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ABSTRACT: An automotive vehicle is made up of stiff parts diedible components. This type of structure is characterizethe
fact that it exhibits, in the low-frequency range, not orlg tlassical global elastic modes but also numerous loaatielmodes
which cannot easily be separated from the global elasticasioto solve this difficult problem, a new approach has régcéeen
proposed to construct a reduced-order computational digahmodel. The construction of such a reduced-order coatjoural
model requires to decompose the domain into subdomaindfiehvtheir mean sizes are controlled. Such a decompositicst be
carried out with a general and automatic method which carppéeal for very complex computational model related to ctarp
geometry such as the computational dynamical model of amaative vehicle. In this paper, we propose to use the Fastihitag
Method for the construction of such subdomains. Neversiseli@ order to explain why such a construction has to be padd,
we recall, in a first part, the method to construct the redwareér model. Then, we present the Fast Marching Methodlligjin
we present two applications, one for a simple dynamicaksystnd another one concerning an automotive vehicle.

KEY WORDS: reduced-order model; vibroacoustics; globatgt modes; local elastic modes; Fast Marching Method.

1 INTRODUCTION model. Then, we present the Fast Marching Method (see [2])
) ) ] ] ~which allows a front to be propagated on a complex mesh
This research is performed in the context of the vibroadousgs 5 computational model. We present two applications, one

analysis of automotive vehicles. An automotive vehicle & o 54 simple dynamical system and another one concerning an
up of stiff parts and flexible components. In the low-frequen 5,,tomotive vehicle.

range, this type of structure is characterized by the faat ith

exhibits, not only theT cIaSS|caI_ global elastic modes, bsb a > DESCRIPTION OF THE METHOD

numerous local elastic modes in the same low-frequency.band

The problem is that in such a complex heterogeneous stejctyn this section, we summarize the method introduced in [1].
the global elastic modes cannot clearly be separated frem fthis method allows a basis of the global displacements and a
local elastic modes because there are many small congiifutipasis of the local displacements to be constructed by sptvio

of the local deformations in the deformations of the globgkparated eigenvalue problems. It should be noted that tves
elastic modes and conversely. Since there are local elagfigsis are not made up of the elastic modes. The method is based
modes in the low-frequency band, a part of the mechanigs the construction of a projection operator to reduce thetid
energy is transferred from the global elastic modes to thallo energy while the elastic energy remain exact. This method is
elastic modes which store this energy and then what indutesgpplied on the structural part of the vibroacoustic strregwe
apparent damping at the resonances associated with thal glee interested in.

elastic modes. In order to construct a reduced-order madel f

the low-frequency band, which allows a good approximatibn ¢ 1  Reference reduced model

the global displacements to be predicted and then, if needed

take into account the effects of the local displacementfién tWe are interested in predicting the frequency responsditurs
total response, a new approach [1] has recently been proposé a vibroacoustic damped structure occupying a bounded
This method allows a basis of the global displacements andl@mainQ, in the frequency band of analys# = [nin, Wmax
basis of the local displacements to be calculated by solving with 0 < cwmin. Let U(w) be the complex vector of tha DOF
separated eigenvalue problems, but requires to decompesedf the structural part of the vibroacoustic computationatiel
computational model in subdomains whose sizes are coedrollconstructed by the finite element method. Bl and [K] be

In this paper, we propose to use the Fast Marching Method toe positive-definite symmetrign x m) real mass and stiffness
the construction of such subdomains. Nevertheless, inrordeatrices. The eigenfrequenciesnd the elastic modgsin R™

to explain why such a construction has to be performed, wéthe conservative part of the dynamical computational ehod
recall, in a first part, the method to construct the reducelo of the structure are the solution of the following eigenealu



Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011 2610

problem, which shows thatH$] = [Im] — [HE]. Then, the reduce@n x m)
Kl¢g =AM]¢. (1) mass matri¥M'] is such that
Then an approximation(w) at ordem of U(w) can be written M] = [HT[M][H]]
as
n and the complementafyn x m) mass matriXM€| is such that
Un(@) = Y da(@) by = [®]q(w)., )
=t [M€] = [Hg]" [MI][Hg]

in which q = (qi,...,0n) is the complex vector of then

. . ) Using the properties of the projection operator defined by
generalized coordinates and whébé = [¢, ... ¢ ] is the(m x Eq. (4), it can be shown [1] that
n) real matrix of the elastic modes associated with rhfgst '

eigenvalues. [M€] = [M] — [M]

2.2 Decomposition of the mass matrix. 2.3 Global and local displacements bases

In this section, we introduce a decomposition of the maag proposed in [1], two methods are proposed to calculate the
matrix which is adapted to the calculation of the global #tas global displacements basis and the local displacements bas

modes in the low-frequency band of analysis in which thetgat will be used to reduce the matrix equation.
are also a large number of local elastic modes. The details of

the methodology for the discrete and the continuous cases 2:3.1 Direct method

presented in [1]. In such a method, the basis of the global displacements and
the basis of the local displacements are directly calcdlate
using the decomposition of the mass matfif]. The global
DomainQ is partitioned inth Subdomainﬂf such that, fOl] disp|acements eigenvectomg in RM are solution of the

andkin {1,...,ny}, following generalized eigenvalue problem

2.2.1 Decomposition of domain

" 9 A9
Q= UQ‘JS , QENOE=0. 3) [K]g9 = A9M']¢?. (6)
This generalized eigenvalue problem admits an increasing

The parametes is the characteristic length of the subdomaingequence of % positive eigenvalues & A9 < ... < AS
n )

The choice ofe is related to the smallest "wavelength” of the’ﬂSSOC'a'flEd with the finite family of algebra|cally mdepenti
global elastic modes that we want to extract in presence \§ictors{@?, ..., @3, }. The family {¢f,...,¢5, } is defined as
numerous local modes. The construction of the subdomains e family of the global displacements eigenvectors andethe

presented in Section 3. vectors do generally not belong to the family of the elastic
modes. The local displacements eigenvectpgrsn R™ are
2.2.2 Projection operator solution of the generalized eigenvalue problem
Letu— hf(u) be the linear operator defined b )
o P Y Klg' =AMy’ ™
{h(u z ]le p(x)u(x)dx, (4) This generalized eigenvalue problem admits an increasing

J - .
sequence of positive eigenvalues<0A; < ... < AL 3ny»

in which x — lge(x) = 1 if x is in Qf and = 0 otherwise. associated with the finite family of vectofg, ..., @ 30, }-

The family {¢}, ..., @}, 3,,} is defined as the family of the

local displacements eigenvectors and do generally notnbelo

to the family of the elastic modes. Matric8d'] and[M€] are

symmetric and positive but are not positive definite (pesiti

hS(u) = u— hl(u). (5) semi-definite matrices). The rank of matri¢®% | and[M¢] are
ny andm-— 3n; respectively.

The local massn; is defined, for allj in {1,...,n3}, by m; =
fQJ@ p(x) dx, wherex — p(X) is the mass density. Let— hS(u)

be the linear operator defined by

Functionhf (u) will also be denoted by and functiorh¢(u) by o
. 2.3.2 Double projection method
u®. We then havel = hi(u) + h¢(u) that is to sayy = u’ + u®.

Let [HZ] be the(mx m) matrix relative to the finite element
discretization of the projection operatidy defined by Eq. (4).
Therefore, the finite element discretizatitrof u can be written

This method is less intrusive with respect to the commercial
software and less time-consuming than the direct method. Th
solutions of the generalized eigenvalue problems defined by

asU = U + US, in which Egs. (6) and (7) are then written, fosufficiently large, as
~ ~1
U = [HJU =0 , o=, (8)
and in which [®] defined in Eq. (2) is the matrix of the elastic modes.

U°=HU=U-T1" , The global displacements eigenvectors are the solutiotiseof
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generalized eigenvalue problem Eq. (12) is discretized using apwind approximation (forward
finite difference) for the gradient (see [2]). For the paréc

(9) case of a rectangular regular finite element mesh for whieh th
mesh size i and for which the nodes arg;j, we have to find

in which [M'] = [®F]T [M][®%] and [K] = [®]T [K][®], and U;; =U(x;;) as the solution of the following equation
where the{mx n) real matrix[®§] is such thafdf] = [Hf] [P].
The local displacements eigenvectors are the solutionbeof t
generalized eigenvalue problem

[Kl¢’ =29 [M"] ¢°,

{max(Uij —Ui_1j,Uij —Ui11},0)}?
+  {max(Uij —Ujj1,Uij —Ui j41,0)}2 = h?RZ.
. o 13
Klo =AM , (10) "
in which [M¢] = [@¢]T [M][®¢] and where themx n) real

matrix [PE] is such thafdg] = [HS] [P] = [P] — [PL].

Since the information in Eq. (13) propagates in a unique way,
this equation allows the front to be propagated from theistar
point. The use of the worBast in FMM is due to the fact that
the nodes associated with; and identified by Eq. (13) belong
24 Mean reduced mode to a small domain Whi_ch is_called the Narrow Band (NB).

] ] g g In the FMM, the algorithm introduces three groups of nodes:
Itis proven in [1] that the family{¢....,¢8, . @1..... @ 30,} (1) alive nodes for which the value &fj; is fixed and does not
is a basis oR™. The mean reduced matrix model is obtained bé‘hange

. . . g L

the projection ofU(w) on the family{¢Y,..., @3 ,¢1,..., 9, } (2) trial nodes for which the value df;; is given but has to be

of real vectors associated with thgfirst global displacements updated until they becomaive and these nodes constitute the
eigenvectors such that, < 3n; < mand with then, first local  Narrow Band

displacements eigenvectors such that m. It should be noted (3) far nodes which have not been reached by the front and
that, if the double projection method is used, then we mugt haperefore are such thiskj = +co.

ng <n, ng<nandng < nin whichn =ng+n,. Then, the

approximatiorlny n, (w) of U(w) at order(ng,ny) is written as  The front is propagated using the following algorithm:
Initialization

« Choose a starting nodg rewritten asxg g, which isalive and
setUgo=U (X00) =0.

« The 4 neighboring nodes &b o becometrial nodes and the

3 CONSTRUCTION OF THE SUBDOMAINS associated value &f is set tohF;.

For the computational model of a complex structure such 'aéA" the_othe_r nodes artar nodes with associated value of

an automotive vehicle, the decomposition of the domain ts n%qual to infinity.

easy to be carried out because the geometry is very comp . .

and curved. The method we propose for this decomposition’i?earCh amonyial nodes, the node; with the smallest value
based on the Fast Marching Methods (FMM) introduced in [ﬂ u. . .

which gives a way to propagate a front (the notion of front wif Removex;; f_rom trl_al nodes and ads; to alive ”°d¢s- )
be defined below) on connected parts from a starting point. H:pr each paghb_ormg nodgxnj, there are t.WO pos§|ble cases.
this section, the FMM is summarized and then we explain how if the neighboring node is@r node, add it to thérialnodes

to construct the subdomains using the FMM. and its value oU is set toU;; + hf;. . .
— if the neighboring node is &ial node, its value otJ is

updated solving Eq. (13).
The Loop is repeated until all the node afeve.

Ng

Ung,né(w) = z

a=1

%
G (@) ed+ 5 dg(@)@p.  (11)
=1

3.1 Presentation of the Fast Marching Method (FMM)

Let x be the generic point ifR? belonging to the complex
geometryQ. LetXxp be a fixed point belonging t@. LetU (x)

be a geodesic distance adapted to the geometry, betwaed For triangular meshes, the algorithm described above is

Xo. It should be noted that for a simple 3D volume domain, such .
a geodesic distance would be the Euclidean distincexo|| unchanged but Eq. (13) must be adapted. We consider the case

. : : . represented in Fig. 2 for which the valuge= U (x;) of the node
in wh!ch I|| is the Euclidean norm. The front related_ xXe x. has to be updated using the valiig— U (xa) of the nodexa
is defined as the subset of all tkesuch thatJ (x) has a fixed and the valuel, — U (xy) of the nodex, which arealive nodes
value. The FMM [2] allows the front to be propagated fro b= = \7b b '

starting pointxg. We then have to calculaté(x) verifying the We then obtain the following equation [2]
following nonlinear Eikonal equation (a'[Qla) U2+ (2a"[Q]b) Ue + (bT[Qb) =F2 |

in whicha= (1,1), b = (—Ua, —Up) and where the matrijQ]
is written as/Q] = [P][P]" in which the matrixP] is defined by

3.2 Extensionto atriangular mesh

(14)

DU =F(x) , xeQ (12)

with O the gradient with respect tq in which F (x) is a given

arbitrary positive-valued function and for which the boand
condition is written adJ (x) = 0 onlp which is a curved line or a
surface containingg. Introducing the finite element meshQf

Xe—Xa Xc—Xp
Ye—Ya Ye—Yo
Z—7 Z—2

; (15)

[P][
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e Front of alive nodes

+—4 ll
441
)
LA B T
Example with a front (T=0) L
© The Marrow Band
P!
i
r

Amoang trial nodes, the node with the
smallest value U is removed from frial
nodes and added to alive nodes.

Figure 1. Diagram of the Fast Marching Method

Xq

Xy

« Set the centelxao as the starting point of the FMM and
propagate the front.

« Stop the front when the value &f of the lastalive node is
greater thamepsilon. '

« Set this lasalive node as the centezoé,f,l and set all thelive
nodes as ineligible nodes to be a center.

This algorithm allows a homogeneous spatial repartitiothef
centers to be constructed.

(iil)Computation of the subdomains .
To construct the subdomai@q‘ using a set of centev%p, we
simultaneously propagate a front starting from each cemntgi
all the nodes becomalive nodes with respect to one of the
front. Then, the boundaries of the subdomains correspond to
the meeting lines of the fronts.

4 APPLICATION

In this section, we present two applications of the methogipl
presented in the previous sections. The first one is a simple
structure which has previously been presented in [1] and the
second one is relative to a real automotive model.

4.1 Firstapplication

The system is made up of 12 flexible panels and a stiff stractur
(see Fig. 3). For the flexible parts, all panels are rectargul
4 mx 4 m, homogeneous, isotropic, with constant thickness
0.002 m, mass density equal to.&kg/m* and Poisson ratio
equal to 029. Moreover, the Young modulus is different for all
the panels. The stiff structure is homogeneous, isotrapiit,
constant thickness.017 m, mass density equal to.®kg/m?®,
Poisson ratio equal to.29 and the Young modulus is.2x
10'2 N/m?. The frequency band of analysis Bs=]0,11]Hz
The structure has 13 014 DOF.

Figure 2. Triangular mesh (with acute angle) around nqde

in which (Xa,Ya,Za), (Xp,Yb,20) and (Xc,Yc,Z) are the coordi-
nates of pointXa, X, andxc. It can be shown [2] that Eq. 14
admits two positive solutions if the angtgxcXp is acute. If the
mesh contains obtuse angles, then the method has to be éddapte
using the unfolding step presented in [3].

3.3 Construction of the subdomains

The subdomain@‘jE of Q are constructed using the FMM. This
construction has two steps. The first one consists in finding
the centers of the subdomains. The second one consists in
generating the subdomains using these centers as stastirtg.p

(i) Computation of the subdomains centers
The algorithm is the following:

Flexible panne!

Pob
2
Pobﬁ

Pexc

y &
Stiff parts

Figure 3. The dynamical system

4.1.1 Decompostion of the domain

Initialization The FMM method presented in Section 3 is applied to the mesh

« Choose a value for parameter
« Choose a first centogj,.
Loop

of the structure witte = 3 m. The centers of the subdomains are
represented in Fig. 4 and the subdomains obtained from these
centers are represented in Fig. 5.
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Mode 1 - 1.6722 Hz

Figure 4. Centers of the subdomains

-4 10

Figure 6. First elastic mode (top) and second elastic mode
(down).

Figure 5. Subdomains

4.1.2 Elastic modes, global and local displacements egenv

tors
calculated at two observation points, the point Rologated

In a first step, the elastic modes are calculated with theefinjt, ihe siiff part at the node whose coordinates @t,0,7)
element model. There are 86 eigenfrequencies in the fréJue,y the point Pobslocated in the flexible part at the node
band of analysisB and n = 120 eigenfrequencies in the,ynose coordinates ar@0,0,10) (see Fig. 3). The response is
frequency band0,132] Hz The first elastic mode, and the 50 ated for different projections associated with tieecent
second elastic modg, are displayed in Fig. 6 which shows thay,5es: for the elastic modes+ 120), for global displacements
@, is a local elastic mode whilg, is a global elastic mode with eigenvectors iy = 8 and n, = 0), for local displacements
an important local displacement. In a second step, the glog?genvectorsrb — 0 andn, = 112) and finally, for global and
and local displacements eigenvectors are constructed tsin |44 displacements eigenvectors & 8 andn, = 112). The
double projection method. In frequency bg0d13.2| Hz there  ,qqyji in log scale of the responses are displayed in Fig. 8.
areng = 8 global displacements eigenvectors ape- 112 ocal ¢ ¢4 he seen that the responses calculated using global and
d!spIacementsgelg%nvectors. The first two global displa&reen |4 gisplacements eigenvectors are exactly the samettaat
eigenvectorsg;, @, and the first two local displacement§egponse calculated using the elastic modes. For point;Pobs
eigenvectorsp) andg, are shown in Fig. 7. in the stiff part, the contribution of the global displacertse
eigenvectors is preponderant in the very low-frequencydban
but the contribution of the local displacements eigenvacto
For all w € B, the structure is subjected to an external poiftecomes not negligible in the high part of the low-frequency
load equal to IN applied to the node Pexc whose coordinatdsand. For point Pobsin the flexible part, the contribution of
are (10,0,7) located in the stiff part. The mean dampinghe local displacements eigenvectors is important exaeghe
matrix is constructed using a Rayleigh model correspontiingfirst resonance corresponding to the first global displacgsne

a damping raté€ = 0.04 for the eigenfrequencfy = 1.67 Hz eigenvectors (because the flexible plates follow the séft jm

and for the eigenfrequencift,o = 13.2 Hz. The response is its displacement).

4.2 Frequency responses functions
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First global displacements eigenvector - 1.8325 Hz

-04 -10

-4 -10

Figure 7. First global displacements eigenvector (top)fastl
local displacements eigenvector (bottom).

4.3 Application of the FMM to a complex geometry of an
automotive vehicle

The FMM is carried out using the computational model (Finite
Element Model) of the structure of an automotive vehiclectSu

a FE model has 250 000 nodes and contains various types o
finite elements such as volume finite elements, surface finite
elements and beam elements (see Fig.9). The subdomain:
obtained using FMM method are represented on Fig. 10.

5 CONCLUSION

Figure 8.

CTRIA3 Element Geometry

2614

10°

response

10°

=
oS
<y

response
=
<

=
S
o

-10
107,

2 4 8 10 12

6
frequency
Modulus in log scale of the frequency response
function for Pobsg (top) and Pobs(down). Comparisons
between different projection bases: elastic modes (solid
thick line), global displacements eigenvectors only (rdixe
line), local displacements eigenvectors only (dashed,line
global and local displacements eigenvectors (solid thia li
superimposed to the solid thick line).

CBUSH Element

CQUAD4 Element Geometry RBE2 Rigld Body Element

In this paper, we have presented the use of the Fast Marchingigure 9. Diagram of the different types of finite elements

Method adapted to complex geometry in order to construct
the computational model subdomains which are required

to implement a new methodology allowing a reduced-order

computational dynamical model to be constructed in the
low-frequency domain when such a low-frequency domain
simultaneously contains global and local elastic modeshvhi
cannot easily be separated with usual methods.
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