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An automotive vehicle is made up of stiff parts and flexible components. This type of structure is characterized by the fact that it exhibits, in the low-frequency range, not only the classical global elastic modes but also numerous local elastic modes which cannot easily be separated from the global elastic modes. To solve this difficult problem, a new approach has recently been proposed to construct a reduced-order computational dynamical model. The construction of such a reduced-order computational model requires to decompose the domain into subdomains for which their mean sizes are controlled. Such a decomposition must be carried out with a general and automatic method which can be applied for very complex computational model related to complex geometry such as the computational dynamical model of an automotive vehicle. In this paper, we propose to use the Fast Marching Method for the construction of such subdomains. Nevertheless, in order to explain why such a construction has to be performed, we recall, in a first part, the method to construct the reduced-order model. Then, we present the Fast Marching Method. Finally, we present two applications, one for a simple dynamical system and another one concerning an automotive vehicle.

INTRODUCTION

This research is performed in the context of the vibroacoustic analysis of automotive vehicles. An automotive vehicle is made up of stiff parts and flexible components. In the low-frequency range, this type of structure is characterized by the fact that it exhibits, not only the classical global elastic modes, but also numerous local elastic modes in the same low-frequency band. The problem is that in such a complex heterogeneous structure, the global elastic modes cannot clearly be separated from the local elastic modes because there are many small contributions of the local deformations in the deformations of the global elastic modes and conversely. Since there are local elastic modes in the low-frequency band, a part of the mechanical energy is transferred from the global elastic modes to the local elastic modes which store this energy and then what induces an apparent damping at the resonances associated with the global elastic modes. In order to construct a reduced-order model for the low-frequency band, which allows a good approximation of the global displacements to be predicted and then, if needed, to take into account the effects of the local displacements in the total response, a new approach [1] has recently been proposed. This method allows a basis of the global displacements and a basis of the local displacements to be calculated by solving two separated eigenvalue problems, but requires to decompose the computational model in subdomains whose sizes are controlled. In this paper, we propose to use the Fast Marching Method for the construction of such subdomains. Nevertheless, in order to explain why such a construction has to be performed, we recall, in a first part, the method to construct the reduced-order model. Then, we present the Fast Marching Method (see [2]) which allows a front to be propagated on a complex mesh of a computational model. We present two applications, one for a simple dynamical system and another one concerning an automotive vehicle.

DESCRIPTION OF THE METHOD

In this section, we summarize the method introduced in [1]. This method allows a basis of the global displacements and a basis of the local displacements to be constructed by solving two separated eigenvalue problems. It should be noted that these two basis are not made up of the elastic modes. The method is based on the construction of a projection operator to reduce the kinetic energy while the elastic energy remain exact. This method is applied on the structural part of the vibroacoustic structures we are interested in.

Reference reduced model

We are interested in predicting the frequency response functions of a vibroacoustic damped structure occupying a bounded domain Ω, in the frequency band of analysis B = [ω min , ω max ] with 0 < ω min . Let U(ω) be the complex vector of the m DOF of the structural part of the vibroacoustic computational model constructed by the finite element method. Let [M] and [K] be the positive-definite symmetric (m × m) real mass and stiffness matrices. The eigenfrequencies λ and the elastic modes ϕ in R m of the conservative part of the dynamical computational model of the structure are the solution of the following eigenvalue problem,

[K] ϕ = λ [M] ϕ .
(1)

Then an approximation U n (ω) at order n of U(ω) can be written as

U n (ω) = n ∑ α=1 q α (ω) ϕ α = [Φ] q(ω) , (2) 
in which q = (q 1 , . . . , q n ) is the complex vector of the n generalized coordinates and where [Φ] = [ϕ 1 . . . ϕ n ] is the (m × n) real matrix of the elastic modes associated with the n first eigenvalues.

Decomposition of the mass matrix.

In this section, we introduce a decomposition of the mass matrix which is adapted to the calculation of the global elastic modes in the low-frequency band of analysis in which there are also a large number of local elastic modes. The details of the methodology for the discrete and the continuous cases are presented in [1].

Decomposition of domain Ω

Domain Ω is partitioned into n J subdomains Ω ε j such that, for j and k in {1, . . . , n J },

Ω = n J j=1 Ω ε j , Ω ε j ∩ Ω ε k = / 0 . (3) 
The parameter ε is the characteristic length of the subdomains.

The choice of ε is related to the smallest "wavelength" of the global elastic modes that we want to extract in presence of numerous local modes. The construction of the subdomains are presented in Section 3.

Projection operator

Let u → h r ε (u) be the linear operator defined by

{h r ε (u)}(x) = n J ∑ j=1 1l Ω ε j (x) 1 m j Ω ε j ρ(x) u(x) dx , (4) in which x → 1l Ω ε j (x) = 1 if x is in Ω ε j and = 0 otherwise.
The local mass m j is defined, for all j in {1, . . . , n J }, by m j = Ω ε j ρ(x) dx, where x → ρ(x) is the mass density. Let u → h c ε (u) be the linear operator defined by

h c ε (u) = u -h r ε (u) . (5) 
Function h r ε (u) will also be denoted by u r and function h c ε (u) by

u c . We then have u = h r ε (u) + h c ε (u) that is to say, u = u r + u c . Let [H r
ε ] be the (m × m) matrix relative to the finite element discretization of the projection operator h r ε defined by Eq. (4). Therefore, the finite element discretization U of u can be written as U = U r + U c , in which

U r = [H r ε ] U and U c = [H c ε ] U = U -U r , which shows that [H c ε ] = [I m ] -[H r ε ]. Then, the reduced (m × m) mass matrix [M r ] is such that [M r ] = [H r ε ] T [M][H r ε ] ,
and the complementary (m × m) mass matrix [M c ] is such that

[M c ] = [H c ε ] T [M][H c ε ] .
Using the properties of the projection operator defined by Eq. ( 4), it can be shown [1] that

[M c ] = [M] -[M r ] .

Global and local displacements bases

As proposed in [1], two methods are proposed to calculate the global displacements basis and the local displacements basis that will be used to reduce the matrix equation.

Direct method

In such a method, the basis of the global displacements and the basis of the local displacements are directly calculated using the decomposition of the mass matrix [M]. The global displacements eigenvectors φ g in R m are solution of the following generalized eigenvalue problem

[K]φ g = λ g [M r ]φ g . (6) 
This generalized eigenvalue problem admits an increasing sequence of 3n J positive eigenvalues 0 < λ g 1 ≤ . . . ≤ λ g 3n J , associated with the finite family of algebraically independent vectors {φ g 1 , . . . , φ g 3n J }. The family {φ g 1 , . . . , φ g 3n J } is defined as the family of the global displacements eigenvectors and these vectors do generally not belong to the family of the elastic modes. The local displacements eigenvectors φ ℓ in R m are solution of the generalized eigenvalue problem

[K]φ ℓ = λ ℓ [M c ]φ ℓ . (7) 
This generalized eigenvalue problem admits an increasing sequence of positive eigenvalues 0 < λ ℓ 1 ≤ . . . ≤ λ ℓ m-3n J , associated with the finite family of vectors {φ ℓ 1 , . . . , φ ℓ m-3n J }. The family {φ ℓ 1 , . . . , φ ℓ m-3n J } is defined as the family of the local displacements eigenvectors and do generally not belong to the family of the elastic modes. Matrices [M r ] and [M c ] are symmetric and positive but are not positive definite (positive semi-definite matrices). The rank of matrices [M r ] and [M c ] are n J and m -3n J respectively.

Double projection method

This method is less intrusive with respect to the commercial software and less time-consuming than the direct method. The solutions of the generalized eigenvalue problems defined by Eqs. ( 6) and ( 7) are then written, for n sufficiently large, as

φ g = [Φ] φ g , φ ℓ = [Φ] φ ℓ , (8) 
in which [Φ] defined in Eq. ( 2) is the matrix of the elastic modes.

The global displacements eigenvectors are the solutions of the generalized eigenvalue problem

[ K] φ g = λ g [ M r ] φ g , (9) in which [ M r ] = [Φ r ε ] T [M] [Φ r ε ] and [ K] = [Φ] T [K] [Φ],
and

where the (m × n) real matrix [Φ r ε ] is such that [Φ r ε ] = [H r ε ] [Φ].
The local displacements eigenvectors are the solutions of the generalized eigenvalue problem

[ K] φ ℓ = λ ℓ [ M c ] φ ℓ , (10) 
in which

[ M c ] = [Φ c ε ] T [M] [Φ c ε ] and where the (m × n) real matrix [Φ c ε ] is such that [Φ c ε ] = [H c ε ] [Φ] = [Φ] -[Φ r ε ].

Mean reduced model

It is proven in [1] that the family {φ g 1 , . . . , φ g 3n J , φ ℓ 1 , . . . , φ ℓ m-3n J } is a basis of R m . The mean reduced matrix model is obtained by the projection of U(ω) on the family {φ g 1 , . . . , φ g n g , φ ℓ 1 , . . . , φ ℓ n ℓ } of real vectors associated with the n g first global displacements eigenvectors such that n g ≤ 3n J ≤ m and with the n ℓ first local displacements eigenvectors such that n ℓ ≤ m. It should be noted that, if the double projection method is used, then we must have n g ≤ n, n ℓ ≤ n and n t ≤ n in which n t = n g + n ℓ . Then, the approximation U n g ,n ℓ (ω) of U(ω) at order (n g , n ℓ ) is written as

U n g ,n ℓ (ω) = n g ∑ α=1 q g α (ω) φ g α + n ℓ ∑ β =1 q ℓ β (ω) φ ℓ β . (11) 

CONSTRUCTION OF THE SUBDOMAINS

For the computational model of a complex structure such as an automotive vehicle, the decomposition of the domain is not easy to be carried out because the geometry is very complex and curved. The method we propose for this decomposition is based on the Fast Marching Methods (FMM) introduced in [2] which gives a way to propagate a front (the notion of front will be defined below) on connected parts from a starting point. In this section, the FMM is summarized and then we explain how to construct the subdomains using the FMM.

Presentation of the Fast Marching Method (FMM)

Let x be the generic point in R 3 belonging to the complex geometry Ω. Let x 0 be a fixed point belonging to Ω. Let U(x) be a geodesic distance adapted to the geometry, between x and x 0 . It should be noted that for a simple 3D volume domain, such a geodesic distance would be the Euclidean distance xx 0 in which . is the Euclidean norm. The front related to x 0 is defined as the subset of all the x such that U(x) has a fixed value. The FMM [2] allows the front to be propagated from starting point x 0 . We then have to calculate U(x) verifying the following nonlinear Eikonal equation

∇U(x) = F(x) , x ∈ Ω , (12) 
with ∇ the gradient with respect to x, in which F(x) is a given arbitrary positive-valued function and for which the boundary condition is written as U(x) = 0 on Γ 0 which is a curved line or a surface containing x 0 . Introducing the finite element mesh of Ω, Eq. ( 12) is discretized using an upwind approximation (forward finite difference) for the gradient (see [2]). For the particular case of a rectangular regular finite element mesh for which the mesh size is h and for which the nodes are x i j , we have to find U i j = U(x i j ) as the solution of the following equation

{max( U i j -U i-1, j ,U i j -U i+1, j , 0)} 2 + {max(U i j -U i, j-1 ,U i j -U i, j+1 , 0)} 2 = h 2 F 2 i j . ( 13 
)
Since the information in Eq. ( 13) propagates in a unique way, this equation allows the front to be propagated from the starting point. The use of the word Fast in FMM is due to the fact that the nodes associated with U i j and identified by Eq. ( 13) belong to a small domain which is called the Narrow Band (NB).

In the FMM, the algorithm introduces three groups of nodes:

(1) alive nodes for which the value of U i j is fixed and does not change, (2) trial nodes for which the value of U i j is given but has to be updated until they become alive and these nodes constitute the Narrow Band, (3) far nodes which have not been reached by the front and therefore are such that U i j = +∞.

The front is propagated using the following algorithm: Initialization • Choose a starting node x 0 rewritten as x 0,0 , which is alive and set U 0,0 = U(x 0,0 ) = 0.

• The 4 neighboring nodes of x 0,0 become trial nodes and the associated value of U is set to hF i j .

• All the other nodes are far nodes with associated value of U equal to infinity.

Loop

• Search among trial nodes, the node x i j with the smallest value of U.

• Remove x i j from trial nodes and add x i j to alive nodes.

• For each neighboring node of x i j , there are two possible cases:

-if the neighboring node is a far node, add it to the trialnodes and its value of U is set to U i j + hF i j .

-if the neighboring node is a trial node, its value of U is updated solving Eq. ( 13).

The Loop is repeated until all the node are alive.

Extension to a triangular mesh

For triangular meshes, the algorithm described above is unchanged but Eq. ( 13) must be adapted. We consider the case represented in Fig. 2 for which the value U c = U(x c ) of the node x c has to be updated using the value U a = U(x a ) of the node x a and the value U b = U(x b ) of the node x b which are alive nodes.

We then obtain the following equation [2]

a T [Q]a U 2 c + 2a T [Q]b U c + b T [Q]b = F 2 c , (14) 
in which a = (1, 1), b = (-U a , -U b ) and where the matrix

[Q] is written as [Q] = [P][P]
T in which the matrix [P] is defined by 

[P] =   x c -x a x c -x b y c -y a y c -y b z c -z a z c -z b   , (15) 

Construction of the subdomains

The subdomains Ω ε j of Ω are constructed using the FMM. This construction has two steps. The first one consists in finding the centers of the subdomains. The second one consists in generating the subdomains using these centers as starting points.

(i) Computation of the subdomains centers

The algorithm is the following:

Initialization

• Choose a value for parameter ε.

• Choose a first centre x 1 0,0 . Loop • Set the center x j 0,0 as the starting point of the FMM and propagate the front.

• Stop the front when the value of U of the last alive node is greater than epsilon.

• Set this last alive node as the center x j+1 0,0 and set all the alive nodes as ineligible nodes to be a center. This algorithm allows a homogeneous spatial repartition of the centers to be constructed.

(ii)Computation of the subdomains

To construct the subdomains Ω ε j using a set of centers x j 0,0 , we simultaneously propagate a front starting from each center until all the nodes become alive nodes with respect to one of the front. Then, the boundaries of the subdomains correspond to the meeting lines of the fronts.

APPLICATION

In this section, we present two applications of the methodology presented in the previous sections. The first one is a simple structure which has previously been presented in [1] and the second one is relative to a real automotive model.

First application

The system is made up of 12 flexible panels and a stiff structure (see Fig. 3). For the flexible parts, all panels are rectangular 4 m × 4 m, homogeneous, isotropic, with constant thickness 0.002 m, mass density equal to 7.8 kg/m 3 and Poisson ratio equal to 0.29. Moreover, the Young modulus is different for all the panels. The stiff structure is homogeneous, isotropic, with constant thickness 0.017 m, mass density equal to 9.8 kg/m 3 , Poisson ratio equal to 0.29 and the Young modulus is 2.1 × 10 12 N/m 2 . The frequency band of analysis is B =]0 , 11] Hz. The structure has 13 014 DOF. The FMM method presented in Section 3 is applied to the mesh of the structure with ε = 3 m. The centers of the subdomains are represented in Fig. 4 and the subdomains obtained from these centers are represented in Fig. 5. 

Frequency responses functions

For all ω ∈ B, the structure is subjected to an external point load equal to 1 N applied to the node Pexc whose coordinates are (10, 0, 7) located in the stiff part. The mean damping matrix is constructed using a Rayleigh model corresponding to a damping rate ξ = 0.04 for the eigenfrequency f 1 = 1.67 Hz and for the eigenfrequency f 120 = 13.2 Hz. The response is 

Application of the FMM to a complex geometry of an automotive vehicle

The FMM is carried out using the computational model (Finite Element Model) of the structure of an automotive vehicle. Such a FE model has 250 000 nodes and contains various types of finite elements such as volume finite elements, surface finite elements and beam elements (see Fig. 9). The subdomains obtained using FMM method are represented on Fig. 10.

CONCLUSION

In this paper, we have presented the use of the Fast Marching Method adapted to complex geometry in order to construct the computational model subdomains which are required to implement a new methodology allowing a reduced-order computational dynamical model to be constructed in the low-frequency domain when such a low-frequency domain simultaneously contains global and local elastic modes which cannot easily be separated with usual methods. 
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