that
~(2)
Kapy = /Q am $f B2 dmax 17) A= V]V . (26)
=3 _ a 4B 4V 40 The POD-basis is then obtained in solving the following
£ 5= / ajm 07 dx | 18) 1!
apys = Jo ikim 91 @ri Ps, s (18) eigenvalue problem
Fa = /zqubi“ ds + /Qgid)ia dx . (29) Al[®] = [®][A] 27)
It can easily be seen that the symmetry properties of thetfouin which [A] is the diagonal matrix whose components are the
order elasticity tensor yield the following properties eigenvalues ordered by decreasing values and wkigris the
modal matrix whose columns are the POD-basis vectors. It
/cglg = ICE;; (20) should be noted that such numerical construction can not be
. (2) .2 carried out as the dimensianof the system increases. The
Kagy = Kayp (21) following methodology introduced by [17], [6] and adapted t
K@ @ @ 22) large computational models is then used. The singular value
aBy Bya vap decomposition of matrif/] is written as
®3) _ 1@ B _ 0
Fapys = Xapsy = Kpays = Fyoap - 29 Vv = BSic (28)

Moreover, using the positive-definite property of the fourt j, \which [S = [A]Y2 and where the columns of the x n)
order elasticity tensor, it can be shown that the tenEcé}}and real matricegB] and[C] are the left and right singular vectors

K®  are positive-definite. related to the corresponding singular values. [B}' be the
apdy (n x N) matrix issued from the truncation of matrj] with
3.2 Numerical construction of the reduced order basis usifg§SPect to theN largest singular values. Matrig]N can be

Proper Orthogonal Decomposition eaSin Computed. The\l X N) Symmetric positive-definite real

. . matrix [A]N is then introduced as
The set of basis vectors used for constructing the mean eglduc A

nonlinear computational model is obtained with the Proper [AN] = WNJWN]T  with WN] = [BM]T[V] . (29)
Orthogonal Decomposition method which is known to be _ ) ]

efficient for nonlinear cases. The determination of thisibadenoting as[®"] the (n x N) real matrix defined by the
necessarily requires a reference response. Indeed suich HEdhcation of matrix®] with respect to theN largest singular
is defined by the eigenvalue problem of the spatial corativalues, we then have

operator related to the displacement field of this reference [q)N} _ [BN] [LPN]
response. It should be noted that this basis does not ongndiep

on the operators of the computational model but also styongh which [WN] is the modal matrix solution of the eigenvalue
depends on the external applied loads used for exciting fh@blem

structure. Below, the numerical construction of the POBidba [AN][WN] = [WN) AN (31)

is summarized in the context of the finite element method. Th
finite element discretization of Eq. (7) can be written as

: (30)

ere[AN] is the (N x N) real diagonal matrix defined as the
truncation of matrix/A] with respect to theéN largest singular

[K(l)]u+fNL(u) =f (24) values.

3.3 Construction of the mean reduced nonlinear computa-

in which the R"-vector u is the vector of the unknown ;
tional model

displacements. In Eq. (24), th@ x n) symmetric positive
definite matrix(K (V] is the linear finite element stiffness matrixn this subsection, the mean reduced nonlinear computdtion
the[R”—vectorfNL(u) is the vector of the restoring forces inducednodel is explicitly constructed from the knowledge of thellRO

by the geometrical nonlinear effects and fiievectorf is the basis. The construction is carried out in the context of the
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three-dimensional finite element method. The finite elesenh a second step, for each type of stiffness, we proceed with

used are isoparametric solid finite elements with 8 nodes ahe assembly of each of these elementary contributions. We

the numerical integration is carried out witlGauss integration then denote byM) (), f? (P oY) andf® (pf,pY, %) the

points. R"-vectors of these internal loads. The mean reduced nonmlinea
Let [D] be the(6 x 6) real matrix which represents the usuatomputational model is then described by

Hooke matrix related to the fourth-order elasticity tenseor

the considered isoparametric finite element, the displacem ’C% = ¢*TtW(F) | (39)
field G(y) with y € [—1,1]3, is defined by ~ (2
i(y) = [N(y))@ (32) Rapy = #1100 (40)
uly) = y)ju
K3 = TP e 0% (41)

in which the(3 x 24) real matrix|N(y)] defines the interpolation
functions and where t.hIEZ“-vectorO is made up of the degreesy,q o adratic stiffness contributi
of freedom of the finite element. Lét be the set of indices
defined byZ = {(i.j) € {(11),(22),(33),(12),(13),(23)} } and D o) 3 .
corresponding with the sét= {1,2,3,4,5,6}. From Eq. (32), Should be noted that thléfﬂ)3 Kapy and /cggyé contributions

d@ffgy of the mean reduced
nonlinear computational model is then build from Eq. (18). |

it can be deduced that have to be explicitly known for constructing the uncertain
B 5 . o N nonlinear computational model in the general case of comple
&;(0) (1—&j) +&i(0) = Byl ,(0,))€Z,1€T (» ) structures.
33

in which [B(y)] is the (6 x 24) real matrix whose components4 NONPARAMETRIC STOCHASTIC MODELING OF UN-
are obtained by the calculation of partial derivatives of th CERTAINTIES
interpolation functions contained in matfiX(y)].

The first step consists in calculating for each finite eleme
the elementary contributions of the linear, quadratic amoic

'_”t_e”‘a' forces prol§4cted on the P_OD-ba5|s. T_hen, for argVEs the nonparametric probabilistic approach for modelmese
flmte element, thé&k —vect.or constituted of the internal f_orceslmcertainties in the computational model. The main idedef t
m_duced by th_e PO.D'baS'S vectgf and related to the linear nonparametric probabilistic approach consists in reptpeach
stiffness term is written as of the matrices of a given mean reduced computational mgdel b
a random matrix whose probability model is constructed from
the maximum entropy principle using the available inforiorat
[12], [13]. In the usual linear case, the random matricesads

in which $# is the spatial restriction of POD-basis vectgf  from the mechanical system are with values in the set of the
to the considered finite element, wheyg i = {1,...,r} are symmetric positive-definite matrices. In the present getdose

the locations of the Gauss integration points related to theonlinear context, the nonlinear equations involve nain
isoparametric finite element witly; the corresponding weightsoperators. In this case, we then introduce the mdf€ix[9]

and whergdetJ) is the Jacobian of the transformation from th@s the rea{P x P) matrix with P = N(N + 1) defined by
considered finite element to the isoparametric one. [Cgly)]
be the(3 x 24) real matrix defined by

s (y) Gsm(y) = @' [Ci(Y)]" [Cm(Y)]

G
We then introduce the reg6 x 24) matrix [Eg(y)] whose row
numbenr € J is defined by

In this Section, it is assumed that the mean reduced
Rbnlinear computational model contains both system pai&me
uncertainties and model uncertainties which justifies tee u

r

ﬂ%@%::EJmMWﬁxmwm¢ﬁmanm . (34

; (42)

(35) KT 2(c@)
in which [K®] and [K(®] are respectively théN x N2) and
(N? x N?) real matrices resulting from the following reshaping
T (GG A-8)+CWITGY)]) . (36) operatondefinedby

(2 2)

) - ;
Then, for a given finite element, tH?*-vector constituted of K7as =Kgg, » WithJ=(B-1)N+y , (43)
the internal forces induced by the POD-basis veagdrsainde 3 @) _
related to the quadratic stiffness term is written as K& = Kipys With | = (@ = )N+ B andJ = (y— LN +.
(44)
.

(P, 3Y) = Z[B(yi)]T [D] [Eg(y;)] @Y (det))wi) . (37) Itis shown in [9] that matrix[K] is a symmetric positive-
i= definite matrix. Consequently, the nonparametric prolsituil

approach can easily be adapted to the geometrically namline
clgntext as follows. The mean reduced maf#X is replaced
%y the random matri{/C] such that&{[K]} = [K] in which
"F'is the mathematical expectation. The random mdgiik is
then written a$/iC] = [Lk]" [Gk][Lk] in which[Lk] is a(P x P)
@) ~B ~y =3\ _ T ~5 , real upper matrix such th&t’] = [Lk]" [Lk] and whergG] is
f = Esz(y;)]" [D][Ey(Y; detd)w; .

(87,767 = 2 [Es(y)]” [DI[Ey()]@” (detw a full random matrix with value in the set of all the positive-
(38) definite symmetric{P x P) matrices. The probability model

In the same way, for a given finite element, tRé&*-vector
constituted of the internal forces induced by the POD-ba
vectorseP, Y and? and related to the cubic stiffness ter
is written as

-
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of random matrix{Gk| is constructed by using the maximunwherex — H(x) is the Heaviside function. The identification
entropy principle with the available information. All dé& of the uncertain nonlinear computational model consista ih
concerning the construction of this probability model can Isolving the optimization problem

found in [12], [13]. The dispersion of random matrix] : opt Losopty o i

is controlled by one real positive parametec D called the find 6° € D such thag(°") < j(8) , Vo €D.
dispersion parameter. In addition, there exists an algebrga NUMERICAL APPLICATION

representation of this random matrix useful to the MontddCa

numerical simulation. From random matrjic] the random The objective of this application is to show the capability

] . . ) 22 3) of the presented methodology in the context of the robust
linear, quadratic and stiffness terrl&i%{  KapyandiCys 5 can jdentification of an uncertain nonlinear computational ®iod
easily be deduced. The random matrix model is then defined\pith respect to given experimental data. The numerical gtam
U=[oNQ (45) consists in a three-dimensional linear elastostatic grbin

’ the geometrically nonlinear context. For clarity, the miale
in which Q = (Qy,...,Qy) is the RN-valued vector of the is chosen to be homogeneous and isotropic, the extension
random generalized coordinates solution of the randomt&nua to the nonhomogeneous case and to the anisotropic case is

1 2 3 straightforward. A preliminary calculation is carried owith

’Cgl)B Qp + ’CSJL)WQB Qy+ ’CEXI)BWSQB QyQs=7Fa » (46) \p NASTRAN in order to get the reference solution from

with which the POD-basis is deduced. The uncertain nonlinear
(2) :} -(2) -(2) ~(2) 47 computational model is then constructed as a function of
Kagy Z(K“BV+KBV“ +Kyap) - (47) identification parameted as described in the theoretical part

5 IDENTIFICATION OF THE UNCERTAIN NONLINEAR ©f the paper. The experimental data basis has been obtained
COMPUTATIONAL MODEL by numerical simulations with MD NASTRAN. Note that the

_ ) ) o _ . geometrical characteristics of the structure have beenfradd
In this Section, the identification of the uncertain nOndNe ang that the material characteristics have been chosen to
computational model from experimental data is formulatiéd. o inhomogeneous so that it is impossible for the uncertain

is assumed that the mean reduced nonlinear computationg}dgjinear computational model to be identified to match the
known and that the identification focuses on the param@tefayperimental data.

controlling the uncertainty level in the uncertain compiotzal
model.  This robust updating problem consists then $1 Mean finite element model
minimizing a cost function with respect to parametér

The formulation of the optimization problem requires the
definition of a cost function relevant to the uncertain noedir
computational model and to the experimental data. In th
present case, it is proposed here to introduce penalty terr

only in areas for which the experimental data is not withir

the confidence region constructed with the uncertain nealin
computational model. It is assumed that a collectiomgf,
experimental responses are availablegt spatial locations.

We then denote 437(s, 6) the experimental response number

k at dof numberj as a function of the load increment

s. The corresponding observation issued from the uncerta
computational model is denotedldg(d,s) and is a function of

the parameted to be updated. LeitJJ*(cS,s) (resp.U; (9,s)) v

and Ujex‘”(s) (resp. U*P"(s)) be the upper (resp. lower) k
envelope of the confidence region of observatld[(d,s)

obtained with a probability levet = 0.95 and the upper (resp. Figure 1. Finite element model

lower) envelope of experimerity™?(s). The cost functiorj(3)

is then defined by The three-dimensional bounded domaih is a slender
j(8) = [|AT(E.)Z + 1A (3B (48) domain such tha® =]0,L[x]0,b[x]0,h[ in a cartesian system

defined by(0,e;,e2,e3) with L = 10m, b = Imandh = 1.5m.
in which || - || is the £2 norm over the load incremental band_et 'y c dQ be the boundary described 4%, = 0,x; €
B = [0,b] and whereA*(J,s) and A~ (J,s) are theR™bs-  [0,b], x3 € [0,h] }. Since the structure is fixed on sectin= 0,
vectors whose component numbés defined by we have a Dirichlet condition on bounddry. The structure is
+ _ + &Rt free on sectiorx; = 10m. The structure is subjected to external
A (0,8) = {UJ (9,9) Ui (8} x surface loads applied along both directi@a@nde; in the end
{1-H(U; (8,9 -U™"(s))} , (49) section defined by, = 10m. The Young modulus and the
- o - &R Poisson coefficient related to the homogeneous and isatropi
8j(0:9) = {Uj (0,9 U™ (s} linear elastic material alé = 101°N.m 2 andv = 0.15. The
{H(Uj‘(é,s)—ufx'”(s)))} , (50) finite element model is a regular mesh of 9477 nodes and



Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011 2687

80x 8 x 12 = 7680 finite elements constituted of 8-nodes solif.2 Construction of the experimental data basis
elements withr = 8 Gauss integration points. Therefore, the . .
mean computational model has= 28080 degrees of freedom!t IS assumed thatex, = 6 experimental measurements of the

(see figure 1). The discretization of the external loadsdgielStatic nonlinear response are available. The measurermemnts
point loads applied on the nodes of the end section along f&fformed anops = 1 observation point at the middie of the end

direction e, with intensity f = 400000(N and yields point section in the directio0,e;). The experimental static response

. Kk .
loads applied on the nodes of the end section along the idirectiS denoted byuct(s), k € 1,...,nexp  The corresponding
e; with intensity f = —500000N. An initial imperfection duantity defined for the mean nonlinear computational model

with a maximum amplitude of 200m is added to the initial iS denoted asigps(s). The experimental data is generated as
structure in order to construct the mean nonlinear comjomatt follows. Assuming the existence of geometrical tolerances
model. This initial imperfection is defined by the first buiogl ©0f 5% around the geometrical characteristics, the maximum
mode of the initial structure. In the present case, the firgtropy principle transform the geometrical parametetsand

buck]ing mode is a bending mode with eigenva)‘éﬁ 0.371 h by the random variablds, B andH with uniform probability
corresponding to a critical load, = 148400 along the density function centered around the mean characteriatids

directione; (respectivelyfc = —185000N along the direction \ith standard deviation taken as — 0'05'-, - 0.05b
e1). Then, the mean nonlinear computational model correspond V3 V3
to a slightly curved beam whose shape is zoomed and shownyjy g, — .05h respectively. Moreover, assuming the Young
the figure 2. modulus to bg inhomogeneous with 10% of variation around its
mean value is achieved by replacing its deterministic vaijua
2 ‘ ‘ ‘ ‘ ‘ stochastic fieldE (x). The stochastic field is simply modeled by

E(X) =E+ 3 &bj(x) (51)

in which &j, j € {1,...,J} are independent uniform random

—4r 1 . . I 0.1E

i | variables with zero mean and standard deviation- W

-6 1 and where the functionis;(x) are given basis functions. For

7t ] convenience, these smooth functions are taken as the Ispatia

8 ‘ ‘ ‘ ‘ ‘ average over each element of the eigenvectors related td the
0 2 4 6 8 10

lowest eigenvalues of the usual linear generalized eideava
Figure 2. Finite element model of the curved beam.  problem.

In order to simulate the post-buckling mechanical behavior
the static nonlinear calculations are carried out by sglvin
Eq. (25) using MD NASTRAN with algorithms based on -2
the arc-length method. The displacement field is calculated 3t
using iy = 110 load increments. Figure 3 shows the static
displacementfield of the structure in the geometricallylimear
case.

-7t

-8t

0 0.2 04 0.6 08 1

Figure 4. response of the observation point as a functioheof t
incremental load: mean computational model (thick line),
experimental data (thin lines)

Figure 4 compares the static nonlinear response as a fanctio
of the incremental load for both mean nonlinear computation
model and experimental measurements. Since the expedment
o 2 4 6 3 10 nonlinear responses are widespread around the resporise of t
mean nonlinear computational model, it can be seen that the
use of an uncertain nonlinear computational model is pdyfec
justified.

Figure 3. static displacement field of the structure
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6.3 Construction of the reduced order basis Carlo realizations to be kept in the numerical simulatioret L

The nonlinear response shown in Figure 3 is then used s Cony(ns) be the function defined by

calculating the POD-basis as described in Section 3Coat/— .
. . s 1/2
POD(N) be the function defined by Conv(ng) = ni{ 3 H\U(@j)\l\z} / ’ (53)
s =1

tr ([AN])

Conv—POD(N) = 1— w(A)

(52)

inn whigh UGNl = max ||U(8;,s))l], [[U(6;,9)II° =

for which the calculation oftr([A]) is obtained without 2k=1 Uic(6},5) with Ui(6;,5) the realization numbey of the
computing matrixA]. Figure 5 shows the graph — Conv— random response at dof numbefor a given load increment
POD(N). It can be seen that the convergence is quickf Figure 6 displays the grapf - Conyns) obtained with
obtained. Henceforth, all the numerical calculations argied & diSPersion parameter = 0.6. Convergence is reached for
outwithN = 4 POD-basis vectors. The mean reduced nonlindl = 3000 The robust identification is then carried out by
computational model is then constructed and the statigmeai Studying the non-differentiable cost functidn-— j(5) with
equations are solved using the numerical algorithm of @fgfi diréct Monte Carlo numerical simulations. Since only one
[19] based on the arc-length method. It can be seen tpfyservation point is available, this means that the costtion
the prediction error between the mean nonlinear computaitio'S & POSitive decreasing function of the paraméieAs soon as

model and between its reduced counterpart at the obsanvaﬁtc;.')e exp;:rlmegtal data basr:s belor]lgs to the conﬂdlence region
point is less than 06%, the random observation, the cost function is equal to zero.

0.08 T T T T 35

0.07§ 30

0.06
25¢
0.05r
201
0.04r
15¢
0.03r

0.02} 10r

0.011

1 4 5 6 % 01 02 03 04 0.5 06 0.7
Figure 5.  Convergence analysis : graphNf— Conv— Figure 7. Robust identification : graph &% j(J).
POD(N).
6.4 Experimental identification of the uncertain nonlinear j\

computational model

62

61.5F

61

60.5

— L L L L L L L L L
0 0.1 0.2 03 04 0.5 0.6 0.7 08 09 1

Figure 8. Robust identification : graph of the experimental

60

e datas — U (s) (thin dashed lines), graph of the mean
1 responses — Ugpg(S) (thick dashed line), graph of the
58.5¢ 1 confidence region of the random resporsse> Ugps(S)

sa| ] (grey region).

57-50 10‘00 20‘00 30‘00 4600 5000

Figure 7 shows the cost functidn— j(J). It can be seen that
Figure 6. Convergence analysis : grapmgf- Cony(ns). the optimal value is given b§°P* = 0.56. Figure 8 displays the
graph of the confidence region of the optimal random response
The construction of the uncertain nonlinear computationdhps3°P, s) as a function of the load incremesntit can be seen
model using the nonparametric probabilistic approach tisat there is a good agreement between the optimal uncertain
performed as explained in Section 4. A stochastic convegemonlinear computational model and between the experirhenta
analysis is then carried out to define the numingof Monte data basis.
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7 CONCLUSION [17] L. Sirovich, turbulence and the dynamics of coheremticitires .1.
coherent structures, quarterly of applied mathematics34%1087) 561—
In the present paper, a methodology has been proposed 571.

for constructing an uncertain nonlinear computational etod*®! feeHSLeﬁ e'\é'itsofnggga” Handbook for nonlinear analysersion 67,

for any three-dimensional structure in the context of lmego] M. Crisfield, Non-linear finite element analysis of sisliand structures,
elastostatics with geometric nonlinearity. The mean reduc __ Vol 1: essentials, John Wiley and Sons, Chichester, 1997.

. : . s [20] J. Yvonnet, H. Zahrouni, M. Potier-Ferry, A model retlan method for
nonlinear computational model is constructed by projectio the post-buckling analysis of cellular microstructuresruter Methods

the POD-basis obtained from a reference calculation. Al th  in Applied Mechanics and Engineering 197 (2007) 265-280.
integrals involved in the weak formulation after projeation

the POD-basis are explicitly estimated using three-dinoeras

solid finite elements. The construction of each contributio

the quadratic term allows the uncertain nonlinear comparat

model based on the nonparametric probabilistic theory to be

constructed in any case. A numerical example carried out

in the context of the robust identification of an uncertain

computational model with respect to an experimental basis

shows the efficiency of the method.
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