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1Université Paris-Est, Laboratoire Modélisation et Simulation Multi-Echelle, MSME UMR 8208 CNRS, 5 Boulevard Descartes,

77454 Marne-la Valle, France
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ABSTRACT: An automotive vehicle is made up of stiff parts andflexible components. This type of structure is characterized by the
fact that it exhibits, in the low-frequency range, not only the classical global elastic modes but also numerous local elastic modes
which cannot easily be separated from the global elastic modes. To solve this difficult problem, a new approach has recently been
proposed to construct a reduced-order computational dynamical model. The construction of such a reduced-order computational
model requires to decompose the domain into subdomains for which their mean sizes are controlled. Such a decomposition must be
carried out with a general and automatic method which can be applied for very complex computational model related to complex
geometry such as the computational dynamical model of an automotive vehicle. In this paper, we propose to use the Fast Marching
Method for the construction of such subdomains. Nevertheless, in order to explain why such a construction has to be performed,
we recall, in a first part, the method to construct the reduced-order model. Then, we present the Fast Marching Method. Finally,
we present two applications, one for a simple dynamical system and another one concerning an automotive vehicle.

KEY WORDS: reduced-order model; vibroacoustics; global elastic modes; local elastic modes; Fast Marching Method.

1 INTRODUCTION

This research is performed in the context of the vibroacoustic
analysis of automotive vehicles. An automotive vehicle is made
up of stiff parts and flexible components. In the low-frequency
range, this type of structure is characterized by the fact that it
exhibits, not only the classical global elastic modes, but also
numerous local elastic modes in the same low-frequency band.
The problem is that in such a complex heterogeneous structure,
the global elastic modes cannot clearly be separated from the
local elastic modes because there are many small contributions
of the local deformations in the deformations of the global
elastic modes and conversely. Since there are local elastic
modes in the low-frequency band, a part of the mechanical
energy is transferred from the global elastic modes to the local
elastic modes which store this energy and then what induces an
apparent damping at the resonances associated with the global
elastic modes. In order to construct a reduced-order model for
the low-frequency band, which allows a good approximation of
the global displacements to be predicted and then, if needed, to
take into account the effects of the local displacements in the
total response, a new approach [1] has recently been proposed.
This method allows a basis of the global displacements and a
basis of the local displacements to be calculated by solvingtwo
separated eigenvalue problems, but requires to decompose the
computational model in subdomains whose sizes are controlled.
In this paper, we propose to use the Fast Marching Method for
the construction of such subdomains. Nevertheless, in order
to explain why such a construction has to be performed, we
recall, in a first part, the method to construct the reduced-order

model. Then, we present the Fast Marching Method (see [2])
which allows a front to be propagated on a complex mesh
of a computational model. We present two applications, one
for a simple dynamical system and another one concerning an
automotive vehicle.

2 DESCRIPTION OF THE METHOD

In this section, we summarize the method introduced in [1].
This method allows a basis of the global displacements and a
basis of the local displacements to be constructed by solving two
separated eigenvalue problems. It should be noted that these two
basis are not made up of the elastic modes. The method is based
on the construction of a projection operator to reduce the kinetic
energy while the elastic energy remain exact. This method is
applied on the structural part of the vibroacoustic structures we
are interested in.

2.1 Reference reduced model

We are interested in predicting the frequency response functions
of a vibroacoustic damped structure occupying a bounded
domainΩ, in the frequency band of analysisB = [ωmin,ωmax]
with 0< ωmin. Let U(ω) be the complex vector of them DOF
of the structural part of the vibroacoustic computational model
constructed by the finite element method. Let[M] and [K] be
the positive-definite symmetric(m×m) real mass and stiffness
matrices. The eigenfrequenciesλ and the elastic modesϕ in Rm

of the conservative part of the dynamical computational model
of the structure are the solution of the following eigenvalue

Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011
Leuven, Belgium, 4-6 July 2011
G. De Roeck, G. Degrande, G. Lombaert, G. Müller (eds.)
ISBN 978-90-760-1931-4

2609



problem,
[K]ϕ = λ [M]ϕ . (1)

Then an approximationUn(ω) at ordern of U(ω) can be written

as

Un(ω) =
n

∑
α=1

qα(ω)ϕα = [Φ]q(ω) , (2)

in which q = (q1, . . . ,qn) is the complex vector of then

generalized coordinates and where[Φ] = [ϕ1 . . .ϕn] is the(m×
n) real matrix of the elastic modes associated with then first
eigenvalues.

2.2 Decomposition of the mass matrix.

In this section, we introduce a decomposition of the mass
matrix which is adapted to the calculation of the global elastic
modes in the low-frequency band of analysis in which there
are also a large number of local elastic modes. The details of
the methodology for the discrete and the continuous cases are
presented in [1].

2.2.1 Decomposition of domainΩ

DomainΩ is partitioned intonJ subdomainsΩε
j such that, forj

andk in {1, . . . ,nJ},

Ω =
nJ⋃

j=1

Ωε
j , Ωε

j ∩Ωε
k = /0. (3)

The parameterε is the characteristic length of the subdomains.

The choice ofε is related to the smallest ”wavelength” of the
global elastic modes that we want to extract in presence of
numerous local modes. The construction of the subdomains are
presented in Section 3.

2.2.2 Projection operator

Let u 7→ hr
ε(u) be the linear operator defined by

{hr
ε(u)}(x) =

nJ

∑
j=1

1lΩε
j
(x)

1
m j

∫

Ωε
j

ρ(x)u(x)dx , (4)

in which x 7→ 1lΩε
j
(x) = 1 if x is in Ωε

j and = 0 otherwise.

The local massm j is defined, for allj in {1, . . . ,nJ}, by m j =∫
Ωε

j
ρ(x)dx, wherex 7→ ρ(x) is the mass density. Letu 7→ hc

ε(u)

be the linear operator defined by

hc
ε(u) = u−hr

ε(u) . (5)

Functionhr
ε(u) will also be denoted byur and functionhc

ε(u) by

uc. We then haveu = hr
ε(u)+hc

ε(u) that is to say,u = ur +uc.
Let [Hr

ε ] be the(m × m) matrix relative to the finite element
discretization of the projection operatorhr

ε defined by Eq. (4).
Therefore, the finite element discretizationU of u can be written
asU= Ur +Uc, in which

Ur = [Hr
ε ]U

and
Uc = [Hc

ε ]U= U−Ur ,

which shows that[Hc
ε ] = [Im]− [Hr

ε ]. Then, the reduced(m×m)
mass matrix[Mr] is such that

[Mr] = [Hr
ε ]

T [M][Hr
ε ] ,

and the complementary(m×m) mass matrix[Mc] is such that

[Mc] = [Hc
ε ]

T [M][Hc
ε ] .

Using the properties of the projection operator defined by
Eq. (4), it can be shown [1] that

[Mc] = [M]− [Mr] .

2.3 Global and local displacements bases

As proposed in [1], two methods are proposed to calculate the
global displacements basis and the local displacements basis
that will be used to reduce the matrix equation.

2.3.1 Direct method

In such a method, the basis of the global displacements and
the basis of the local displacements are directly calculated
using the decomposition of the mass matrix[M]. The global
displacements eigenvectorsφ g in Rm are solution of the
following generalized eigenvalue problem

[K]φg = λ g[Mr]φg . (6)

This generalized eigenvalue problem admits an increasing

sequence of 3nJ positive eigenvalues 0< λ g
1 ≤ . . . ≤ λ g

3nJ
,

associated with the finite family of algebraically independent
vectors{φg

1, . . . ,φ
g
3nJ

}. The family{φg
1, . . . ,φ

g
3nJ

} is defined as
the family of the global displacements eigenvectors and these
vectors do generally not belong to the family of the elastic
modes. The local displacements eigenvectorsφ ℓ in Rm are
solution of the generalized eigenvalue problem

[K]φ ℓ = λ ℓ[Mc]φ ℓ . (7)

This generalized eigenvalue problem admits an increasing

sequence of positive eigenvalues 0< λ ℓ
1 ≤ . . . ≤ λ ℓ

m−3nJ
,

associated with the finite family of vectors{φ ℓ
1, . . . ,φ ℓ

m−3nJ
}.

The family {φ ℓ
1, . . . ,φ ℓ

m−3nJ
} is defined as the family of the

local displacements eigenvectors and do generally not belong
to the family of the elastic modes. Matrices[Mr] and[Mc] are
symmetric and positive but are not positive definite (positive
semi-definite matrices). The rank of matrices[Mr] and[Mc] are
nJ andm−3nJ respectively.

2.3.2 Double projection method

This method is less intrusive with respect to the commercial
software and less time-consuming than the direct method. The
solutions of the generalized eigenvalue problems defined by
Eqs. (6) and (7) are then written, forn sufficiently large, as

φg = [Φ] φ̃
g

, φ ℓ = [Φ] φ̃
ℓ
, (8)

in which [Φ] defined in Eq. (2) is the matrix of the elastic modes.
The global displacements eigenvectors are the solutions ofthe
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generalized eigenvalue problem

[K̃] φ̃
g
= λ g [M̃r] φ̃

g
, (9)

in which [M̃r] = [Φr
ε ]

T [M] [Φr
ε ] and [K̃] = [Φ]T [K] [Φ], and

where the(m×n) real matrix[Φr
ε ] is such that[Φr

ε ] = [Hr
ε ] [Φ].

The local displacements eigenvectors are the solutions of the
generalized eigenvalue problem

[K̃] φ̃
ℓ
= λ ℓ[M̃c] φ̃

ℓ
, (10)

in which [M̃c] = [Φc
ε ]

T [M] [Φc
ε ] and where the(m × n) real

matrix [Φc
ε ] is such that[Φc

ε ] = [Hc
ε ] [Φ] = [Φ]− [Φr

ε ].

2.4 Mean reduced model

It is proven in [1] that the family{φg
1, . . . ,φ

g
3nJ

,φ ℓ
1, . . . ,φ ℓ

m−3nJ
}

is a basis ofRm. The mean reduced matrix model is obtained by
the projection ofU(ω) on the family{φg

1, . . . ,φ
g
ng
,φ ℓ

1, . . . ,φ
ℓ
nℓ
}

of real vectors associated with theng first global displacements
eigenvectors such thatng ≤ 3nJ ≤ m and with thenℓ first local
displacements eigenvectors such thatnℓ ≤ m. It should be noted
that, if the double projection method is used, then we must have
ng ≤ n, nℓ ≤ n and nt ≤ n in which nt = ng + nℓ. Then, the
approximationUng,nℓ(ω) of U(ω) at order(ng,nℓ) is written as

Ung,nℓ(ω) =
ng

∑
α=1

qg
α(ω)φ g

α +
nℓ

∑
β=1

qℓβ (ω)φ ℓ
β . (11)

3 CONSTRUCTION OF THE SUBDOMAINS

For the computational model of a complex structure such as
an automotive vehicle, the decomposition of the domain is not
easy to be carried out because the geometry is very complex
and curved. The method we propose for this decomposition is
based on the Fast Marching Methods (FMM) introduced in [2]
which gives a way to propagate a front (the notion of front will
be defined below) on connected parts from a starting point. In
this section, the FMM is summarized and then we explain how
to construct the subdomains using the FMM.

3.1 Presentation of the Fast Marching Method (FMM)

Let x be the generic point inR3 belonging to the complex
geometryΩ. Let x0 be a fixed point belonging toΩ. Let U(x)
be a geodesic distance adapted to the geometry, betweenx and
x0. It should be noted that for a simple 3D volume domain, such
a geodesic distance would be the Euclidean distance‖x− x0‖
in which ‖.‖ is the Euclidean norm. The front related tox0

is defined as the subset of all thex such thatU(x) has a fixed
value. The FMM [2] allows the front to be propagated from
starting pointx0. We then have to calculateU(x) verifying the
following nonlinear Eikonal equation

‖∇U(x)‖ = F(x) , x ∈ Ω , (12)

with ∇ the gradient with respect tox, in which F(x) is a given
arbitrary positive-valued function and for which the boundary
condition is written asU(x) = 0 onΓ0 which is a curved line or a
surface containingx0. Introducing the finite element mesh ofΩ,

Eq. (12) is discretized using anupwind approximation (forward
finite difference) for the gradient (see [2]). For the particular
case of a rectangular regular finite element mesh for which the
mesh size ish and for which the nodes arexi j, we have to find
Ui j =U(xi j) as the solution of the following equation

{max(Ui j −Ui−1, j,Ui j −Ui+1, j,0)}2

+ {max(Ui j −Ui, j−1,Ui j −Ui, j+1,0)}2 = h2F2
i j .

(13)

Since the information in Eq. (13) propagates in a unique way,
this equation allows the front to be propagated from the starting
point. The use of the wordFast in FMM is due to the fact that
the nodes associated withUi j and identified by Eq. (13) belong
to a small domain which is called the Narrow Band (NB).
In the FMM, the algorithm introduces three groups of nodes:
(1) alive nodes for which the value ofUi j is fixed and does not
change,
(2) trial nodes for which the value ofUi j is given but has to be
updated until they becomealive and these nodes constitute the
Narrow Band,
(3) far nodes which have not been reached by the front and
therefore are such thatUi j =+∞.

The front is propagated using the following algorithm:
Initialization
• Choose a starting nodex0 rewritten asx0,0, which isalive and
setU0,0 =U(x0,0) = 0.
• The 4 neighboring nodes ofx0,0 becometrial nodes and the
associated value ofU is set tohFi j.
• All the other nodes arefar nodes with associated value ofU
equal to infinity.
Loop
• Search amongtrial nodes, the nodexi j with the smallest value
of U .
• Removexi j from trial nodes and addxi j to alive nodes.
• For each neighboring node ofxi j, there are two possible cases:
– if the neighboring node is afar node, add it to thetrialnodes

and its value ofU is set toUi j +hFi j.
– if the neighboring node is atrial node, its value ofU is

updated solving Eq. (13).
The Loop is repeated until all the node arealive.

3.2 Extension to a triangular mesh

For triangular meshes, the algorithm described above is
unchanged but Eq. (13) must be adapted. We consider the case
represented in Fig. 2 for which the valueUc =U(xc) of the node
xc has to be updated using the valueUa =U(xa) of the nodexa

and the valueUb =U(xb) of the nodexb which arealive nodes.
We then obtain the following equation [2]

(
aT [Q]a

)
U2

c +
(
2aT [Q]b

)
Uc +

(
bT [Q]b

)
= F2

c , (14)

in which a= (1,1), b = (−Ua,−Ub) and where the matrix[Q]
is written as[Q] = [P][P]T in which the matrix[P] is defined by

[P] =




xc − xa xc − xb

yc − ya yc − yb

zc − za zc − zb


 , (15)
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Figure 1. Diagram of the Fast Marching Method

Figure 2. Triangular mesh (with acute angle) around nodexc.

in which (xa,ya,za), (xb,yb,zb) and (xc,yc,zc) are the coordi-
nates of pointsxa, xb andxc. It can be shown [2] that Eq. 14
admits two positive solutions if the anglêxaxcxb is acute. If the
mesh contains obtuse angles, then the method has to be adapted
using the unfolding step presented in [3].

3.3 Construction of the subdomains

The subdomainsΩε
j of Ω are constructed using the FMM. This

construction has two steps. The first one consists in finding
the centers of the subdomains. The second one consists in
generating the subdomains using these centers as starting points.

(i) Computation of the subdomains centers
The algorithm is the following:

Initialization

• Choose a value for parameterε.
• Choose a first centrex1

0,0.
Loop

• Set the centerx j
0,0 as the starting point of the FMM and

propagate the front.
• Stop the front when the value ofU of the lastalive node is
greater thanepsilon.
• Set this lastalive node as the centerx j+1

0,0 and set all thealive
nodes as ineligible nodes to be a center.

This algorithm allows a homogeneous spatial repartition ofthe
centers to be constructed.

(ii)Computation of the subdomains
To construct the subdomainsΩε

j using a set of centersx j
0,0, we

simultaneously propagate a front starting from each centeruntil
all the nodes becomealive nodes with respect to one of the
front. Then, the boundaries of the subdomains correspond to
the meeting lines of the fronts.

4 APPLICATION

In this section, we present two applications of the methodology
presented in the previous sections. The first one is a simple
structure which has previously been presented in [1] and the
second one is relative to a real automotive model.

4.1 First application

The system is made up of 12 flexible panels and a stiff structure
(see Fig. 3). For the flexible parts, all panels are rectangular
4 m × 4 m, homogeneous, isotropic, with constant thickness
0.002 m, mass density equal to 7.8 kg/m3 and Poisson ratio
equal to 0.29. Moreover, the Young modulus is different for all
the panels. The stiff structure is homogeneous, isotropic,with
constant thickness 0.017 m, mass density equal to 9.8 kg/m3,
Poisson ratio equal to 0.29 and the Young modulus is 2.1×
1012 N/m2. The frequency band of analysis isB =]0,11]Hz.
The structure has 13 014 DOF.

Pobs
 2

Pobs 1

xy

z

Pexc

Flexible pannels

Stiff parts

Figure 3. The dynamical system

4.1.1 Decompostion of the domain

The FMM method presented in Section 3 is applied to the mesh
of the structure withε = 3 m. The centers of the subdomains are
represented in Fig. 4 and the subdomains obtained from these
centers are represented in Fig. 5.
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Figure 4. Centers of the subdomains

Figure 5. Subdomains

4.1.2 Elastic modes, global and local displacements eigenvec-
tors

In a first step, the elastic modes are calculated with the finite
element model. There are 86 eigenfrequencies in the frequency
band of analysisB and n = 120 eigenfrequencies in the
frequency band]0,13.2] Hz. The first elastic modeφ1 and the
second elastic modeφ 2 are displayed in Fig. 6 which shows that
φ 1 is a local elastic mode whileφ 2 is a global elastic mode with
an important local displacement. In a second step, the global
and local displacements eigenvectors are constructed using the
double projection method. In frequency band]0,13.2] Hz, there
areng = 8 global displacements eigenvectors andnℓ = 112 local
displacements eigenvectors. The first two global displacements
eigenvectorsφg

1, φg
2 and the first two local displacements

eigenvectorsφ l
1 andφ l

2 are shown in Fig. 7.

4.2 Frequency responses functions

For all ω ∈ B, the structure is subjected to an external point
load equal to 1N applied to the node Pexc whose coordinates
are (10,0,7) located in the stiff part. The mean damping
matrix is constructed using a Rayleigh model correspondingto
a damping rateξ = 0.04 for the eigenfrequencyf1 = 1.67 Hz
and for the eigenfrequencyf120 = 13.2 Hz. The response is
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Figure 6. First elastic mode (top) and second elastic mode
(down).

calculated at two observation points, the point Pobs1 located
in the stiff part at the node whose coordinates are(19,0,7)
and the point Pobs2 located in the flexible part at the node
whose coordinates are(10,0,10) (see Fig. 3). The response is
calculated for different projections associated with the different
bases: for the elastic modes (n = 120), for global displacements
eigenvectors (ng = 8 and nℓ = 0), for local displacements
eigenvectors (ng = 0 andnℓ = 112) and finally, for global and
local displacements eigenvectors (ng = 8 andnℓ = 112). The
moduli in log scale of the responses are displayed in Fig. 8.
It can be seen that the responses calculated using global and
local displacements eigenvectors are exactly the same thatthe
response calculated using the elastic modes. For point Pobs1

in the stiff part, the contribution of the global displacements
eigenvectors is preponderant in the very low-frequency band
but the contribution of the local displacements eigenvectors
becomes not negligible in the high part of the low-frequency
band. For point Pobs2 in the flexible part, the contribution of
the local displacements eigenvectors is important except for the
first resonance corresponding to the first global displacements
eigenvectors (because the flexible plates follow the stiff part in
its displacement).
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Figure 7. First global displacements eigenvector (top) andfirst
local displacements eigenvector (bottom).

4.3 Application of the FMM to a complex geometry of an
automotive vehicle

The FMM is carried out using the computational model (Finite
Element Model) of the structure of an automotive vehicle. Such
a FE model has 250 000 nodes and contains various types of
finite elements such as volume finite elements, surface finite
elements and beam elements (see Fig.9). The subdomains
obtained using FMM method are represented on Fig. 10.

5 CONCLUSION

In this paper, we have presented the use of the Fast Marching
Method adapted to complex geometry in order to construct
the computational model subdomains which are required
to implement a new methodology allowing a reduced-order
computational dynamical model to be constructed in the
low-frequency domain when such a low-frequency domain
simultaneously contains global and local elastic modes which
cannot easily be separated with usual methods.
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Figure 9. Diagram of the different types of finite elements

Figure 10. 12 subdomains (one per color) corresponding to 12
starting nodes for a car with an epsilon of 1.2 m
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