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Abstract. We show the existence in the space H2×R of a family of embedded
minimal surfaces of genus 1 � k < +∞ and finite total extrinsic curvature with
two catenoidal type ends and one middle planar end. The proof is based on a
gluing procedure.

1. Introduction

During recent years the study of the minimal surfaces in the product spaces
M × R with M = H

2, S2 has become more and more active. The development of
the theory of the minimal surfaces in these spaces started with [20] by H. Rosenberg
and continued with [14] and [15] by W. H. Meeks and H. Rosenberg. In [17] B.
Nelli and H. Rosenberg showed the existence in H

2×R of a rich family of examples
including helicoids, catenoids and, solving Plateau problems, of higher topological
type examples inspired by the theory of minimal surfaces in R

3. In [5] L. Hauswirth
constructed and classified the minimal surfaces foliated by horizontal constant cur-
vature curves in M × R, where M is H

2,R2 or S
2. Other examples of minimal

surfaces of genus 0 in these product manifolds are described by R. Sa Earp and E.
Toubiana in [21].

C. Costa in [1, 2] and D. Hoffman and W. H. Meeks in [7], [8] and [9] described
a minimal surface in R

3 of genus 1 � k < +∞ and finite total curvature with two
ends asymptotic to the two ends of a catenoid and a middle end asymptotic to a
plane. We will denote the Costa-Hoffman-Meeks surface of genus k by Mk.

The aim of this work is to show the existence in the space H
2 ×R of a family of

surfaces inspired by Mk. We will prove the following result.

Theorem 1.1. For all 1 � k < +∞ there exists in H
2×R a one-parameter family

of embedded minimal surfaces of genus k and finite total extrinsic curvature with
three horizontal ends: two catenoidal type ends and a middle planar end.

We will observe that it is more convenient to construct a minimal surface enjoy-
ing the same properties mentioned in the statement of theorem in the Riemannian

manifold (D2 × R, ghyp) where ghyp =
dx2

1+dx2
2

(1−x2
1−x2

2)
2 + dx2

3. It is usually denoted by

M
2(−4) × R, to point out that the sectional curvature of D2 × {0} endowed with

the metric
dx2

1+dx2
2

(1−x2
1−x2

2)
2 equals −4. We observe that H2 = M

2(−1). Once having con-

structed this surface, it is easy to obtain by a diffeomorphism the wanted minimal
surface in H

2 × R.
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The main result is proved by a gluing procedure (see for example [6]) usually
adopted to construct in R

3 new examples starting from known minimal surfaces.
We consider a scaled version of a compact piece of a Costa-Hoffman-Meeks type
surface, which is contained in a cylindrical neighbourhood of {0, 0}×R ⊂ M

2(−4)×
R of sufficiently small radius. Actually it’s possible to prove that, in the same
set, the mean curvature of such a surface with respect to the metric ghyp, up to
an infinitesimal term, equals the Euclidean one. We glue the surface described
above along its three boundary curves to two minimal graphs that are respectively
asymptotic to an upper half catenoid and a lower half catenoid defined in M

2(−4)×
R and to a minimal graph over M2(−4)×{0} which goes to zero in a neighbourhood
of ∂∞M

2(−4)× {0}. The existence of these surfaces is proved in sections 5 and 7.
The author wishes to thank his thesis director, L. Hauswirth, for having brought

this problem to his attention.

2. Preliminaries

In this work we will consider the unit disk model for H2. Let (x1, x2) denote the
coordinates in the unit disk D

2 and x3 the coordinate in R. Then the space D
2 ×R

is endowed with the metric

gH2×R =
4(dx2

1 + dx2
2)

(1− x2
1 − x2

2)
2 + dx2

3.

As mentioned in the Introduction, one of the surfaces involved in the gluing pro-
cedure is a compact piece of a scaled version of the Costa-Hoffman-Meeks surface,
that is, a minimal surface in R

3 endowed with the Euclidean metric g0. To simplify
as much as possible the proof of the main theorem, it is convenient to consider a
Riemannian manifold endowed with a metric more similar to g0 than the standard
metric of H2 × R. The best choice is

ghyp =
dx2

1 + dx2
2

(1− x2
1 − x2

2)
2
+ dx2

3,

because ghyp → g0 if (x1, x2) → (0, 0). This is the reason that induces us to give
a proof of Theorem 1.1 working in the Riemannian manifold M

2(−4) × R. Now
we suppose to have shown the existence of a minimal surface in this Riemannian
manifold. We need to show how it is possible to obtain a minimal surface in H

2×R.
Let ḡ be the metric defined on D

2 × R by

ḡ = 4ghyp =
4(dx2

1 + dx2
2)

(1− x2
1 − x2

2)
2
+ 4dx2

3.

We consider the map f : (D2 × R, gH2×R) → (D2 × R, ḡ) defined by

(1) (x1, x2, x3) →
(
x1, x2,

x3

2

)
.

It is easy to see that it is an isometric embedding, that is, the pull-back of the
metric ḡ by f equals gH2×R. So if Σ is a minimal surface in (D2 × R, ḡ), then the
image of Σ by f−1 is a minimal surface in H

2 × R.
Now we turn our attention to the Riemannian manifold M

2(−4)×R, mentioned
in the Introduction. In the following we will adopt the simplified notation M

2 ×R.
We recall that the metric ḡ has been defined as 4ghyp, ghyp being the metric of
M

2 ×R. As a consequence the mean curvature of a surface Σ in M
2 ×R equals the

2
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mean curvature of Σ in (D2 × R, ḡ) multiplied by 4. So if a surface is minimal in
M

2 × R, it is also minimal with respect to the metric ḡ.
We can conclude that if Σ is a minimal surface in M

2 × R, then f−1(Σ) is a
minimal surface in H

2 × R.

Remark 2.1. To prove Theorem 1.1 we will need to consider spaces of functions
invariant under the actions of the isometries of R3 which keep unchanged the Costa-
Hoffman-Meeks surface (appropriate rotations about the vertical coordinate axis x3,
the reflection with respect to the horizontal plane x3 = 0 and the vertical plane
x2 = 0). These are isometries of M2 × R as well. So we will continue using the
same language as if we are in R

3.

3. Minimal graphs in M
2 × R

We denote by Hu the mean curvature of the graph of the function u over a
domain in D

2. Its expression is

(2) 2Hu = Fdiv

(
∇u√

1 + F |∇u|2

)
,

where F =
(
1− x2

1 − x2
2

)2
=

(
1− r2

)2
and div denotes the divergence in R

2. For
the details of the computation, see subsection 12.3.

Let Σu be the graph of the function u. In this section we want to obtain the
expression of the mean curvature of the surface Σu+v, that is, the graph of the
function u+v. It can also be considered as the vertical graph of the function v over
Σu. We will show how it follows from (2) that the linearized mean curvature, which
we denote by Lu, is given locally by:

(3) Luv := Fdiv

(
∇v√

1 + F |∇u|2
− F∇u

∇u · ∇v√
(1 + F |∇u|2)3

)
.

Furthermore we will give the expression of Hu+v, the mean curvature of the graph
of the function u + v, in terms of the mean curvature of Σu, that is, Hu. In the
following we will restrict our attention to two cases: the plane (in section 5), that
is, u = 0, and (in section 7) a piece of catenoid defined on the domain {(θ, r) ∈
M

2 × {0} | r ∈ [rε, 1]}, where rε = ε/2.
Here we will show that:

(4) 2Hu+v = 2Hu + Luv + FQu(
√
F∇v,

√
F∇2v),

where Qu has bounded coefficients if r ∈ [rε, 1] and it satisfies Qu(0, 0) = 0 and
∇Qu(0, 0) = 0. To show this, we observe that

(5)
1√

1 + F |∇(u+ v)|2
=

1√
1 + F |∇u|2

− F
∇u · ∇v√

(1 + F |∇u|2)3
+Qu,1(v).

Qu,1(v) has the following expression:

(6)
−F |∇v|2

2 (1 + F |∇(u+ t̄v)|2)3/2
+

3F 2
(
∇u · ∇v + t̄|∇v|2

)2

2 (1 + F |∇(u+ t̄v)|2)5/2
,

with t̄ ∈ (0, 1), and it satisfies Qu,1(0) = 0,∇Qu,1(0) = 0. To prove (5) it’s sufficient
to set

f(t) =
1√

1 + F |∇(u+ tv)|2

3
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and to write down the Taylor’s series of order one of this function and to evaluate
it in t = 1. That is, f(1) = f(0) + f ′(0) + 1

2f
′′(t̄), with t̄ ∈ (0, 1). We insert (5) in

the expression that defines 2Hu+v to get

Fdiv

(
∇(u+ v)√
1 + F |∇u|2

− F∇(u+ v)
∇u · ∇v√

(1 + F |∇u|2)3
+∇(u+ v)Qu,1(v)

)
=

2Hu+Fdiv

(
∇v√

1 + F |∇u|2
− F∇u

∇u · ∇v√
(1+F |∇u|2)3

)
+FQu(

√
F∇v,

√
F∇2v).

Since we assume that Σu is a minimal surface, we will consider Hu = 0.

Remark 3.1. The minimal surfaces in the families we will construct in sections 5
and 7 have finite total extrinsic curvature. These minimal surfaces are graphs over
the domain {(θ, r) ∈ M

2 | r ∈ [rε, 1]} of functions of class C2,α. The total extrinsic
curvature of the graph S of a function u defined on M

2 is the integral of the extrinsic
curvature, that is,

(7)

∫

S

KextdA =

∫

S

II

I
dA,

where I, II denote the determinants of the first and of the second fundamental
form. It follows that II = b11b22 − b212, I = g11g22 − g212, dA =

√
I. For the

expressions of the coefficients of the first and of the second differential form see
subsection 12.3. Once their expressions have been replaced in (7), it is clear that,
taking into account that u is a C2,α class function,

∫
S
KextdA is bounded. This

observation allows us to state that this property also holds for the surface obtained
by a gluing procedure in section 11. In fact the total extrinsic curvature of this
last surface equals the sum of the total extrinsic curvature of the surfaces glued
together, that is, a compact piece of a Costa-Hoffman-Meeks type surface and three
minimal graphs over the domain described above. Because of the compactness, the
contribution to the total curvature of the piece of the Costa-Hoffman-Meeks type
example is bounded. Then the result follows immediately, taking into account the
observation made above concerning the graph of C2,α class functions over M2.

4. The mapping properties of the Laplace operator

Now we restrict our attention to the case of the minimal surfaces close to M
2 ×

{0}, that is, the graph of the function u = 0. In this case we obtain immediately
from (3) that Lu=0 = FΔ0, where Δ0 denotes the Laplacian in the flat metric g0
of the unit disk D

2.
In this section we will study the mapping properties of Δ0. In the sequel we will

use the polar coordinates (θ, r).
In particular our aim is to solve in a unique way the problem:

{
Δ0w = f in S1 × [r0, 1],
w|r=r0 = ϕ

with r0 ∈ (0, 1), considering a convenient normed functions space for w, f and ϕ,
so that the norm of w is bounded by that of f .

Now we can give the definition of the space of functions we will consider.

4
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Definition 4.1. Given � ∈ N, α ∈ (0, 1), and the closed interval I ⊂ [0, 1], we
define

C�,α(S1 × I)

to be the space of functions w := w(θ, r) in C�,α
loc (S

1 × I) for which the norm

‖w‖C�,α(S1×I)

is finite and whose graph surfaces are invariant with respect to symmetry with
respect to the x2 = 0 plane, with respect to the rotation of an angle 2π

k+1 about the
vertical x3-axis, with respect to the composition of a rotation of angle π

k+1 about
the x3-axis and the symmetry with respect to the x3 = 0 plane.

We recall that one of the surfaces involved in the gluing procedure we will follow
to prove the main theorem is a surface derived by the Costa-Hoffman-Meeks surface.
This surface, as explained in subsection 9.1, enjoys many properties of symmetry
that we want to be inherited by the surface obtained by the gluing procedure. This
is the reason for which we have chosen the functional space described above.

Proposition 4.2. Given r0 ∈ (0, 1), there exists an operator

Gr0 : C0,α(S1 × [r0, 1]) −→ C2,α(S1 × [r0, 1])
f 	−→ w := Gr0(f)

satisfying the following statements:

(i) Δ0 w = f on S1 × [r0, 1],
(ii) w = 0 on S1 × {r0} and S1 × {1},
(iii) ||w||C2,α(S1×[r0,1]) � c ||f ||C0,α(S1×[r0,1]), for some constant c > 0 which does

not depend on r0, f and w.

The proof of this result is contained in subsection 12.2.

5. A family of minimal surfaces close to M
2 × {0}

In this section we will show the existence of minimal graphs in M
2 × R over

D
2 − Brε , having prescribed boundary and which are asymptotic to it. We recall

that rε = ε/2. We will reformulate the problem to use the Schäuder fixed point
theorem. We know already that the graph of a function v, denoted with Σv, is
minimal, if and only if the function v is a solution of

(8) F
(
Δ0 v +Q0

(√
F∇v,

√
F∇2v

))
= 0.

This equation is a simplified version (since u = 0) of (4). The operator Q0 has
bounded coefficients for r ∈ [rε, 1]. Its expression is div (∇v Q0,1), where Q0,1 is
given by (6). To simplify the notation, in the sequel we will write Q0(·) in place of

Q0

(√
F∇·,

√
F∇2·

)
.

Now let’s consider a function ϕ ∈ C2,α(S1) which is even with respect to θ,
collinear to cos(j(k + 1)θ) (for k � 1 fixed) with j � 1 and odd and such that

(9) ‖ϕ‖C2,α � κε2.

We define
wϕ(·, ·) := Hrε,ϕ(·, ·),

where H is the operator of harmonic extension introduced in Proposition 12.1. The
particular choice of ϕ assures that its harmonic extension belongs to the functional
space of Definition 4.1.

5
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In order to solve equation (8), we look for v of the form v = wϕ + w, where
w ∈ C2,α(S1 × [rε, 1]) and v = ϕ on S1 × {rε}. Using Proposition 4.2, we can
rephrase this problem as a fixed point problem,

(10) w = S(ϕ,w),

where the nonlinear mapping S which depends on ε and ϕ is defined by

S(ϕ,w) := −Grε (Q0 (wϕ + w)) ,

and where the operator Grε is defined in Proposition 4.2. To prove the existence
of a fixed point for (10) we need the following result, which states that S(ϕ, ·) is a
contraction mapping:

Lemma 5.1. Let ϕ ∈ C2,α(S1) be a function satisfying (9) and enjoying the prop-
erties given above. There exist some constants cκ > 0 and εκ > 0 such that

(11) ‖S(ϕ, 0)‖C2,α(S1×[rε,1]) � cκε
4

and, for all ε ∈ (0, εκ),

‖S(ϕ, v2)− S(ϕ, v1)‖C2,α(S1×[rε,1]) �
1

2
‖v2 − v1‖C2,α(S1×[rε,1]),

‖S(ϕ2, v)− S(ϕ1, v)‖C2,α(S1×[rε,1]) � cε2 ‖ϕ2 − ϕ1‖C2,α(S1),

where c is a positive constant, for all v1, v2 ∈ C2,α(S1× [rε, 1]) such that ‖vi‖C2,α �
2cκε

4 and for all boundary data ϕ1, ϕ2 ∈ C2,α(S1) enjoying the same properties as
ϕ.

Proof. We know from Proposition 4.2 that ‖Grε(f)‖C2,α � c‖f‖C0,α . Then

‖S(ϕ, 0)‖C2,α = ‖Grε(Q0 (wϕ))‖C2,α � c‖Q0 (wϕ) ‖C0,α .

To find an estimate of the norm above we recall that ‖ϕ‖2,α � κε2 and thanks
to Proposition 12.1 we obtain

‖wϕ‖C2,α � c‖ϕ‖C2,α � cκε
2.

Then

‖Q0 (wϕ) ‖C0,α � c‖wϕ‖2C2,α � c‖ϕ‖2C2,α � cκε
4.

So we can conclude

‖S(ϕ, 0)‖C2,α � cκε
4.

As for the second estimate, we observe that

‖S(ϕ, v2)− S(ϕ, v1)‖C2,α � c‖Q0 (wϕ + v2)−Q0 (wϕ + v1) ‖C0,α .

Thanks to the considerations made above it follows that

||Q0 (wϕ + v2)−Q0 (wϕ + v1)||C0,α � c||v2 − v1||C2,α‖wϕ‖C2,α

� cκε
2||v2 − v1||C2,α .

Then

‖S(ϕ, v2)− S(ϕ, v1)‖C2,α � cκε
2||v2 − v1||C2,α .

To show the third estimate we proceed as above:

‖S(ϕ2, v)− S(ϕ1, v)‖C2,α � c‖Q0 (wϕ2
+ v)−Q0 (wϕ1

+ v) ‖C0,α

� c||wϕ2
− wϕ1

||C2,α‖v‖C2,α � cε2||ϕ2 − ϕ1||C2,α .

�

6
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Theorem 5.2. Let B := {w ∈ C2,α(S1 × [rε, 1)) | ||w||C2,α � 2cκε
4} and ϕ be as

above. Then the nonlinear mapping S(ϕ, ·) defined above has a unique fixed point
v in B.

Proof. The previous lemma shows that, if ε is chosen small enough, the nonlin-
ear mapping S(ϕ, ·) is a contraction mapping from the ball B of radius 2cκε

4 in
C2,α(S1 × [rε, 1]) into itself. This value follows from the estimate of the norm of
S(ϕ, 0). Consequently, thanks to the Schäuder fixed point theorem, S(ϕ, ·) has a
unique fixed point v in this ball. �

We have proved the existence of a minimal surface with respect to the metric
ghyp, denoted by Sm(ϕ), which is close to D

2 − Brε ⊂ M
2 × {0}, and close to its

boundary is the vertical graph over the annulus B2rε −Brε of a function which can
be expanded as

Ūm(θ, r) = Hrε,ϕ(θ, r) + V̄m(θ, r), with ||V̄m||C2,α � cε2.

From the properties of the extension operator Hrε,ϕ (see Proposition 12.1) and
Proposition 4.2 we can see that Ūm(θ, r) tends to 0 as r → 1. In other terms Sm(ϕ)
is asymptotic to M

2 × {0}. Furthermore it is clear that Sm(ϕ) is embedded in
M

2 × R.
The function V̄m depends nonlinearly on ε, ϕ. Furthermore, as it is easy to prove

thanks to the third estimate of Lemma 5.1, it satisfies

(12) ‖V̄m(ε, ϕ)(·, rε·)− V̄m(ε, ϕ′)(·, rε·)‖C2,α(B̄2−B1) � cε‖ϕ− ϕ′‖C2,α(S1).

6. The catenoid in M
2 × R

The catenoid in the space M
2 × R can be obtained by revolution around the

x3-axis, {0, 0} × R, of an appropriate curve γ (see [17]). We consider a vertical
geodesic plane containing the origin of M2 and the curve γ. Let r be the Euclidean
distance between the point of γ at height t and the x3-axis: we denote with r = r(t)
a parametrization of γ.

The surface obtained by revolution of γ is minimal with respect to the metric
ghyp if and only if r = r(t) satisfies the following differential equation (see subsection
12.4):

(13) r(t)
∂2r

∂t2
−

(
∂r

∂t

)2

− (1− r(t)4) = 0.

A first integral for this equation is:

(14)

(
∂r

∂t

)2

= Cr2 − (1 + r4)

with C > 2 and constant. By the resolution of equation
(
∂r
∂t

)2
= 0, it is easy to

prove that the function r(t) has a minimum value rmin given by:

rmin =

√
C −

√
C2 − 4

2
=

√
C/2 + 1

2
−

√
C/2− 1

2
< 1.

7
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Since we assume C = 1
ε4 , we get

rmin =

√
C/2 + 1

2
−

√
C/2− 1

2
=

√
C

2

(
1 +

1

C
− 1 +

1

C
+O

(
1

C2

))

=
1√
C

+O
(

1

C3/2

)
= ε2 +O(ε6).

We denote with Ct and Cb, respectively, the piece of the catenoid contained in
M

2 × R
+ and M

2 × R
−.

We set
tε = −ε2 ln ε.

We need to find the parametrization of Ct and Cb as graphs on the horizontal plane
respectively for t ∈ [tε − ε2 ln 2, tε + ε2 ln 2] and t ∈ [−tε − ε2 ln 2,−tε + ε2 ln 2]. We
start by finding the expression of r(t) for t in the interval specified before.

Lemma 6.1. For ε > 0 small enough, we have

r(t) = ε2 cosh
t

ε2
+O(ε6e

t
ε2 ) and ∂tr(t) = sinh

t

ε2
+O(ε4e

t
ε2 )

for t ∈ [0, tε + ε2 ln 2]. Moreover if t ∈ [tε − ε2 ln 2, tε + ε2 ln 2], we derive

r(t) ∈ [
1

4
ε+ c1ε

3, ε+ c2ε
3],

∂tr(t) ∈ [
1

4ε
− c′1ε,

1

ε
− c′2ε],

for some positive constants c1, c2, c
′
1, c

′
2.

Proof. We define the function v(t) in such a way that r(t) = r(0) cosh v(t), with
v(0) = 0 and r(0) the minimum for r(t). It satisfies

Cr2(0)− (1 + r4(0)) = 0,

from which

(15) 1 = Cr2(0)− r4(0).

Plugging r(t) in (14) and using (15), we have

(∂tv)
2 = C − r2(0)(1 + cosh2 v(t))

and under the hypothesis
t

ε2
� v (t) � t

ε2
+ 1

we obtain that (∂tv)
2 = C+O(ε4e

2t
ε2 ) and then v(t) =

√
Ct+O(ε6e

2t
ε2 ). We remark

a posteriori that t
ε2 � v(t) � t

ε2 +1 holds for t ∈ [0, tε+ε2 ln 2], ε > 0 small enough.

Since r(0) = rmin = ε2 +O(ε6), we get

(16) r(t) = r(0) cosh v(t) = ε2 cosh

(
t

ε2

)
+O(ε6e

t
ε2 ).

If t ∈ [tε − ε2 ln 2, tε + ε2 ln 2], then we easily obtain r(t) ∈ [ 14ε + c1ε
3, ε + c2ε

3],

for some positive constants c1, c2. Using ∂tr(t) = sinh
(

t
ε2

)
+ O(ε4e

t
ε2 ), we find

∂tr(t) ∈ [ 1
4ε − c′1ε,

1
ε − c′2ε] for some positive constants c′1, c

′
2. �

Now we can prove a lemma that gives us the parametrization of the pieces of the
catenoid whose height t belongs to a neighbourhood of tε and −tε.

8
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Lemma 6.2. For ε > 0 small enough and t ∈ [tε − ε2 ln 2, tε + ε2 ln 2], the surface
Ct can be seen as the graph, over the annulus B2rε −Brε/2, of the function Wt(θ, r)
which satisfies

(17) Wt(θ, r) = ε2 ln
2r

ε2
+OC2,α

b
(ε3).

Similarly if t ∈ [−tε − ε2 ln 2,−tε + ε2 ln 2], the surface Cb can be seen as the graph
over B2rε −Brε/2 of the function

Wb(θ, r) = −ε2 ln
2r

ε2
+OC2,α

b
(ε3).

Proof. The first result easily follows from the hypothesis and equation (16). The
second result can be shown by observing that Cb is the image of Ct by the reflection
with respect to the x3 = 0 plane. In other terms, Wb(θ, r) = −Wt(θ, r). �

7. A family of minimal surfaces close to a catenoid on S1 × [rε, 1]

In this section we want to show the existence of minimal graphs in M
2 ×R over

the parts of the surfaces Ct and Cb (described in the previous section) defined on
S1 × [rε, 1] ⊂ M

2 × {0} and asymptotic to them. We know that the graph of the
function u+ v is minimal, u being the function whose graph is the catenoid, if and
only if v is a solution of the equation

(18) Hu+v = 0

whose expression is given by (4). The explicit expression of Luv is
(19)

F

(
1√
A
Δ0v + ∂r

(
1√
A

)
∂rv −

1

A
3
2

∂ru ∂r (F∂ru) ∂rv − F∂ru ∂r

(
1

A
3
2

∂ru ∂rv

))
,

where F = (1− r2)2,

A = 1 + F |∇u|2 =
(C − 2)r2

Cr2 − 1− r4

and

∂ru = ± 1√
Cr2 − 1− r4

,

as is easy to obtain using (14). It’s useful to observe that since we assume C = 1
ε4

and rε = ε/2, we have that, for r ∈ [rε, 1], A = 1 +O(ε2), ∂ru = O(ε),

∂rA =
(2C − 4)(−r + r5)

(Cr2 − 1− r4)2
= O(ε)

and

∂2
rru = ∓ (Cr − 2r3)√

(Cr2 − 1− r4)3
= O(1).

Taking into account these estimates, we can conclude that

L̄uv :=
√
A

(
∂r

(
1√
A

)
∂rv −

1

A
3
2

∂ru ∂r (F∂ru) ∂rv − F∂ru ∂r

(
1

A
3
2

∂ru ∂rv

))

= l1∂rv + l2∂
2
rrv,

(20)

where l1, l2 = O(ε). Then we can write
√
ALuv = F

(
Δ0v + L̄uv

)
.
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We remark that we have already studied the mapping properties of the operator
Δ0 in section 4.

Let Σu be the graph of the function u. Then the graph of a function v over Σu

is minimal if and only if v is a solution of the following equation:

(21) Δ0v + L̄uv +
√
AQu(v) = 0,

where Qu(·) := Qu

(√
F∇·,

√
F∇2·

)
. Thanks to the observations on the functions

A and ∂r u, we can conclude that Qu has bounded coefficients if r ∈ [rε, 1].
Now we consider a function ϕ ∈ C2,α(S1) which is even with respect to θ, collinear

to cos(j(k + 1)θ) (for k � 1 fixed) and such that

(22) ‖ϕ‖C2,α � κε2.

We define

wϕ(·, ·) := Hrε,ϕ(·, ·),
where the operator Hrε,ϕ has been introduced in Proposition 12.1.

In order to solve equation (21), we look for v of the form v = wϕ + w, where
w ∈ C2,α(S1 × [rε, 1]) and v = ϕ on S1 × {rε}. We can rephrase this problem as a
fixed point problem, that is,

(23) w = S(ϕ,w),

where the nonlinear mapping S is defined by

S(ϕ,w) := −Grε

(
L̄u(wϕ + w) +

√
AQu (wϕ + w)

)
,

and where the operator Grε is defined in Proposition 4.2. To prove the existence
of a solution for (23) we need the following result, which states that S(ϕ, ·) is a
contraction mapping.

Lemma 7.1. Let ϕ ∈ C2,α(S1) be a function satisfying (22) and enjoying the
properties given above. There exist some constants cκ > 0 and εκ > 0, such that

(24) ‖S(ϕ, 0)‖C2,α(S1×[rε,1]) � cκε
3

and, for all ε ∈ (0, εk),

‖S(ϕ,w2)− S(ϕ,w1)‖C2,α(S1×[rε,1]) �
1

2
‖w2 − w1‖C2,α(S1×[rε,1]),

‖S(ϕ2, w)− S(ϕ1, w)‖C2,α(S1×[rε,1]) � cε ‖ϕ2 − ϕ1‖C2,α(S1),

where c is a positive constant, for all w1, w2 ∈ C2,α(S1 × [rε, 1]) such that
‖wi‖C2,α(S1×[rε,1]) � 2cκε

4 and for all boundary data ϕ1, ϕ2 ∈ C2,α(S1) enjoying
the same properties as ϕ.

Proof. We know from Proposition 4.2 that ‖Grε(f)‖C2,α � c‖f‖C0,α . Then

‖S(ϕ, 0)‖C2,α � c‖L̄uwϕ +
√
AQu (wϕ) ‖C0,α

� c
(
‖L̄uwϕ‖C0,α + ‖Qu (wϕ) ‖C0,α

)
.

Here we have used the fact that A = 1 +O(ε2).
So we need to find the estimates of each summand. We recall that ‖ϕ‖C2,α � κε.

Thanks to Proposition 12.1 we get that

‖wϕ‖C2,α � c‖ϕ‖C2,α(S1) � cκε
2.
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We use (20) for finding the estimate of L̄uwϕ. We obtain

‖L̄uwϕ‖C0,α � cε‖wϕ‖C2,α � cκε
3.

The last term is estimated by observing that

‖Qu (wϕ) ‖C0,α � c‖wϕ‖2C2,α � cκε
4.

Putting together all these estimates we get

‖S(ϕ, 0)‖C2,α � cκε
3.

As for the second estimate, we observe that

S(ϕ,w2)− S(ϕ,w1) = −Grε

(
L̄u(wϕ + w2) +

√
AQu (wϕ + w2)

)

+Grε

(
L̄u(wϕ + w1) +

√
AQu (wϕ + w1)

)
.

Consequently

‖S(ϕ,w2)− S(ϕ,w1)‖C2,α

� c‖L̄u(wϕ + w2)− L̄u(wϕ + w1) +
√
AQu (wϕ + w2)−

√
AQu (wϕ + w1) ‖C0,α

= c‖L̄u(w2 − w1) +
√
A (Qu (wϕ + w2)−Qu (wϕ + w1)) ‖C0,α

� c
(
‖L̄u(w2 − w1)‖C0,α + ||Qu (wϕ + w2)−Qu (wϕ + w1)||C0,α

)
.

We observe that from the considerations above it follows that

‖L̄u(w2 − w1)‖C0,α � cε||w2 − w1||C2,α

and

||Qu (wϕ + w2)−Qu (wϕ + w1)||C0,α � c||w2 − w1||C2,α‖wϕ‖C2,α

� cκε||w2 − w1||C2,α .

Then

‖S(ϕ,w2)− S(ϕ,w1)‖C2,α � cε||w2 − w1||C2,α .

To show the third estimate we observe that

‖S(ϕ2, w)− S(ϕ1, w)‖C2,α

� c
(
‖L̄u(wϕ2

− wϕ1
)‖C0,α + ||Qu (wϕ2

+ w)−Qu (wϕ1
+ w)||C0,α

)

� cε‖ϕ2 − ϕ1‖C2,α(S1) + ‖w‖C2,α‖ϕ2 − ϕ1‖C2,α(S1)

� cε‖ϕ2 − ϕ1‖C2,α(S1).

�

Theorem 7.2. Let B := {w ∈ C2,α(S1 × [rε, 1]) | ||w||C2,α � 2cκε
3}. Then the

nonlinear mapping S(ϕ, ·) defined above has a unique fixed point v in B.

Proof. The previous lemma shows that, if ε is chosen small enough, the nonlin-
ear mapping S(ϕ, ·) is a contraction mapping from the ball B of radius 2cκε

3 in
C2,α(S1 × [rε, 1]) into itself. This value follows from the estimate of the norm of
S(ϕ, 0). Consequently, thanks to the Schäuder fixed point theorem, S(ϕ, ·) has a
unique fixed point v in this ball. �
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We have proved the existence of a minimal surface with respect to the metric
ghyp, St(ϕ), which is close to the piece of catenoid Ct introduced in section 6 and
close to its boundary is a graph over the annulus B2rε −Brε of the function

Ūt(θ, r) = ε2 ln
2r

ε2
+Hrε,ϕ(θ, r) + V̄t(θ, r),

with ‖V̄t‖C2,α � cε2. From the properties of the extension operator Hrε,ϕ (see
Proposition 12.1) and Proposition 4.2 we can see that St(ϕ) is asymptotic to Ct if
r tends to 1 and it is embedded in M

2 × R.
The function V̄t depends nonlinearly on ε, ϕ. Furthermore it satisfies

(25) ‖V̄t(ε, ϕ)(·, rε·)− V̄t(ε, ϕ
′)(·, rε·)‖C2,α(B̄2−B1) � cε‖ϕ− ϕ′‖C2,α(S1).

This estimate follows from Lemma 7.1.
Now it is easy to show the existence of a minimal surface Sb(ϕ), which is close

to the part of the catenoid denoted by Cb introduced in section 6, and close to
its boundary is a graph over the annulus B2rε − Brε . We start observing that Cb

can be obtained by reflection of Ct with respect to the x3 = 0 plane. So we can
define Sb(ϕ) as the image of St(ϕ) by the composition of a rotation by an angle
π

k+1 about the x3-axis and the reflection with respect to the horizontal plane. This

choice (in particular the apparently unnecessary rotation) is indispensable to assure
that the surface we will construct by the gluing procedure in section 11 has the same
properties of symmetry as the Costa-Hoffman-Meeks surface. See subsection 9.1
for more information.

It is clear that Sb(ϕ) is the graph over the annulus B2rε −Brε of the function

Ūb(θ, r) = −Ūt

(
θ − π

k + 1
, r

)
.

8. The relation between the mean curvatures of a surface in D
2 × R

with respect to two different metrics

In this section we want to express the mean curvature Hhyp of a surface in
D

2 × R with respect to the metric ghyp in terms of the mean curvature He of the
same surface with respect to the Euclidean metric g0.

We recall that, if x1, x2 denote the coordinates in D
2 and x3 the coordinate in

R, then

ghyp =
dx2

1 + dx2
2

F
+ dx2

3, where F =
(
1− x2

1 − x2
2

)2
=

(
1− r2

)2

and

g0 = dx2
1 + dx2

2 + dx2
3.

If Nhyp denotes the normal vector to a surface Σ with respect to the metric ghyp,
then its mean curvature with respect to the same metric is given by

Hhyp(Σ) := −1

2
trace

(
X → [∇̄XNhyp]

T
)
,

where [·]T denotes the projection on the tangent bunble TΣ and ∇̄ is the Rie-
mannian connection relative to ghyp. The mean curvature of Σ with respect to g0,
denoted by He(Σ), is given by

He(Σ) := −1

2
trace

(
X → [∇XNe]

T
)
,
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where Ne denotes the normal vector to Σ with respect to the metric g0 and ∇ is
the flat Riemannian connection.

The Christoffel symbols, Γk
ij , associated to the metric ghyp all vanish except

Γ1
11 = Γ2

21 = Γ2
12 = −Γ1

22 =
2x1√
F
,

Γ1
12 = Γ2

22 = Γ1
21 = −Γ2

11 =
2x2√
F
.

Let ∂1 = ∂
∂x1

, ∂2 = ∂
∂x2

, ∂3 = ∂
∂x3

be the elements of a basis of the tangent

space. Now, if X =
∑

i X
i∂i and Y =

∑
j Y

j∂j are two tangent vector fields, the

expression of the covariant derivative in (D2 × R, ghyp) is given by

∇̄XY =
∑
k

⎛
⎝X(Y k) +

∑
i,j

XiY jΓk
ij

⎞
⎠ ∂k.

It is clear that

(26) ∇̄XY = ∇XY +

2∑
k=1

∑
i,j

XiY jΓk
ij∂k.

We suppose that Nhyp = (N1, N2, N3). From (26) we get the relation

(27) ∇̄XNhyp = ∇XNhyp +

2∑
k=1

2∑
i,j=1

XiN jΓk
ij∂k.

We start by evaluating the term ∇XNhyp. We observe that the normal vector
Ne = (N1, N2, N3) to Σ with respect to the metric g0 does not coincide with Nhyp.
But it is clear that

Nhyp = (N1, N2, N3) = (
√
FN1,

√
FN2, N3).

We observe that

∇XNhyp =

3∑
k=1

X(Nk)∂k = X(
√
FN1)∂1 +X(

√
FN2)∂2 +X(N3)∂3.

We can write X(
√
FNk) = (1− r2)X(Nk)−X(r2)Nk, for k = 1, 2. Since

X(Nk) =
∑
l

X l∂xl
Nk and X(r2) = 2x1X

1 + 2x2X
2,

it follows that

X(
√
FNk) = X(Nk)−

(
2x1X

1 + 2x2X
2
)
Nk − r2

(
3∑

l=1

X l∂xl
Nk

)
,

for k = 1, 2. We can conclude that ∇XNhyp =
∑

k X(Nk)∂k is given by

3∑
k=1

X(Nk)∂k −
(
2x1X

1 + 2x2X
2
) 2∑
k=1

Nk∂k − r2
2∑

k=1

(
3∑

l=1

X l∂xl
Nk

)
∂k.
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Inserting this equality into (26) and observing that
∑3

k=1 X(Nk)∂k = ∇XNe, we
obtain

∇XNhyp = ∇XNe −
(
2x1X

1 + 2x2X
2
) 2∑
k=1

Nk∂k − r2
2∑

k=1

(
3∑

l=1

X l∂xl
Nk

)
∂k.

Replacing this result into (27) we find the following expression of ∇̄XNhyp, which
we will consider to compute the trace. We will assume X to be a vector field tangent
to Σ. Then

(28)
∇̄XNhyp = ∇XNe −

(
2x1X

1 + 2x2X
2
)∑2

k=1 Nk∂k

−r2
∑2

k=1

(∑3
l=1 X

l∂xl
Nk

)
∂k +

∑2
k=1

∑2
i,j=1 X

iN jΓk
ij∂k.

We start to study the second summand.
(
2x1X

1 + 2x2X
2
)∑2

k=1 Nk∂k is the
vector whose components with respect to the basis (∂1, ∂2, ∂3) are given by

⎡
⎣

2x1N1 2x2N1 0
2x1N2 2x2N2 0

0 0 0

⎤
⎦
⎡
⎣

X1

X2

X3

⎤
⎦ .

So the trace of the mapping
∑3

i=1 X
i∂i →

[(
2x1X

1 + 2x2X
2
)∑2

k=1 Nk∂k

]T
equals

2O(x1N1 + x2N2).
The components of the vector

2∑
k=1

(
3∑

l=1

X l∂xl
Nk

)
∂k

with respect to the basis (∂1, ∂2, ∂3) are given by
⎡
⎣

∂x1
N1 ∂x2

N1 ∂x3
N1

∂x1
N2 ∂x2

N2 ∂x3
N2

0 0 0

⎤
⎦
⎡
⎣

X1

X2

X3

⎤
⎦ .

So the trace of the mapping

3∑
i=1

Xi∂i → r2

[
2∑

k=1

(
3∑

l=1

X l∂xl
Nk

)
∂k

]T

equals O
(
r2 (∂x1

N1 + ∂x2
N2)

)
.

As for the last term of (28), we can state that
∑2

k=1

∑
i,j X

iN jΓk
ij∂k is the

vector whose components with respect to the basis (∂1, ∂2, ∂3) are given by

(29)

⎡
⎢⎣

2x1N
1

√
F

+ 2x2N
2

√
F

2x2N
1

√
F

− 2x1N
2

√
F

0

− 2x2N
1

√
F

+ 2x1N
2

√
F

2x1N
1

√
F

+ 2x2N
2

√
F

0

0 0 0

⎤
⎥⎦

⎡
⎣

X1

X2

X3

⎤
⎦ .

Taking into account the equalities N1 =
√
FN1 and N2 =

√
FN2, it is easy to

conclude that the trace of the mapping

∑
i

Xi∂i →

⎡
⎣

2∑
k=1

∑
i,j

XiN jΓk
ij∂k

⎤
⎦
T
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equals 4O (x1N1 + x2N2) . From the definition of the mean curvatures it is easy to
obtain the following relation:

(30) Hhyp(Σ) = He(Σ)−O(x1N1 + x2N2) + r2O (∂x1
N1 + ∂x2

N2) .

We have proved the following result.

Proposition 8.1. Let S be a surface in D
2 × R endowed with the metric ghyp. If

Hhyp(·) denotes the mean curvature with respect to the metric ghyp, and if He(·)
and (N1, N2, N3) denote respectively the mean curvature and the normal vector to
S with respect to g0, then

(31) Hhyp(S) = He(S)−O(x1N1 + x2N2) + r2O (∂x1
N1 + ∂x2

N2) ,

where x1, x2 are the Euclidean coordinates on D
2 and r2 = x2

1 + x2
2.

9. A scaled Costa-Hoffman-Meeks type surface

In this section we will describe the surface obtained by scaling of Mk, the Costa-
Hoffmann-Meeks surface of genus k � 1 (see C. Costa [1], [2] and D. Hoffman
and W. H. Meeks [8], [9]) and we will study the mapping properties of its Jacobi
operator. We denote by Mk,ε the image of Mk by a homothety of ratio ε2. We will
adapt to our situation some of the analytical tools used in [6] to show the existence
of a family of minimal surfaces in R

3 close to Mk with one planar end and two
slightly bent catenoidal ends by an angle ξ ∈ (−ξ0, ξ0), ξ0 > 0 and small enough.
We denote an element of this family by Mk(ξ). Then Mk(ξ)|ξ=0 = Mk.

9.1. The Costa-Hoffman-Meeks surface. We start by giving a brief description
of the surface Mk. After suitable rotation and translation, Mk enjoys the following
properties.

(1) It has one planar end Em asymptotic to the x3 = 0 plane, one top end Et

and one bottom end Eb that are respectively asymptotic to the upper end
and to the lower end of a catenoid with x3-axis of revolution. The planar
end Em is located between the two catenoidal ends.

(2) It is invariant under the action of the rotation of angle 2π
k+1 about the x3-

axis, under the action of the symmetry with respect to the x2 = 0 plane
and under the action of the composition of a rotation of angle π

k+1 about
the x3-axis and the symmetry with respect to the x3 = 0 plane.

(3) It intersects the x3 = 0 plane in k + 1 straight lines, which intersect them-
selves at the origin with angles equal to π

k+1 . The intersection of Mk with

the plane x3 = const ( �= 0) is a single Jordan curve. The intersection of Mk

with the upper half space x3 > 0 (resp. with the lower half space x3 < 0)
is topologically an open annulus.

We denote by Xi, with i = t, b,m, the parametrization of the end Ei and with
Xi,ε the parametrization of the corresponding end Ei,ε of Mk,ε.

Now we give a local description of the surfaceMk,ε near its ends and we introduce
coordinates that we will use.
The planar end. The planar end Em,ε of the surface Mk,ε can be parametrized
by

(32) Xm,ε(x) :=

(
ε2x

|x|2 , ε
2um(x)

)
∈ R

3,
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where x ∈ B̄ρ0
(0)−{0} ⊂ R

2.Here ρ0 > 0 is fixed small enough. In the sequel, where
necessary, we will consider on Bρ0

(0) also the polar coordinates (θ, ρ) ∈ S1× [0, ρ0].
The function um satisfies the minimal surface equation, which has the following
form:

(33) 2Hu =
|x|4
ε2

div

(
∇u

(1 + |x|4 |∇u|2)1/2

)
= 0.

It can be shown (see [6]) that the function um can be extended at the origin con-
tinuously using the Weierstrass representation. In particular we can prove that
um ∈ C2,α(B̄ρ0

) and um = OC2,α
b

(|x|k+1), where the expression OCn,α
b

(g) denotes

a function that, together with its partial derivatives of order less than or equal to
n + α, is bounded by a constant times g. Furthermore, taking into account the
symmetries of the surface, it is possible to show that the function um, in polar
coordinates, has to be collinear to cos(j(k + 1)θ), with j � 1 and odd.

If we linearize in u = 0 the nonlinear equation (33), we obtain the expression of
an operator which is, up to a multiplication by ε4, the Jacobi operator about the
plane, that is, LR2 = |x|4Δ0. To be more precise, the linearization of (33) gives

(34) Lu v =
|x|4
ε2

div

(
∇v√

1 + |x|4|∇u|2
− |x|4∇u

∇u · ∇v√
(1 + |x|4|∇u|2)3

)
.

We will give the expression ofHu+v, the mean curvature of the graph of the function
u+ v, in terms of the mean curvature of Σu, that is, Hu.

Here we will show that

(35) 2Hu+v = 2Hu + Luv +
|x|4
ε2

Qu(|x|2∇v, |x|2∇2v),

where Qu satisfies

Qu(0, 0) = 0,∇Q′
u(0, 0) = 0.

To show (35), we start by observing that

(36)
1√

1 + |x|4|∇(u+ v)|2
=

1√
1 + |x|4|∇u|2

− |x|4 ∇u · ∇v√
(1 + |x|4|∇u|2)3

+Qu,1(v),

where the function Qu,1 satisfies Qu,1(0) = 0,∇Qu,1(0) = 0. The proof of that is
very close to the one that appears in section 3: it’s necessary only to replace F by
|x|4. So we can omit some details. Secondly we observe that 2Hu+v is given by

|x|4
ε2

div

(
∇(u+ v)√
1 + |x|4|∇u|2

− |x|4∇(u+ v)
∇u · ∇v√

(1 + |x|4|∇u|2)3
+∇(u+ v)Qu,1(v)

)

= 2Hu +
|x|4
ε2

div

(
∇v√

1 + |x|4|∇u|2
− |x|4∇u

∇u · ∇v√
(1 + |x|4|∇u|2)3

)

+
|x|4
ε2

Qu(|x|2∇v, |x|2∇2v).

From this the wanted expression follows.
Since we assume that Σu is a minimal surface, we will consider Hu = 0.
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 Following what we have done in section 7 replacing F by |x|4 we get:

(37)
|x|4
ε2

(
Δ0v +

√
1 + |x|4|∇u|2

(
L̄uv +Qu(|x|2∇v, |x|2∇2v)

))
= 0,

where L̄uv is a second order linear operator with coefficients in OC2,α
b

(|x|k+1).

It is important to remark that if the function v satisfies equation (37) with
u = um, then the graph of the function ε2(um + v) is minimal. Now we are
interested in finding the equation which a function w must satisfy in such a way
that the surface parametrized by Xm,ε+we3, that is, the graph of w over the middle
end Em,ε, is minimal, which is equivalent to requiring that the graph of ε2um + w
is minimal. Then we can obtain the wanted equation by replacing v by w/ε2 in
(37). So we get
(38)

|x|4
ε2

(
1

ε2
Δ0w +

√
1 + |x|4|∇u|2

(
1

ε2
L̄uw +Qu

(
|x|2
ε2

∇w,
|x|2
ε2

∇2w

)))
= 0.

If we set Qε,u(·) := |x|4
ε2

√
1 + |x|4|∇u|2 Qu

(
|x|2
ε2 ∇·, |x|2

ε2 ∇2·
)
to simplify the nota-

tion, we can write this equation in the following way:

(39)
|x|4
ε4

Δ0w +
|x|4
ε4

√
1 + |x|4|∇u|2 L̄uw +Qε,u (w) = 0.

The catenoidal ends. We denote by Xc the parametrization of the standard
catenoid C whose axis of revolution is the x3-axis. Its expression is

Xc(s, θ) := (cosh s cos θ, cosh s sin θ, s) ∈ R
3,

where (s, θ) ∈ R× S1. The unit normal vector field about C is given by

nc(s, θ) :=
1

cosh s
(cos θ, sin θ,− sinh s).

The catenoid C may be divided into two pieces, denoted by C±, which are defined as
the image by Xc of R

±×S1. For any ε > 0, we define the catenoid Cε as the image
of C by a homothety of ratio ε2. We denote by Xc,ε := ε2Xc its parametrization.
Of course, by this transformation, two surfaces correspond to C±. We denote them
by Cε,±.

Up to some dilation, we can assume that the two ends Et,ε and Eb,ε of Mk,ε are
asymptotic to some translated copy of the catenoid parametrized by Xc,ε in the
vertical direction. Therefore, Et,ε and Eb,ε can be parametrized, respectively, by

(40) Xt,ε := Xc,ε + wt nc + σt,ε e3

for (s, θ) ∈ (s0,∞)× S1,

(41) Xb,ε := Xc,ε − wb nc − σb,ε e3

for (s, θ) ∈ (−∞,−s0) × S1, where σt,ε, σb,ε ∈ R and the functions wt, wb tend
exponentially fast to 0 as s goes to ±∞, reflecting the fact that the ends are
asymptotic to a catenoidal end. Furthermore, taking into account the symmetries
of the surface, it is easy to show that the functions wt, wb, in terms of the (s, θ)
coordinates, have to be collinear to cos(j(k + 1)θ), with j ∈ N and must satisfy
wb(s, θ) = −wt(−s, θ − π

k+1). Furthermore we have σt,ε = σb,ε.

In section 3 of [12] the expression of the mean curvature operator of a surface close
to a scaled standard catenoid is given. We can adapt this result to our situation.
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We obtain that the surface parametrized by Xc,ε + wnc is minimal if and only if
the function w satisfies the minimal surface equation

(42)
1

ε4
LCw +Qε(w) = 0,

LC being the Jacobi operator about the catenoid, i.e.

LCw =
1

cosh2 s

(
∂2
ssw + ∂2

θθw +
2w

cosh2 s

)
,

and

(43) Qε(w) =
1

ε2 cosh2 s
Q2,ε

( w

ε2 cosh s

)
+

1

ε2 cosh s
Q3,ε

( w

ε2 cosh s

)
.

Here Q2, Q3 are nonlinear second order differential operators which are bounded
in Ck(R× S

1), for every k, and satisfy Q2(0) = Q3(0) = 0, ∇Q2(0) = ∇Q3(0) = 0,
∇2Q3(0) = 0 together with:

‖Qj(v2)−Qj(v1)‖C0,α([s,s+1]×S1)

� c

(
sup
i=1,2

‖vi‖C2,α([s,s+1]×S1)

)j−1

‖v2 − v1‖C2,α([s,s+1]×S1)

(44)

for all s ∈ R and all v1, v2 such that ‖vi‖C2,α([s,s+1]×S1) � 1. The constant c > 0
does not depend on s.

For all ρ < ρ0 and s > s0, we define
(45)
Mk,ε(s, ρ) := Mk,ε −

[
Xt,ε((s,∞)× S1) ∪Xb,ε((−∞,−s)× S1) ∪Xm,ε(Bρ(0))

]
.

The parametrizations of the three ends of Mk,ε induce a decomposition of Mk,ε

into slightly overlapping components: a compact piece Mk,ε(s0+1, ρ0/2) and three
noncompact pieces Xt,ε((s0,∞)× S1), Xb,ε((−∞,−s0)× S1) and Xm,ε(B̄ρ0

(0)).
We define a weighted space of functions on Mk,ε.

Definition 9.1. Given � ∈ N, α ∈ (0, 1) and δ ∈ R, the space C�,α
δ (Mk,ε) is defined

to be the space of functions in C�,α
loc (Mk,ε) for which the following norm is finite:

‖w‖C�,α
δ (Mk,ε)

:= ‖w‖C�,α(Mk,ε(s0+1,ρ0/2)) + ‖w ◦Xm,ε‖C�,α(B̄ρ0
(0))

+ ‖w ◦Xt,ε‖C�,α
δ ([s0,+∞)×S1) + ‖w ◦Xb,ε‖C�,α

δ ((−∞,−s0]×S1),

where

‖f‖C�,α
δ ([s0,+∞)×S1) = sup

s�s0

(
e−δs ‖f‖C�,α([s,s+1]×S1)

)
,

‖f‖C�,α
δ ((−∞,−s0]×S1) = sup

s�−s0

(
eδs ‖f‖C�,α([s−1,s]×S1)

)

and which are invariant under the action of the symmetry with respect to the
x2 = 0 plane, that is, w(p) = w(p̄) for all p ∈ Mk,ε, where p̄ := (x1,−x2, x3) if
p = (x1, x2, x3), invariant with respect to a rotation of angle 2π

k+1 about the x3-
axis and to the composition of a rotation of angle π

k+1 about the x3-axis and the
symmetry with respect to the x3 = 0 plane.

We remark that there is no weight on the middle end. In fact we compactify this
end and we consider a weighted space of functions defined on a two-ended surface.
We will perturb the surface Mk,ε by the normal graph of a function u ∈ C2,α

δ (Mk,ε).
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9.2. The Jacobi operator. The Jacobi operator about Mk,ε is

LMk,ε
:= ΔMk,ε

+ |AMk,ε
|2,

where |AMk,ε
| is the norm of the second fundamental form on Mk,ε.

In the parametrization of the ends introduced above, the volume forms dvolMk,ε

can be written as γt ds dθ and γb ds dθ near the catenoidal type ends and as
γm dx1 dx2 near the middle end. Now we can define globally on Mk,ε a smooth
function

(46) γ : Mk,ε −→ [0,∞)

that is identically equal to ε4 on Mk,ε(s0 − 1, 2ρ0) and equal to γt (resp. γb,
γm) on the end Et,ε (resp. Eb,ε, Em,ε). They are defined in such a way that on
Xt,ε((s0,∞)× S1) and on Xb,ε((−∞,−s0)× S1) we have

γ ◦Xt,ε(s, θ) ∼ ε4 cosh2 s and γ ◦Xb,ε(s, θ) ∼ ε4 cosh2 s.

Finally on Xm,ε(Bρ0
), we have

γ ◦Xm,ε(x) ∼
ε4

|x|4 .

It is possible to check that

Lε,δ : C2,α
δ (Mk,ε) −→ C0,α

δ (Mk,ε)

w 	−→ γ LMk,ε
(w)

is a bounded linear operator. The subscript δ is meant to keep track of the weighted
space over which the Jacobi operator is acting. Observe that the function γ is here
to counterbalance the effect of the conformal factor 1√

|gMk,ε
| in the expression of

the Laplacian in the coordinates we use to parametrize the ends of the surface
Mk,ε. This is precisely what is needed to have the operator defined from the space

C2,α
δ (Mk,ε) into the target space C0,α

δ (Mk,ε).
To have a better grasp of what is going on, let us linearize the nonlinear equation

(42) at w = 0. We get the expression of the Jacobi operator about the scaled
catenoid Cε:

LCε
:=

1

ε4 cosh2 s

(
∂2
s + ∂2

θ +
2

cosh2 s

)
.

We can observe that the operator cosh2 sLCε
maps the space (cosh s)δ C2,α((s0,+∞)

×S1) into the space (cosh s)δ C0,α((s0,+∞)× S1).
Similarly, if we linearize the nonlinear equation (33) at u = 0, we obtain (see (3)

with u = 0), up to a multiplication by 1/ε4, the expression of the Jacobi operator
about the plane:

1

ε4
LR2 :=

|x|4
ε4

Δ0.

Again, the operator γ 1
ε4 LR2 = Δ0 clearly maps the space C2,α(B̄ρ0

) into the space

C0,α(B̄ρ0
). Now, the function γ plays, for the ends of the surface Mk,ε, the role

played by the function cosh2 s for the ends of the standard catenoid and the role
played by the function |x|−4 for the plane. Since the Jacobi operator about Mk,ε is
asymptotic to 1

ε4LR2 at Em,ε and is asymptotic to LCε
at Et,ε and Eb,ε, we conclude

that the operator Lε,δ maps C2,α
δ (Mk,ε) into C0,α

δ (Mk,ε).
Now we recall the notion of nondegeneracy introduced in [6].
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Definition 9.2. The surface Mk,ε is said to be nondegenerate if Lε,δ is injective
for all δ < −1.

It is useful to observe that a duality argument in the weighted Lebesgue spaces
implies that

(Lε,δ is injective) ⇔ (Lε,−δ is surjective)

if δ /∈ Z. See [13] and [10] for more details.
The nondegeneracy of Mk,ε is related to the mapping properties of Lε,δ and

to the kernel of this operator. From the observations made above, it follows that
at the catenoidal type ends the Jacobi operators of Mk,ε and Mk are respectively
asymptotic to LCε

and LC which coincide up to a multiplication by ε4; at the middle
end they are respectively asymptotic to 1

ε4LR2 and LR2 . So we could transpose some
of the results about the surface Mk(0) contained in [6] related to the study of its
mean curvature operator, to the surface Mk,ε, including nondegeneracy. The only
difference is that here we work with spaces of functions invariant with respect to
all of the symmetries of Mk.
The Jacobi fields. It is known that a smooth one-parameter group of isometries
containing the identity generates a Jacobi field, that is, a solution of the equation
LMk,ε

u = 0. The Jacobi fields of this type, which are invariant with respect to the

mirror symmetry by the x2 = 0 plane, the rotation by 2π
k+1 about the x3-axis, the

composition of the rotation by π
k+1 about the x3-axis and the mirror symmetry

with respect to the x3 = 0 plane, are generated by dilations. Of course the Jacobi
equation has other solutions which are not taken into account because they are not
invariant under the action of the symmetries listed above. See [6] for details.

The Killing vector field Ξ(p) = p, which is associated to the one-parameter group
of dilations, generates the Jacobi field

Φ(p) := n(p) · p.

It is clear that Φ(p) grows linearly and so it is not bounded.
With this notation, we define the deficiency space

D := Span{χt Φ, χb Φ },

where χt is a cutoff function that is identically equal to 1 on Xt,ε((s0+1,+∞)×S1),
identically equal to 0 on Mk,ε − Xt,ε((s0,+∞) × S1) and that is invariant under
the action of the symmetries listed above. The cutoff function χb is obtained from
χt by using the symmetries. Clearly, if δ < 0, then

L̃ε,δ : C2,α
δ (Mk,ε)⊕D −→ C0,α

δ (Mk,ε)

w 	−→ γ LMk,ε
w

is a bounded linear operator. Thanks to a result of S. Nayatani about the dimension
of the kernel of the Jacobi operator of Mk, shown in [18, 19] and extended in [16],
we can state that there is not any bounded Jacobi field which is invariant with
respect to the symmetries of Mk,ε.

So we get the following result about the operator Lε,δ.

Proposition 9.3. We choose δ ∈ (1, 2). Then the operator Lε,δ is surjective.
Moreover, there exists Gε,δ, a right inverse for Lε,δ whose norm is bounded.

20

20



This fact, together with an adaptation to our setting of the linear decomposition
lemma proved in [11] for constant mean curvature surfaces (see also [10] for minimal
hypersurfaces), allows us to prove the following result.

Proposition 9.4. We choose δ ∈ (−2,−1). Then the operator L̃ε,δ is surjective.

10. An infinite dimensional family of minimal surfaces which are

close to a compact part of a scaled Costa-Hoffman-Meeks type

surface in M
2 × R

We recall that in section 8 we found that the mean curvature with respect to the
metric ghyp of a surface S in M

2 × R can be expressed in terms of the Euclidean
mean curvature of S and the components of the normal vector to the same surface
with respect to the flat metric g0.

In this section we will apply this result to prove the existence of a family of
embedded minimal surfaces with respect to the metric ghyp which are close to the
piece of the surfaceMk,ε contained in a cylindrical neighbourhood of radius rε = ε/2
of {0, 0} × R.

We start by giving the statement of a result that can be easily obtained by [6],
Lemma 2.2. It describes the region of the surface Mk,ε which can be parametrized
as a graph on an annular neighbourhood of rε contained in the x3 = 0 plane.

Lemma 10.1. There exists ε0 > 0 such that, for all ε ∈ (0, ε0), an annular part
of the ends Et,ε, Eb,ε and Em,ε of Mk,ε can be written as vertical graphs over the
annulus B2rε −Brε/2 of the functions

Zt(θ, r) = σt,ε + ε2 ln

(
2r

ε2

)
+OC2,α

b
(ε3),(47)

Zb(θ, r) = −Zt

(
θ − π

k + 1
, r

)
.(48)

As for the parametrization of the planar end, it satisfies

(49) Zm(θ, r) = OC2,α
b

(
ε2

( r

ε2

)−(k+1)
)
.

Here (θ, r) are the polar coordinates in the x3 = 0 plane. The functions OC2,α
b

(f)

are defined in the annulus B2rε − Brε/2 and are bounded in the C2,α
b topology by

a constant (independent by f) multiplied by f , where the partial derivatives are
computed with respect to the vector fields r ∂r and ∂θ.

We set
sε = − ln ε, ρε := 2ε

and we define MT
k,ε to be equal to Mk,ε, from which we have removed the image

of (sε,+∞) × S1 by Xt,ε, the image of (−∞,−sε) × S1 by Xb,ε and the image
of Bρε

(0) by Xm,ε. The values of sε and ρε have been chosen in such a way that
the surface MT

k,ε is contained in a neighbourhood of radius rε = ε/2 of {0, 0} × R.
In this section we will prove the existence of a family of minimal surfaces close to
MT

k,ε. To this aim we will use Proposition 8.1 and we will follow the work [6].
First, we modify the parametrization of the ends Et,ε, Eb,ε and Em,ε, for appro-

priate values of s and x, so that the images of r = rε by

(50) θ → (r cos θ, r sin θ, Zb(θ, r)), θ → (r cos θ, r sin θ, Zt(θ, r))
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correspond, respectively, up to a vertical translation, to the horizontal curves at
heights ±ε2 ln(2rε/ε

2).
The curve θ → (r cos θ, r sin θ, Zm(θ, r)), if r = rε, corresponds, up to a vertical

translation, to a horizontal curve at height ε2
(
rε/ε

2
)−(k+1)

.
The second step is the modification of the unit normal vector field on Mk,ε into a

transverse unit vector field ñε in such a way that it coincides with the normal vector
field nε on Mk,ε, is equal to e3 on the graph over B2rε − Brε/2 of the functions Ut

and Ub and interpolates smoothly between the different definitions of ñε in different
subsets of MT

k,ε.
Finally we observe that close to Et,ε, we can give the following estimate:

(51)
∣∣ε4 cosh2 s (LMk,ε

v − (ε4 cosh2 s)−1 (∂ssv + ∂θθv)
)∣∣ � c

∣∣(cosh2 s)−1v
∣∣ .

This follows easily from (42) together with the fact that wt decays at least like

(cosh2 s)−1 on Et,ε. Similar considerations hold close to the bottom end Eb,ε. Near
the middle planar end Em,ε, we observe that the following estimate holds:

(52)
∣∣ε4|x|−4

(
LMk,ε

v − |x|4ε−4Δ0v
)∣∣ � c

∣∣|x|2k+3∇v
∣∣ .

This follows easily from (34) together with the fact that um decays at least like
|x|k+1 on Em,ε.

The graph of a function u, Σu, using the vector field ñε, is a minimal surface
(with respect to the metric g0) if and only if u is a solution of a second order
nonlinear elliptic equation of the form

He(Σu) = LMT
k,ε

u− L̃ε u−Qε (u) = 0,

where LMT
k,ε

is the Jacobi operator about MT
k,ε, Qε is a nonlinear second order

differential operator and L̃ε is a linear operator which takes into account the change
of the normal vector field (only for the top and bottom ends) nε into ñε and of the
change of the parametrization.

This operator is supported in a neighbourhood of {±sε}×S1 and of S1×{ρε}. It is
possible to show that the coefficients of ε4L̃ε are uniformly bounded by a constant
times ε4. We start by noticing that the conformal factor (cosh2 s)−1 contributes
with a term equal to ε2. Furthermore the fact that 〈ñε, nε〉 = 1 + OC2,α

b
(ε2) in a

neighbourhood of {±sε}×S1 and the result of [6], appendix B, show that the change
of vector field induces a linear operator whose coefficients are bounded by a constant
times ε2. The contribution of the change of parametrization can be estimated as
follows. As for the catenoidal ends, we determine the difference between the value
of functions (47) and (48), for r in a neighbourhood of rε, and the height of the
horizontal boundary curve (see (50)). We obtain it is bounded by a constant times
ε3. Using (49) we can show that a similar estimate holds for the planar end.

Now, we consider three functions ϕt, ϕb, ϕm ∈ C2,α(S1) which are even, with
respect to θ, ϕt is collinear to cos(j(k + 1)θ) (k � 1 fixed) with j � 1, ϕb(θ) =
−ϕt(θ− π

k+1), while ϕm is collinear to cos(l(k+ 1)θ), with l � 1 and odd. Assume
that they satisfy

(53) ‖ϕt‖C2,α + ‖ϕb‖C2,α + ‖ϕm‖C2,α � κ ε2.

We set Φ := (ϕt, ϕb, ϕm) and we define wΦ to be the function equal to

(1) χ+Hϕt
(sε − s, ·) on the image of Xt,ε, where χ+ is a cutoff function equal

to 0 for s � s0 + 1 and identically equal to 1 for s ∈ [s0 + 2, sε];
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(2) χ− Hϕb
(s+ sε, ·) on the image of Xb,ε, where χ− is a cutoff function equal

to 0 for s � −s0 − 1 and identically equal to 1 for s ∈ [−sε,−s0 − 2];

(3) χm H̃ρε,ϕm
(·, ·) on the image of Xm,ε, where χm is a cutoff function equal

to 0 for ρ � ρ0 and identically equal to 1 for ρ ∈ [ρε, ρ0/2];
(4) zero on the remaining part of the surface MT

k,ε.

The cutoff functions just introduced must have the same symmetry properties as
the functions in C2,α

δ (Mk,ε). H̃ and H are harmonic extension operators introduced
respectively in Propositions 12.3 and 12.2.

We would like to prove that, under appropriate hypotheses, the graph Σu over
MT

k,ε of the function u = wΦ + v is a minimal surface with respect to the metric
ghyp. We want to point out that to construct the graph of the function u, here
we consider the normal vector field with respect to the Euclidean metric g0. The
equation to solve is:

Hhyp(Σu) = 0.

If we denote by Nu = (N1(u), N2(u), N3(u)) the unit normal vector to Σu, by
equation (31) we can express Hhyp(Σu) in terms of the Euclidean mean curvature
and write the equation to solve as

He(Σu)−O(x1N1(u) + x2N2(u)) + r2O(∂x1
N1(u) + ∂x2

N2(u)) = 0,

where x1, x2 are the coordinates on D
2 and r2 = x2

1 + x2
2. To simplify the notation

we set P (u) := O(x1N1(u) + x2N2(u)) − r2O(∂x1
N1(u) + ∂x2

N2(u)). Taking into
account that u = wΦ + v, now the expression of the equation to solve is given by

LMT
k,ε

(wΦ + v)− L̃ε(wΦ + v)−Qε(wΦ + v)− P (wΦ + v) = 0.

The resolution of the previous equation is obtained by the following fixed point
problem:

(54) v = T (Φ, v)

with

T (Φ, v) = Gε,δ ◦ Eε
(
γ
(
L̃ε(wΦ + v) + P (wΦ + v)− LMT

k,ε
wΦ +Qε(wΦ + v)

))
,

where δ ∈ (1, 2), the operator Gε,δ is defined in Proposition 9.3 and Eε is a linear
extension operator such that

Eε : C0,α
δ (MT

k,ε) −→ C0,α
δ (Mk,ε),

where C0,α
δ (MT

k,ε) denotes the space of functions of C0,α
δ (Mk,ε) restricted to MT

k,ε.

It is defined by Eεv = v in MT
k,ε, Eεv = 0 in the image of [sε +1,+∞)×S1 by Xt,ε,

in the image of (−∞,−sε − 1] × S1 by Xb,ε and in the image of Bρε/2 by Xm,ε.
Finally Eεv is an interpolation of these values in the remaining part of Mk,ε such
that

(Eεv) ◦Xt,ε(s, θ)=(1 + sε − s)(v ◦Xt,ε(sε, θ)), for (s, θ) ∈ [sε, sε + 1]× S1,

(Eεv) ◦Xb,ε(s, θ)=(1 + sε + s)(v ◦Xb,ε(sε, θ)), for (s, θ) ∈ [−sε − 1,−sε]× S1,

(Eεv) ◦Xm,ε(θ, ρ) =

(
2

ρε
ρ− 1

)
(v ◦Xm,ε(θ, ρε)) for (θ, ρ) ∈ S1 × [ρε/2, ρε].
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Remark 10.2. From the definition of Eε, if supp v ∩ (Bρε
−Bρε/2) �= ∅, then

‖(Eεv) ◦Xm,ε‖C0,α(B̄ρ0
) � cρ−α

ε ‖v ◦Xm,ε‖C0,α(Bρ0
−Bρε )

.

This phenomenon of explosion of the norm does not occur near the catenoidal type
ends:

‖(Eεv) ◦Xt,ε‖C0,α([s0,+∞)×S1) � c‖v ◦Xt,ε‖C0,α([s0,sε]×S1).

A similar equation holds for the bottom end. In the following we will assume α > 0
and close to zero.

The existence of a solution v ∈ C2,α
δ (MT

k,ε) for equation (54) is a consequence of

the following result, which proves that T (Φ, ·) is a contraction mapping.

Lemma 10.3. Let δ ∈ (1, 2) and Φ = (ϕt, ϕb, ϕm) ∈ [C2,α(S1)]3 satisfy (53) and
enjoy the properties given above. There exist constants cκ > 0 and εκ > 0, such
that

(55) ‖T (Φ, 0)‖C2,α
δ (Mk,ε)

� cκ ε
5/2

and, for all ε ∈ (0, εκ), α ∈ (0, 1/2),

‖T (Φ, v2)− T (Φ, v1)‖C2,α
δ (Mk,ε)

� 1

2
‖v2 − v1‖C2,α

δ (Mk,ε)
,

‖T (Φ2, v)− T (Φ1, v)‖C2,α
δ (Mk,ε)

� cε3/2 ‖Φ2 − Φ1‖C2,α(S1),

where c is a positive constant, with

‖Φ2−Φ1‖C2,α(S1) = ‖ϕt,2−ϕt,1‖C2,α(S1)+‖ϕb,2−ϕb,1‖C2,α(S1)+‖ϕm,2−ϕm,1‖C2,α(S1)

for all v, v1, v2 ∈ C2,α
δ (Mk,ε) and satisfying ‖v‖C2,α

δ
� 2 cκ ε

5/2 and for all boundary

data Φi = (ϕt,i, ϕb,i, ϕm,i) ∈ [C2,α(S1)]3, i = 1, 2, enjoying the same properties as
Φ.

Proof. We recall that the Jacobi operator associated to Mk,ε, is asymptotic (up
to a multiplication by 1/ε4) to the operator of the catenoid near the catenoidal
ends, and it is asymptotic to the Laplacian near the planar end. The function wΦ

is identically zero far from the ends where the explicit expression of LMk,ε
is not

known: this is the reason for our particular choice in the definition of wΦ. Then
from the definition of wΦ and thanks to Proposition 9.3 we obtain the estimate

‖Eε
(
γLMk,ε

wΦ

)
‖C0,α

δ (Mk,ε)

=
∣∣∣
∣∣∣
(
γLMT

k,ε
−

(
∂2
s + ∂2

θ

))
(wΦ ◦Xt,ε)

∣∣∣
∣∣∣
C0,α
δ ([s0+1,sε]×S1)

+
∣∣∣
∣∣∣
(
γLMT

k,ε
−

(
∂2
s + ∂2

θ

))
(wΦ ◦Xb,ε)

∣∣∣
∣∣∣
C0,α
δ ([−sε,−s0−1]×S1)

+ ρ−α
ε

∣∣∣
∣∣∣
(
γLMT

k,ε
−Δ0

)
(wΦ ◦Xm,ε)

∣∣∣
∣∣∣
C0,α(S1×[ρε,ρ0])

� c
∣∣∣∣cosh−2 s (wΦ ◦Xt,ε)

∣∣∣∣
C0,α
δ ([s0+1,sε]×S1)

+ c
∣∣∣∣cosh−2 s (wΦ ◦Xb,ε)

∣∣∣∣
C0,α
δ ([−sε,−s0−1]×S1)

+ cε−α
∣∣∣∣ρ2k+3∇(wΦ ◦Xm,ε)

∣∣∣∣
C0,α(S1×[ρε,ρ0])

� cκ ε
4 + cκ ε

5/2 � cκε
5/2.
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To obtain this estimate we used the following:

sup
[s0+1,sε]×S1

e−δs‖ cosh−2 s(wΦ ◦Xt,ε/2)‖C0,α([s,s+1]×S1)

� c sup
[s0+1,sε]×S1

e−δse−2(sε−s)e−2s‖φt‖C2,α(S1) � c e−2sε‖φt‖C2,α(S1) � cκε
4

(a similar estimate holds for the bottom end) and

ρ−α
ε ‖ρ2k+3∇(wΦ ◦Xm,ε)‖C0,α(S1×[ρε,ρ0]) � cε−αρε‖φm‖C2,α(S1) � cκε

5/2

together with the fact that sε = − ln ε and ρε = 2ε, from which e−2sε = ε2 and
ρ−α
ε = (2ε)−α. Using the properties of L̃ε and the definition of γ (see (46)), we

obtain

‖Eε
(
γL̃ε wΦ

)
‖C0,α

δ (Mk,ε)
�cε2‖wΦ ◦Xt,ε‖C0,α

δ ([s0+1,sε]×S1)

+ cε2‖wΦ ◦Xb,ε‖C0,α
δ ([−sε,−s0−1]×S1)

+ cε2−α‖wΦ ◦Xm,ε‖C0,α(S1×[ρε,ρ0/2]) � cκε
5/2.

The estimate of ‖Eε (γP (wΦ)) ‖C0,α
δ (Mk,ε)

is related to the estimate of the hori-

zontal components and their derivatives of order one of the normal vector to the
surface and to the definition of the function γ on MT

k,ε. It is convenient to recall

that the operator Eε smoothly extends a function g ∈ C0,α
δ (MT

k,ε) to a function

in C0,α
δ (Mk,ε), substantially leaving it unchanged on MT

k,ε and setting it equal to
zero on the remaining part of Mk,ε. P keeps track of the difference of the mean
curvatures of Σu computed with respect to two different metrics. It is sufficient
to estimate the norm of γP (wΦ) only on MT

k,ε. The function γ equals ε4 cosh2 s at

the catenoidal ends of MT
k,ε, equals ε4/|x|4 at the middle end, and equals ε4 far

from the ends. We recall that |s| ∈ [s0, sε] and |x| = ρ ∈ [ρε, ρ0]. Furthermore it
is easy to prove that the horizontal components N1, N2 of the normal vector (with
respect to the metric g0) to the graph of wΦ over the middle end of MT

k,ε, are, in

absolute value, smaller than a constant times ε2. Their derivatives ∂x1
N1, ∂x2

N2

are bounded by a constant times ε. As for the values of the coordinates x1 and x2,
we recall that we are working inside a cylindrical neighbourhood of radius rε = ε/2.
We get

‖Eε (γP (wΦ)) ‖C0,α
δ (Mk,ε)

� c ε5/2.

As for the last term, we recall that the expression of the operator Qε depends
on the type of end we are considering (see equations (39) and (43)). It follows that

‖Eε (γQε (wΦ)) ‖C0,α
δ (Mk,ε)

� cκε
5/2.

In fact

‖Eε (γQε (wΦ)) ‖C0,α
δ (Mk,ε)

� cε2‖ wΦ

ε2 cosh s
◦Xt,ε‖2C2,α

δ/2([s0+1,sε]×S1)

+ cε2‖ wΦ

ε2 cosh s
◦Xb,ε‖2C2,α

δ/2([−sε,−s0−1]×S1)

+ cε2(1−α)‖ |x|
2

ε2
wΦ ◦Xm,ε‖2C2,α(S1×[ρε,ρ0/2])

� cκε
5/2.

As for the second estimate, we recall that

T (Φ, v) := Gε,δ ◦ Eε
(
γ
(
P (wΦ + v) + L̃ε(wΦ + v)− LMk,ε

wΦ +Qε (wΦ + v)
))

.
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Then

‖T (Φ, v2)− T (Φ, v1)‖C2,α
δ (Mk,ε)

� ‖Eε (γ (P (wΦ + v2)− P (wΦ + v1))) ‖C0,α
δ (Mk,ε)

+ ‖Eε
(
γL̃ε(v2 − v1)

)
‖C0,α

δ (Mk,ε)

+ ‖Eε (γ (Qε (wΦ + v1)−Qε (wΦ + v2))) ‖C0,α
δ (Mk,ε)

.

We observe that from the considerations above it follows that

‖Eε (γ (P (wΦ + v2)− P (wΦ + v1))) ‖C0,α
δ (Mk,ε)

� cε3/2||v2 − v1||C2,α
δ (Mk,ε)

,

‖Eε
(
γL̃ε(v2 − v1)

)
‖C0,α

δ (Mk,ε)
� cε2||v2 − v1||C2,α

δ (Mk,ε)

and

‖Eε (γ (Qε (wΦ + v1)−Qε (wΦ + v2))) ‖C0,α
δ (Mk,ε)

� c||v2 − v1||C2,α
δ (Mk,ε)

(
ε2‖ wΦ

ε2 cosh s
◦Xt,ε‖C0,α(Et,ε)

+ ε2‖ wΦ

ε2 cosh s
◦Xb,ε‖C0,α(Eb,ε)

+ε2−α‖ |x|
2

ε2
wΦ ◦Xm,ε‖C0,α(Em,ε)

)

� cκε
2||v2 − v1||C2,α

δ (Mk,ε)
.

Then

‖T (Φ, v2)− T (Φ, v1)‖C2,α
δ (Mk,ε)

� cε3/2||v2 − v1||C2,α
δ (Mk,ε)

.

To show the last estimate it is sufficient to observe that

‖T (Φ2, v)− T (Φ1, v)‖C2,α
δ (Mk,ε)

� ‖Eε (γ (P (wΦ2
+ v)− P (wΦ1

+ v))) ‖C0,α
δ (Mk,ε)

+ ‖Eε
(
γL̃ε(wΦ2

− wΦ1
)
)
‖C0,α

δ (Mk,ε)

+ ‖Eε (γ (Qε (wΦ2
+ v)−Qε (wΦ1

+ v))) ‖C0,α
δ (Mk,ε)

� cε3/2‖Φ2 − Φ1‖C2,α(S1) + c‖v‖C0,α
δ (Mk,ε)

‖Φ2 − Φ1‖C2,α(S1)

� cε3/2‖Φ2 − Φ1‖C2,α(S1).

�

Theorem 10.4. Let B := {w ∈ C2,α
δ (Mk,ε) | ||w||C2,α � 2cκε

5/2}. Then the nonlin-
ear mapping T (Φ, ·) defined above has a unique fixed point v in B.

Proof. The previous lemma shows that, if ε is chosen small enough, the nonlinear
mapping T (Φ, ·) is a contraction mapping from the ball B of radius 2cκε

5/2 in

C2,α
δ (Mk,ε) into itself. This value follows from the estimate of the norm of T (Φ, 0).

Consequently, thanks to the Schäuder fixed point theorem, T (Φ, ·) has a unique
fixed point v in this ball. �

This argument provides an embedded minimal surface with respect to the metric
ghyp, M

T
k,ε(Φ), which is close to MT

k,ε and has three boundaries. This surface close
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to its upper and lower boundary is a vertical graph over the annulus Brε − Brε/2,
with rε = ε/2, whose parametrization is, respectively, given by

Ut(θ, r) = σt,ε + ε2 ln

(
2r

ε2

)
+Hϕt

(
sε − ln

2r

ε2
, θ

)
+ Vt(θ, r),

Ub(θ, r) = −Ut

(
θ − π

k + 1
, r

)
,

where sε = − ln ε. Near the middle boundary, the surface is a vertical graph whose
parametrization is

Um(θ, r) = H̃ρε,ϕm

(
θ,

ε2

r

)
+ Vm(θ, r).

The boundaries of the surface correspond to r = rε. All the functions Vi, i = t,m,
depend nonlinearly on ε, ϕ.

Lemma 10.5. The function Vi(ε, ϕi), for i = t, b, satisfies

‖Vi(ε, ϕi)(·, rε·)‖C2,α(B̄1−B1/2)
� cε2

and
(56)

‖Vi(ε, ϕi,2)(·, rε·)− Vi(ε, ϕi,1)(·, rε·)‖C2,α(B̄1−B1/2)
� cε3/2−δ‖ϕi,2 − ϕi,1‖C2,α(S1).

The function Vm(ε, ϕ) satisfies ‖Vm(ε, ϕ)(·, ρε·)‖C2,α(B̄1−B1/2)
� cε2 and

(57)

‖Vm(ε, ϕm,2)(·, ρε·)−Vm(ε, ϕm,1)(·, ρε·)‖C2,α(B̄1−B1/2)
� cε3/2‖ϕm,2−ϕm,1‖C2,α(S1).

Proof. We start by observing that the functions Vt, Vb, Vm are the restrictions to
Et,ε, Eb,ε, Em,ε of a fixed point for the operator T (Φ, ·). Then the second estimate
follows from

‖Vi(ε, ϕi,2)(·, ·)− Vi(ε, ϕi,2)(·, ·)‖C2,α(B̄rε−Brε/2)

� ceδsε‖(T (Φ2, Vi)− T (Φ1, Vi)) ◦Xi,ε‖C2,α
δ (Ωi×S1),

for i = t, b, with Ωt = [s0, sε] and Ωb = [−sε,−s0]. The third estimate comes from

‖Vm(ε, ϕm,2)(·, ·)− Vm(ε, ϕm,2)(·, ·)‖C2,α(B̄rε−Brε/2)

� c‖(T (Φ2, Vm)− T (Φ1, Vm)) ◦Xm,ε‖C2,α(S1×[ρε,ρ0]). �

11. The matching of Cauchy data

In this section we will complete the proof of Theorem 1.1.
Using the result of section 7, we obtain two minimal surfaces that are perturba-

tions of two parts of the catenoid defined in M
2 × R. The first surface, which we

denote by St,dt
(ϕt), after a translation by dt along the x3-axis, can be parameterized

in B2rε −Brε as the vertical graph of

Ūt(θ, r) = ε2 ln

(
2r

ε2

)
+ dt +Hrε,ϕt

(θ, r) +OC2,α
b

(ε2).

The second surface, which we denote by Sb,db
(ϕb), where ϕb(θ) = ϕt(θ − π

k+1) and
db = −dt, can be parameterized in B2rε −Brε as the vertical graph of

(58) Ūb(θ, r) = −Ūt

(
θ − π

k + 1
, r

)
.
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Using the result of section 5, we can construct the minimal graph Sm(ϕm). It can
be parameterized in B2rε −Brε as the vertical graph of

Ūm(θ, r) = Hrε,ϕm
(θ, r) +OC2,α

b
(ε2).

By the result of section 10, we can obtain a minimal surface MT
k,ε(Ψ), with Ψ =

(ψt, ψb, ψm), where ψb(θ) = ψt(θ − π
k+1), which is close to a truncated and scaled

genus k Costa-Hoffman-Meeks surface and has three boundaries. This surface is
close to its upper and lower boundary, and is a vertical graph over the annulus
Brε −Brε/2, whose parametrization is, respectively, given by

Ut(θ, r) = σt,ε + ε2 ln

(
2r

ε2

)
+Hψt

(
sε − ln

2r

ε2
, θ

)
+OC2,α

b
(ε2),

Ub(θ, r) = −Ut

(
θ − π

k + 1
, r

)
,

(59)

where sε = − ln ε. Near the middle boundary, the surface is a vertical graph whose
parametrization is

Um(θ, r) = H̃ρε,ψm

(
θ,

ε2

r

)
+OC2,α

b
(ε2).

We assume that the parameters and the boundary functions are chosen so that

|ηt|+ |ηb|+ ‖ϕt‖C2,α(S1) + ‖ϕm‖C2,α(S1)

+ ‖ψt‖C2,α(S1) + ‖ψm‖C2,α(S1) � κε2,

where ηt = dt − σt,ε, and the constant κ > 0 is fixed large enough. The functions
OC2,α

b
(ε2) replace the functions Vt, Vm, V̄t, V̄m that appear at the end of sections 5,

7 and 10. They depend nonlinearly on the different parameters and boundary data
functions but they are bounded by a constant (independent of κ and ε) times ε2

in the C2,α
b topology, where partial derivatives are taken with respect to the vector

fields r∂r and ∂θ. It remains to show that, for all ε small enough, it is possible to
choose the parameters and boundary functions in such a way that the surface

St,dt
(ϕt) ∪ Sb,db

(ϕb) ∪ Sm(ϕm) ∪ M̄T
k,ε(Ψ)

is a C1 surface across the boundaries of the different summands. Regularity theory
will then ensure that this surface is in fact smooth and by construction it has the
desired properties. We point out that, in this way, we will have constructed a
one-parameter family of minimal surfaces: each one of them is determined by a
different value of the parameter ε. Therefore this will complete the proof of the
main theorem.

It is necessary to fulfill the following system of equations:

(60)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ut(·, rε) = Ūt(·, rε)
Ub(·, rε) = Ūb(·, rε)
Um(·, rε) = Ūm(·, rε)

∂rUb(·, rε) = ∂rŪb(·, rε)
∂rUt(·, rε) = ∂rŪt(·, rε)
∂rUm(·, rε) = ∂rŪm(·, rε)
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on S1. The first three equations together with the following identities,

Hψt

(
sε − ln(2r)/ε2, θ

)
|r=rε

= ψt(θ), H̃ρε,ψm

(
θ, ε2/r

)
|r=rε

= ψm(θ),

Hrε,ϕt
(θ, r)|r=rε

= ϕt(θ), Hrε,ϕm
(θ, r)|r=rε

= ϕm(θ),

lead to the system

(61)

{
ηt + ϕt − ψt = OC2,α

b
(ε2)

ϕm − ψm = OC2,α
b

(ε2),

where ηt = dt − σt,ε. The relations (58) and (59) allowed us to omit one equation.
The last three equations give the system (we applied Lemmas 12.4 and 12.5)

(62)

{
∂∗
θ (ϕt + ψt) = OC1,α

b
(ε2)

∂∗
θ (ϕm + ψm) = OC1,α

b
(ε2).

Here ∂∗
θ denotes the operator which associates to φ =

∑
i�1 φi cos(iθ) the func-

tion ∂∗
θφ =

∑
i�1 iφi cos(iθ). The functions OCl,α(ε2) in the above expansions de-

pend nonlinearly on the different parameters and boundary data functions, but they
are bounded by a constant (independent of κ and ε) times ε2 in the Cl,α topol-
ogy. Projecting every equation of this system over the L2-orthogonal complement
of Span{1}, we obtain the system

(63)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕt − ψt = OC2,α
b

(ε2)

ϕm − ψm = OC2,α
b

(ε2)

∂∗
θϕt + ∂∗

θψt = OC1,α
b

(ε2)

∂∗
θϕm + ∂∗

θψm = OC1,α
b

(ε2).

Lemma 11.1. The operator h, defined by

C2,α(S1) → C1,α(S1)
ϕ → ∂∗

θϕ,

acting on functions that are orthogonal to the constant function in the L2-sense and
are even, is invertible.

Proof. We observe that if we decompose ϕ =
∑

j�1 ϕj cos(jθ), then

h(ϕ) =
∑
j�1

ϕj cos(jθ),

which is clearly invertible from H1(S1) into L2(S1). Now elliptic regularity theory
implies that this is also the case when this operator is defined between Hölder
spaces. �

Using this result, the system (63) can be rewritten as

(64) (ϕt, ϕm, ψt, ψm) = OC2,α(ε2).

Recall that the right hand side depends nonlinearly on ϕt, ϕb, ψt, ψm and also on
the parameter ηt. We look at this equation as a fixed point problem and fix κ large
enough. Thanks to the estimates (12), (25), (56) with δ ∈ (1, 3/2), and (57), we
can use a fixed point theorem for contraction mappings in the ball of radius κε2 in
(C2,α(S1))4 to obtain, for all ε small enough, a solution (ϕt, ϕm, ψt, ψm) of (64).
Since the right hand side of (64) is continuous with respect to all data, we see that
the fixed point (ϕt, ϕm, ψt, ψm) depends continuously (and in fact smoothly) on
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the parameter ηt. Inserting the found solution into (61) and (62), we see that it
remains to solve an equation that can be rewritten as

(65) ηt = O(ε2),

where this time, the right hand side depends nonlinearly on ηt. Now, provided κ
has been fixed large enough, we can use the Schäuder fixed point theorem in the
ball of radius κε2 in R to solve (65), for all ε small enough. This provides a set of
parameters and boundary data such that (61) and (62) hold. Equivalently we have
proved the existence of a solution of system (60). So the proof of Theorem 1.1 is
complete.

12. Appendix

12.1. Harmonic extension operators. The results contained in this section are
about the existence of some harmonic extension operators. The first one gives the
harmonic extension of a function defined on ∂Br0 to D

2 \Br0 .

Proposition 12.1. There exists an operator

Hr0 : C2,α(S1) −→ C2,α(S1 × [r0, 1]),

such that for every even function ϕ(θ) ∈ C2,α(S1), the function wϕ = Hr0,ϕ solves⎧⎨
⎩

Δ0wϕ = 0 on S1 × [r0, 1]
wϕ = ϕ on S1 × {r0}
wϕ = 0 on S1 × {1}.

Moreover,

(66) ||Hr0,ϕ||C2,α(S1×[r0,1]) � c ||ϕ||C2,α(S1),

for some constant c > 0.

S1× [r0, 1] being a compact domain, the existence of the solution of the Dirichlet
problem above is a classical result; for example, see Theorem 2.14 of [4].

The uniqueness of the solution follows from the maximum principle. To get
the wanted estimate of the norm of the solution, we observe that the maximum
principle also implies that sup |wϕ| � c sup |ϕ| and that we can obtain similar
estimates (involving the derivatives of ϕ) for the norm of the derivatives of wϕ

from their harmonicity. �
Now we give the statement of a result whose proof is contained in [3].

Proposition 12.2. There exists an operator

H : C2,α(S1) −→ C2,α
−2 ([0,+∞)× S1),

such that for all ϕ ∈ C2,α(S1), even functions and orthogonal to ei, i = 0, 1, in the
L2-sense, the function w = Hϕ solves

{
(∂2

s + ∂2
θ )w = 0 in S1 × [0,+∞)

w = ϕ on S1 × {0}.
Moreover

‖Hϕ‖C2,α
−2 (S1×[0,+∞)) � c ‖ϕ‖C2,α(S1),

for some constant c > 0.

The following result gives a harmonic extension of a function on R
2 \Dρ̄.
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Proposition 12.3. There exists an operator

H̃ρ̄ : C2,α(S1) −→ C2,α(S1 × [ρ̄,+∞)),

such that for each even function ϕ(θ) ∈ C2,α(S1), which is L2-orthogonal to the

constant function, then wϕ = H̃ρ̄,ϕ solves
{

Δwϕ = 0 on S1 × [ρ̄,+∞)
wϕ = ϕ on S1 × {ρ̄}.

Moreover,

(67) ||H̃ρ̄,ϕ||C2,α(S1×[ρ̄,+∞)) � c ||ϕ||C2,α(S1),

for some constant c > 0.

Proof. We consider the decomposition of the function ϕ with respect to the basis
{cos(iθ)}, that is,

ϕ =
∞∑
i=1

ϕi cos(iθ).

Then the solution wϕ is given by

wϕ(θ, ρ) =

∞∑
i=1

(
ρ̄

ρ

)i

ϕi cos(iθ).

Since ρ̄
ρ � 1, then

(
ρ̄
ρ

)i

�
(

ρ̄
ρ

)
, we can conclude that |w(θ, ρ)| � c|ϕ(θ)| and

then ||wϕ||C2,α � c||ϕ||C2,α . �

Lemma 12.4. Let u(θ, r) be the harmonic extension defined on S1 × [r0,+∞) of
the even function ϕ =

∑
i�0 ϕi cos(iθ) ∈ C2,α(S1) and such that u(θ, r0) = ϕ(θ).

Then

∂∗
θϕ(θ) = r0∂ru(θ, r)|r=r0 .

Proof. If ϕ(θ) =
∑

i�0 ϕi cos(iθ), then the function u is given by

u(θ, r) =
∑
i�0

ϕi

(
r

r0

)i

cos(iθ).

Then

∂ru(θ, r) =
∑
i�1

ϕi

(
r

r0

)i
i cos(iθ)

r
.

Consequently

∂∗
θϕ(θ) = r0∂ru(θ, r)|r=r0 . �

Lemma 12.5. Let u(θ, r) be the harmonic extension defined on S1 × [0, r0] of the
even function ϕ ∈ C2,α(S1) and such that u(θ, r0) = ϕ(θ). Then

∂∗
θϕ(θ) = −r0∂ru(θ, r)|r=r0.

Proof. If ϕ(θ) =
∑

i�0 ϕi cos(iθ), then the function u is given by

u(θ, r) =
∑
i�0

ϕi

(r0
r

)i

cos(iθ).
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Then

∂ru(θ, r) = −
∑
i�1

ϕi

(r0
r

)i i cos(iθ)

r
.

Consequently

∂θϕ
∗(θ) = −r0∂ru(θ, r)|r=r0.

�

12.2. The proof of Proposition 4.2. We start by giving the statement of a
classical result about the injectivity of Δ0.

Lemma 12.6. Given 0 < r0 < r1 � 1, let w be a solution of Δ0w = 0 on
S1 × [r0, r1] such that w(· , r0) = w(· , r1) = 0. Then w = 0.

As a consequence of Lemma 12.6, the operator Δ0 is injective. Hence, the
Fredholm alternative assures that there exists a unique w ∈ C2,α(S1 × [r0, 1]), with
w(θ, r) satisfying:

(68)

{
Δ0 w = f on S1 × [r0, 1]
w(·, r0) = w(·, 1) = 0.

We want to prove the following assertion.

Assertion 12.7. For every 0 < r0 < 1, f ∈ C0,α(S1 × [r0, 1]) and w ∈ C2,α(S1 ×
[r0, 1]) satisfying (68) there exists a constant c such that

‖w‖C0,α(S1×[r0,1]) � c ‖f‖C0,α(S1×[r0,1]).

We suppose by contradiction that the assertion 12.7 is false; that is, there does
not exist a universal constant for which the previous estimate holds. Then, for
each n ∈ N, there exist r0,n and fn, wn satisfying (68) (with r0,n, fn, wn instead of
r0, f, w) such that

sup
S1×[r0,n,1]

|fn| = 1 and An := sup
S1×[r0,n,1]

|wn| → +∞ as n → ∞.

Since S1 × [r0,n, 1] is a compact set, An is achieved at a point (θn, rn) ∈ S1 ×
[r0,n, 1].

The sequence of sets In = [
r0,n
rn

, 1
rn
] converges (up to some subsequence) to a

set that we denote by I∞. We will show that it is nonempty and contains 1. If
r0,n < r′ < r′′ < 1, elliptic estimates allow us to conclude that

sup
S1×[r0,n,r′]

|∇wn| � c( sup
S1×[r0,n,r′′]

|fn|+ sup
S1×[r0,n,r′′]

|wn|) � c(1 +An),

where c is a constant independent of n.
Then, if n → +∞,

r0,n
rn

→ R1 < 1 and 1
rn

→ R2 > 1. The fact that R1 < 1 follows
from the above estimate for the gradient of wn near r = r0,n. That implies that the
supremum An cannot be achieved at a point which is too close to r0,n, that is, the
point where wn vanishes. In other terms, the quotient

r0,n
rn

remains bounded away
from 1. Using similar arguments it is possible to show that ∇wn is bounded near
1 and consequently 1

rn
also remains bounded away from 1. Then we can conclude

that I∞ is not empty. We set I∞ = [R1, R2], where 0 � R1 < 1 < R2 < +∞ ∈ R.
We define

w̃n(θ, r) :=
1

An
wn(θ, rrn) and f̃n(θ, r) :=

1

An
fn(θ, rrn),
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for all (θ, r) ∈ S1 × In, with In = [r0,n/rn, 1/rn]. These functions satisfy r2nΔw̃n =

f̃n.
From the definition of w̃n, we obtain that

∇w̃n =
1

An
∇wn(θ, rrn).

Then

|∇w̃n| � c
1 +An

An
< 2c.

Since the sequences (w̃n)n and (∇w̃n)n are uniformly bounded, the Ascoli-Arzelà
theorem assures that a subsequence of (w̃n)n converges on compact sets of S1× I∞
to a nonzero function w∞ that vanishes on S1×∂I∞. The function w∞ inherits the
properties of w̃n. In particular,

(69) sup
S1×I∞

|w∞| = 1.

In the same way it’s possible to prove that a subsequence of (f̃n)n converges on
compact sets of S1 × I∞ to the function f∞ ≡ 0 since, if n → ∞,

sup
S1×In

|f̃n| → 0.

Then the limit function w∞ must satisfy the differential equation

Δ0w∞ = 0

on S1×I∞ with null boundary conditions on ∂I∞. So we can conclude that ∀r ∈ I∞,
w∞(θ, r) = 0. This function does not satisfy (69), a contradiction. This proves the
assertion 12.7.

The elliptic estimate,

|∇w| � c

(
sup

S1×[r0,1]

|f |+ sup
S1×[r0,1]

|w|
)
,

allows us to get a uniform estimate of ∇w. This proves the existence of a solution
of Δ0w = f defined on S1 × [r0, 1] for which

‖w‖C0,α(S1×[r0,1]) � c ‖f‖C0,α(S1×[r0,1]).

Now it is sufficient again to use elliptic estimates to obtain the estimates for the
derivatives.

12.3. Minimal graphs in (D2 × R, ghyp). In this section, following [17], we will
find the condition to be satisfied such that the graph Σ of a function defined on D

2 is

minimal with respect to the metric ghyp =
dx2

1+dx2
2

F +dx2
3, where F = (1−x2

1−x2
2)

2.

We assume that the immersion of Σ in D
2 × R is given by

(x1, x2) → (x1, x2, u(x1, x2)).

The Christoffel symbols, Γk
ij , associated to ghyp all vanish except

Γ1
11 = Γ2

21 = Γ2
12 = −Γ1

22 =
2x1√
F
,

Γ1
12 = Γ2

22 = Γ1
21 = −Γ2

11 =
2x2√
F
.
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Let e1, e2, e3 be the canonical basis of R3. Then ε1 =
√
Fe1, ε2 =

√
Fe2, ε3 = e3 is

an orthonormal basis for M2 × R. The coordinate vector fields on Σ are

X1 =
ε1√
F
+u′

x1
ε3, X2 =

ε2√
F
+u′

x2
ε3, N =

1

W

(
−u′

x1

√
Fε1 − u′

x2

√
Fε2 + ε3

)
,

with W =
√
1 + F |∇u|2. The induced metric on Σ is defined by

g11 =
1

F
+ (u′

x1
)2, g22 =

1

F
+ (u′

x2
)2, g12 = u′′

x1x2
.

If ∇̄ denotes the Riemannian connection of the metric ghyp, then the coefficients of
the second fundamental form are

b11 = 〈∇X1
X1, N〉 = 1

W

(
− 2x1√

F
u′
x1

+
2x2√
F
u′
x2

+ u′′
x1x1

ε3

)
,

b22 = 〈∇X2
X2, N〉 = 1

W

(
2x1√
F
u′
x1

− 2x2√
F
u′
x2

+ u′′
x2x2

ε3

)
,

b12 = 〈∇X1
X2, N〉 = 1

W

(
− 2x2√

F
u′
x1

− 2x1√
F
u′
x2

+ u′′
x1x2

ε3

)
,

where we used the following identities:

∇X1
X1 = 2x1ε1 − 2x2ε2 + u′′

x1x1
ε3, ∇X2

X2 = −2x1ε1 + 2x2ε2 + u′′
x2x2

ε3,

∇X1
X2 = 2x2ε1 + 2x1ε2 + u′′

x1x2
ε3.

The mean curvature of Σ with respect to ghyp is given by

H(Σ) =
1

2

b11g22 + b22g11 − 2b12g12
g11g22 − g212

.

Using the expressions of the coefficients of the first and second fundamental form,
we find that

H(Σ) =
F

2
div

(
∇u√

1 + F |∇u|2

)
.

12.4. Minimal surfaces of rotation in (D2 ×R, ghyp). In this section, following
[17], we will find the condition to be satisfied such that a surface of revolution

Σ in D
2 × R is minimal with respect to the metric ghyp =

dx2
1+dx2

2

F + dx2
3, where

F = (1− x2
1 − x2

2)
2. We will assume that the immersion of Σ in D

2 ×R is given, in
terms of the cylindrical coordinates (r, θ, z), by:

(θ, z) → (r(z), θ, z),

where r(z) is a function of z.
It is convenient to express the metric ghyp in terms of the new coordinates. We

find

ghyp =
dr2 + r2dθ2

F
+ dz2,

with F = (1 − r2)2. The Christoffel symbols, Γk
ij , associated to ghyp all vanish

except

Γ1
11 =

2r

1− r2
, Γ1

22 = −r(1 + r2)

1− r2
, Γ2

12 = Γ2
21 =

1 + r2

r(1− r2)
.
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Let e1, e2, e3 be the canonical basis of R3. Then the coordinate vector fields on Σ
are

X1 = r′(z)e1 + e3 X2 = e2, N =
−e1 + r′(z)e3

R
,

with R =
√

1
F + (r′(z))2. The induced metric on Σ is defined by

g11 =
(r′(z))2

F
+ 1, g22 =

r2(z)

F
, g12 = 0.

If ∇̄ denotes the Riemannian connection of the metric ghyp, then the coefficients of
the second fundamental form are

b11 = 〈∇̄X1
X1, N〉 = − 1

RF

(
2r(r′)2

1− r2
+ r′′

)
,

b22 = 〈∇̄X2
X2, N〉 = 1

RF

(
r(1 + r2)

1− r2

)
,

b12 = 〈∇̄X1
X2, N〉 = 0,

where we used the following identities:

∇̄X1
X1 =

(
2r(r′)2

1− r2
+ r′′

)
e1, ∇̄X2

X2 = −r(1 + r2)

1− r2
e1,

∇̄X1
X2 =

r′(1 + r2)

r(1− r2)
e2.

The mean curvature of Σ with respect to ghyp is given by

H(Σ) =
1

2

b11g22 + b22g11 − 2b12g12
g11g22 − g212

.

Using the expressions of the coefficients of the first and second fundamental form, we
find that H(Σ) = 0 if the function r(z) satisfies the following differential equation:

r(z)r′′(z)− (r′(z))2 − (1− r(z)4) = 0.
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