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Importance and Sensitivity Analysis in Dynamic
Reliability

Robert Eymard · Sophie Mercier · Michel Roussignol

Abstract In dynamic reliability, the evolution of a system is governed by a piece-
wise deterministic Markov process, which is characterized by different input data.
Assuming such data to depend on some parameter p ∈ P, our aim is to compute the
first-order derivative with respect to each p ∈ P of some functionals of the process,
which may help to rank input data according to their relative importance, in view of
sensitivity analysis. The functionals of interest are expected values of some function
of the process, cumulated on some finite time interval [0, t], and their asymptotic
values per unit time. Typical quantities of interest hence are cumulated (production)
availability, or mean number of failures on some finite time interval and similar
asymptotic quantities. The computation of the first-order derivative with respect to
p ∈ P is made through a probabilistic counterpart of the adjoint state method, from
the numerical analysis field. Examples are provided, showing the good efficiency of
this method, especially in case of a large P.

Keywords Dynamic reliability · Sensitivity analysis · Importance factor ·
Piecewise deterministic Markov process · Chapman–Kolmogorov equation
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1 Introduction

In dynamic reliability, the time-evolution of a system is described by a piecewise
deterministic Markov process (PDMP) (It, Xt)t≥0 introduced by Davis (1984). The
first component It is discrete, with values in a finite state space E. Typically, it
indicates the state (up/down) for each component of the system at time t. The
second component Xt, with values in a Borel set V ⊂ R

d, stands for environmental
conditions, such as temperature, pressure, and so on. Both components of the
process interact one in each other: the process jumps at countably many isolated
random times; by a jump from (It− , Xt−) = (i, x) to (It, Xt) = ( j, y) (with (i, x),
( j, y) ∈ E × V), the transition rate between the discrete states i and j depends on
the environmental condition x just before the jump and is a function x �−→ a (i, j, x).
Similarly, the environmental condition just after the jump Xt is distributed according
to some distribution μ(i, j,x) (dy), which depends on both components just before
the jump (i, x) and on the after jump discrete state j. Between jumps, the discrete
component It is constant, whereas the evolution of the environmental condition Xt

is deterministic, solution of a set of differential equations which depends on the
fixed discrete state: given that It = i for all t ∈ [a, b ], we have d

dt Xt = v(i, Xt) for all
t ∈ [a, b ], where v is a mapping from E × V to V. Contrary to the general model from
Davis (1993), we here assume that the eventual reaching of the frontier of V does not
entail jumps for the process (It, Xt)t≥0.

Now, let (It, Xt)t≥0 be a PDMP for which the jump rates a(i, j, x), the jump
distribution μ(i, j,x)(dy) and the velocity fields v (i, x) are assumed to depend on some
family of parameters P ∈ R

k, where k ∈ N can be quite large. Our aim here is
to provide information about the sensitivity with respect to the elements of P, of
expressions with the following form:

Rρ0(t) = Eρ0

(∫ t

0
h(Is, Xs) ds

)
,

where ρ0 is the initial distribution of the process and h is some bounded measurable
function which can also depend on p ∈ P. Such expressions include e.g. cumulative
availability or production availability on some [0, t], mean number of failures on [0, t],
mean time spent by (Xs)0≤s≤t between two given bounds. We are also interested in
the sensitivity with respect to p ∈ P of the corresponding asymptotic quantities per
unit time, namely in quantities of the form

lim
t→+∞

Rρ0(t)
t

.

This sensitivity analysis can be guided by the knowledge of the first-order deriv-
atives of Rρ0(t) with respect to p, where p ∈ P. More specifically, we consider the
following normalized derivative:

IFp (t) = p
Rρ0(t)

∂ Rρ0(t)
∂p

, (1)

for t ≤ +∞ and p ∈ P, which we call the importance factor of parameter p in Rρ0(t).
Such a dimensionless expression may help to rank the different parameters p ∈ P
according to their relative importance in Rρ0(t). This kind of sensitivity analysis
was already studied by Gandini (1990) and by Cao and Chen (1997) for pure jump
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Markov processes with countable state space, and extended to PDMPs by Mercier
and Roussignol (2008), with more restrictive a model than in the present paper
however.

The starting point for this study is the Markov property of the process (It, Xt)t≥0,
which allows to write the associated Chapman–Kolmogorov equations fulfilled by
its marginal distributions, see Davis (1993) or Cocozza-Thivent et al. (2006b). Such
equations appear as weak forms of linear first order hyperbolic equations, see
Eymard et al. (2008) e.g. The expressions for the derivatives of interest can then
be obtained by solving the dual problem, as suggested by Lions (1968) for a wide
class of partial differential equations. The Chapman–Kolmogorov equations and its
dual problem are here solved using finite volume methods as provided by Cocozza-
Thivent et al. (2006a) or Eymard et al. (2008), which here prove to be well adapted.
An alternate way to compute the marginal distributions of the PDMP might be to
start from the Markov renewal equations they fulfill, as proposed in Chiquet and
Limnios (2008) for a specific case of PDMPs, or to use Monte-Carlo simulations.

In order to study the asymptotic quantities, one must put assumptions on the
process to ensure its positive Harris recurrence. These assumptions may be proved
to be true for Markov processes on general state space using techniques like those in
Down et al. (1995) and Meyn and Tweedie (1993a, b), as is done for both examples
at the end of this paper. Alternately, one may use specific results for piecewise
deterministic Markov processes, as provided in Davis (1993) and Costa and Dufour
(1999, 2003).

The paper is organized as follows: technical assumptions are set up in Section 2.
An existence result for the derivatives of the transient quantities is provided in
Section 3 and a computable expression is given for them in Section 4, using duality.
Asymptotic quantities are studied in Section 5. Numerical procedures are exposed
in Section 6, using finite volume methods. Two numerical studies close the paper in
Sections 7 and 8.

2 Assumptions

All the paper is written under the following general assumptions:

– for all i, j ∈ E, the function x �−→ a(i, j, x) is continuous and bounded on V,
– for all i, j ∈ E and all continuous and bounded function f on V, the function

x �−→ ∫
V f (y) μ(i, j,x)(dy) is continuous and bounded on V,

– for all i ∈ E, the velocity field v(i, x) is such that the function x �−→ v(i, x) is
Lipschitz continuous and bounded by V1 = maxi∈E ‖v (i, ·) ‖∞ > 0.

These assumptions guarantee the existence and uniqueness of the solution to the
set of differential equations dx

dt = v (i, x); we denote by g (i, x, t) the single solution
(defined on E × V × R) such that g (i, x, 0) = x.

The jump rates a(i, j, x), the jump distribution μ(i, j,x), the velocity field v(i, x) and
the function h are assumed to depend on some parameter p, where p belongs to
an open set O ⊂ R or R

k. All the results are written in the case where O ⊂ R

but extension to the case O ⊂ R
k is straightforward. We add exponent (p) to each

quantity depending on p, such as h(p) or R(p)
ρ0 (t).
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Under the above technical assumptions,
(

I(p)
t , X(p)

t

)
t≥0

is known to be a Markov

process with general state space E × V, see Davis (1993), Cocozza-Thivent et al.
(2006b), with strong Feller transition semi-group. We denote by ρ

(p)
t ( j, dy) the distri-

bution of the process
(

I(p)
t , X(p)

t

)
t≥0

at time t with initial distribution ρ0 (independent

of p) and by P(p)
t (i, x, j, dy) the transition probability distribution of

(
I(p)

t , X(p)
t

)
t≥0

.

We then have:

R(p)
ρ0

(t) =
∫ t

0
ρ(p)

s h(p) ds =
∑
i∈E

∫
V

(∫ t

0
h(p) (i, x) ds

)
ρ(p)

s (i, dx)

=
∫ t

0
ρ0P(p)

s h(p) ds =
∑
i∈E

∫
V

(∫ t

0

(
P(p)

s h(p)
)
(i, x) ds

)
ρ0 (i, dx)

In order to prove existence and to calculate derivatives of the functional R(p)
ρ0 ,

we must give a sense to the derivatives of the transition probability distributions.
With that aim, we need the following additional assumptions that we denote as
assumptions H1 (resp. H2):

For each p in O, there is some neighborhood N(p) of p in O such that, for all
i, j ∈ E × E:

– the function (x, p) �−→ a(p)(i, j, x) is bounded on V × N(p), once (resp. twice)
continuously differentiable on V × O, with all partial derivatives uniformly
bounded on V × N(p),

– for all function f (p)(x) bounded and once (resp. twice) continuously differen-
tiable on V × O, with all partial derivatives uniformly bounded on V × N(p),
the function (x, p) �−→ ∫

V f (p)(y) μ
(p)

(i, j,x)(dy) is bounded and once (resp. twice)
continuously differentiable on V × O, with all partial derivatives uniformly
bounded on V × N(p),

– the function (x, p) �−→ v(p)(i, x) is bounded on V × N(p), once (resp. twice)
continuously differentiable on V × O, with all partial derivatives uniformly
bounded on V × N(p),

– the function (x, p) �−→ h(p)(i, x) is bounded on V × N(p), once (resp. twice)
continuously differentiable on V × O with uniformly bounded partial derivatives
on V × N (p).

The third point implies (see e.g. Cartan 1967) that, for all i ∈ E, the func-
tion (x, p) �−→ g(p)(i, x, s), solution of the differential equation dg

dt = v(p)(i, g) with
g(i, x, 0) = x, is once (resp. twice) continuously differentiable on V × N(p), with all
partial derivatives uniformly bounded on V × N(p).

Throughout the paper, under assumptions H1 or H2, for each p in O, we shall refer
to a N(p) fulfilling the four points of the assumptions without any further notice.

We may now give a sense to the derivatives of the transition probability distribu-
tions, which is done in next section.
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3 Existence Result

We shall use the infinitesimal generators of both Markov processes (It, Xt)t≥0 and
(It, Xt, t)t≥0:

Definition 1 Let DH0 be the set of functions f (i, x) from E × V to R such that for
all i ∈ E the function x �−→ f (i, x) is bounded, continuously differentiable on V and
such that the function x �−→ v(p)(i, x) · ∇ f (i, x) is bounded on V.

For f ∈ DH0 , we define

H(p)

0 f (i, x) =
∑
j∈E

a(p)(i, j, x)

∫
V

f ( j, y) μ
(p)

(i, j,x)(dy) + v(p)(i, x) · ∇ f (i, x)

where we set a(p)(i, i, x) = − ∑
j�=i a(p)(i, j, x) and μ

(p)

(i,i,x) = δx.
Let DH be the set of functions f (i, x, s) from E×V×R+ to R such that for all i∈ E

the function (x, s) �−→ f (i, x, s) is bounded, continuously differentiable on V × R+
and such that the function (x, s) �−→ ∂ f

∂s (i, x, s) + v(p)(i, x) · ∇ f (i, x, s) is bounded on
V × R+.

For f ∈ DH , we define

H(p) f (i, x, s) =
∑

j

a(p)(i, j, x)

∫
V

f ( j, y, s) μ
(p)

(i, j,x)(dy) + ∂ f
∂s

(i, x, s)

+ v(p)(i, x) · ∇ f (i, x, s) (2)

We then have for all f ∈ DH0 :

P(p)
t f = f +

∫ t

0
H(p)

0 P(p)
u f du (3)

ρ
(p)
t f = ρ0 f +

∫ t

0
ρ(p)

u H(p)

0 f du (4)

and for all f ∈ DH :

P(p)
t f (·, ·, t) = f (·, ·, 0) +

∫ t

0
P(p)

u H(p) f (·, ·, u) du (5)

ρ
(p)
t f (·, ·, t) = ρ0 f (·, ·, 0) +

∫ t

0
ρ(p)

u H(p) f (·, ·, u) du (6)

These are Chapman–Kolmogorov equations.
Thanks to these equations and to Theorem 4 in the Appendix, we get the following

result:

Proposition 1 Let f (i, x) be a function (independent of p) from E × V to R such that
for all i ∈ E, the function x �−→ f (i, x) is bounded, continuously differentiable on V
with uniformly bounded partial derivatives on V. Under assumptions H1, for all i ∈ E,

the function (x, p) �−→
(

P(p)
t f

)
(i, x) is continuously differentiable on V × O, with all

partial derivatives uniformly bounded on V × N (p) for all p ∈ O. Under assumptions
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H2, if for all i ∈ E the function x �−→ f (i, x) is bounded, twice continuously differen-
tiable on V with uniformly bounded partial derivatives on V, then for all i ∈ E, the

function (x, p) �−→
(

P(p)
t f

)
(i, x) is twice continuously differentiable on V × O, with

all partial derivatives uniformly bounded on V × N (p) for all p ∈ O.

Proof Let p0 ∈ P and N(p0) be a neighborhood of p0. Setting ϕ (s, i, (x, p)) =
P(p)

t f (i, x) for (i, x, p, s) ∈ E × V × N (p0) × R+, the Chapman–Kolmogorov Eq. 3
can be written as:

ϕ (t, i, (x, p)) = f (i, x) +
∫ t

0

⎛
⎝∑

j∈E

a(p)(i, j, x)

∫
V

ϕ(u, j, (y, p)) μ
(p)

(i, j,x)(dy)

+ v(p)(i, x) · ∇xϕ(u, i, (x, p))

⎞
⎠du (7)

where ∇x stands for the gradient with respect of x. Using a similar method as in
Cocozza-Thivent et al. (2006b), we introduce the function ϕ̃ defined by:

ϕ̃(t, i, (x, p)) = ϕ(t, i, (g(p)(i, x, −t), p))

Noting that

ϕ(t, i, (x, p)) = ϕ̃(t, i, (g(p)(i, x, t), p)),

Equation 7 may now be written as:

ϕ̃(t, i, (x, p))

= f (i, x)

+
∫ t

0

⎛
⎝∑

j∈E

a(p)(i, j, g(p)(i, x, −u))

∫
V

ϕ̃(u, j, (g(p)( j, y, u), p))μ
(p)

(i, j,g(p)(i,x,−u))
(dy)

⎞
⎠du

Using the notations of Theorem 4, we set z = (x, p), ϕ̃0(i, z) = f (i, x) and

F (s, ψ) (i, z) =
∑
j∈E

a(p)(i, j, g(p)(i, x, −u))

∫
V

ψ( j, (g(p)( j, y, s), p))μ
(p)

(i, j,g(p)(i,x,−s))(dy)

for (i, x, p, s) ∈ E × V × N (p0) × R+ and ψ : E × V × N (p0) → R bounded and
measurable. The function ϕ̃ then satisfies the equations:

ϕ̃(t, i, z) = ϕ̃0(i, z) +
∫ t

0
F(u, ϕ̃(u, ., .))(i, z) du.

We now check that assumptions of Theorem 4 are fulfilled and we set I to be
an interval such that [0, T] ⊂ I. Symbols W = V × N(p0), Cb

1 (E, W), Cb
1 (I, E, W)
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and J (F) are as in the Appendix. With such notations, the function ϕ̃0 belongs to
Cb
1 (E, W) and assumptions H1 imply that:

– if � ∈ Cb
1 (I, E, W), then F(s, �(s, ., .))(i, (x, p)) is in Cb

1 (I, E, W),
– if � ∈ Cb

1 (E, W), then for all s ∈ I, F(s, �) and ∇F(s, �) are uniformly Lipschitz
with respect to �.

Assumptions H2 and ϕ̃0 ∈ Cb
2 (E, W) imply that:

– if � ∈ Cb
2 (I, E, W), then F(s, �(s, ., .))(i, (x, p)) is in Cb

2 (I, E, W),
– if � ∈ Cb

2 (E, W), then for all s ∈ I, F(s, �), ∇F(s, �) and J (F) (s, �) are
uniformly Lipschitz with respect to �.

All required assumptions are then checked, which provides the result. �


Remark 1 Using the explicit form of transition probabilities (see Cocozza-Thivent

et al. 2006b), the functional f �−→ ∂
∂p

(
P(p)

t f
)

(i, x) appears to be a continuous

linear functional of f which involves f and ∂ f
∂xk

for 1 ≤ k ≤ d (and possibly other
derivatives). Limiting this functional to the set of functions f such that x �−→ f (i, x)

is infinitely differentiable with a compact support for all i ∈ E, it may then be seen
as a distribution. We actually define this functional on the greater space of bounded
continuously differentiable functions with uniformly bounded partial derivatives and
we use the following notation:

∂

∂p

(
P(p)

t f
)

(i, x) =
〈

∂ P(p)
t

∂p
, f

〉
(i, x)

Next corollary is straightforward.

Corollary 1 Under assumptions H1, the function (x, p) �−→
(

P(p)
t h(p)

)
(i, x) is con-

tinuously differentiable on V × O for all i ∈ E, with all partial derivatives uniformly
bounded on V × N (p) for all p ∈ O. Besides:

∂

∂p

(
P(p)

t h(p)
)

(i, x) =
〈

∂ P(p)
t

∂p
, h(p)

〉
(i, x) +

(
P(p)

t
∂h(p)

∂p

)
(i, x)

for all (i, x, t, p) ∈ E × V × R
+ × O.
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We derive the following theorem:

Theorem 1 Under assumptions H1, the function p �−→ R(p)
ρ0 (t) is continuously differ-

entiable with respect to p and

∂

∂p

(
R(p)

ρ0
(t)

) =
∫ t

0

∑
i∈E

∫
V

〈
∂ P(p)

u

∂p
, h(p)

〉
(i, x) ρ0(i, dx) du

+
∫ t

0

∑
i∈E

∑
j∈E

∫
V

∫
V

∂

∂p
h(p)( j, y)P(p)

u (i, x, j, dy)ρ0(i, dx) du

=
∫ t

0

〈
∂ρ

(p)
u

∂p
, h(p)

〉
du +

∫ t

0
ρ(p)

u
∂h(p)

∂p
du (8)

where we set: 〈
∂ρ

(p)
u

∂p
, h(p)

〉
=

∑
i∈E

∫
V

〈
∂ P(p)

u

∂p
, h(p)

〉
(i, x) ρ0(i, dx). (9)

Remark 2 Assumption on h(p) in H1 may be generalized to the case where h(p)(i, x)

is continuously differentiable only for almost all (a.a.) x ∈ V, where a.a. means with
respect to Lebesgue measure.

Our purpose now is to compute this derivative. The marginal distribution
ρ

(p)
u ( j, dy) may be estimated by different methods, as indicated in the introduction.

However, we do not know how to compute directly the derivative of the marginal
distribution which appear in the above expression. We now transform it in order to
make it easier to compute.

4 Results in the Transient Case

Let us first define the notion of importance functions.

Definition 2 We say that a function ϕ
(p)
t ∈ DH is the importance function associated

to the function h(p) and to t if:

– ϕ
(p)
t is solution of the differential equation H(p)ϕ

(p)
t (i, x, s) = h(p) (i, x) for all

(i, x, s) ∈ E × V × [0, t[,
– ϕ

(p)
t (i, x, t) = 0 for all (i, x) in E × V.

Proposition 2 Let t > 0. Under assumptions H1, the importance function associated
to

(
h(p), t

)
exists, is unique, is continuously differentiable on V × O, bounded with all

partial derivatives uniformly bounded on V × N(p) for all p ∈ O. Under assumptions
H2, the importance function associated to

(
h(p), t

)
is moreover twice continuously

differentiable on V × O with all partial derivatives uniformly bounded on V × N(p)

for all p ∈ O.
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Proof Let ϕ(p) ∈ DH (eventually depending on p) and let us set:

ϕ̃(p) (i, z, s) = ϕ(p) (i, g (i, z, −s) , t − s) (10)

for all (i, z, s) ∈ E × V × [0, t]. The function ϕ̃(p) is bounded, continuously differen-
tiable on V with partial derivative with respect of time given by:

∂ϕ̃(p)

∂s1
(i, z, s) = −∂ϕ(p)

∂s1

(
i, g(p) (i, z, −s) , t − s

)

−∇ϕ(p)
(
i, g(p) (i, z, −s) , t − s

) · v(p)
(
i, g(p) (i, z, −s)

)
(11)

The function ϕ(p) and ϕ̃(p) are in one-to-one correspondence with:

ϕ(p) (i, z, t − s) = ϕ̃(p)
(
i, g(p) (i, z, s) , s

)
(12)

for all (i, z, s) ∈ E × V × [0, t]. Using Eqs. 10–11, we get:

H(p)ϕ(p)
(
i, g(p) (i, z, −s) , t − s

)

=
∑

j

a(p)
(
i, j, g(p) (i, z, −s)

) ∫
V

ϕ(p)( j, y, t − s)μ(p)

(i, j,g(p)(i,z,−s))
(dy) − ∂ϕ̃(p)

∂s1
(i, z, s)

= H̄(p)ϕ̃(p) (i, z, s)

where

H̄(p)ϕ̃(p) (i, z, s)

=
∑
j∈E

a(p)
(
i, j, g(p) (i, z, −s)

) ∫
V

ϕ̃(p)
(

j, g(p) ( j, y, s) , s
)
μ

(p)

(i, j,g(p)(i,z,−s))(dy)

− ∂ϕ̃(p)

∂s1
(i, z, s) .

The problem now resumes to show existence, uniqueness and regularity of ϕ̃(p) such
that

H̄(p)ϕ̃(p) (i, z, s) = h(p)
(
i, g(p) (i, z, −s)

)
(13)

for all (i, z, s) ∈ E × V × [0, t] with ϕ̃(p) (i, z, 0) = ϕ(p) (i, z, t) = 0 for all (i, z) ∈
E × V. The o.d.e. Eq. 13 may be written as:

ϕ̃(p)(i, z, t) =
∫ t

0
R(p)

(
ϕ̃(p) (·, ·, s) , s

)
(i, z) ds

with

R(p)
(
ϕ̃(p) (·, ·, s) , s

)
(i, z)

=
∑
j∈E

a(p)
(
i, j, g(p) (i, z, −s)

) ∫
V

ϕ̃(p)
(

j, g(p) ( j, y, s) , s
)
μ

(p)

(i, j,g(p)(i,z,−s))
(dy)

− h(p)
(
i, g(p) (i, z, −s)

)
.

Theorem 4 from the Appendix then provides the result in the same way as for
Proposition 1. �
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Next lemma provides a duality result based on the definition of ϕ
(p)
t , which

transports the differentiation with respect of p from the marginal distribution ρ
(p)
s

to operator H(p).

Lemma 1 Under assumptions H2, we have:

∫ t

0

〈
∂ρ

(p)
s

∂p
, H(p)ϕ

(p)
t (·, ·, s)

〉
ds = −

∫ t

0
ρ(p)

s
∂ H(p)

∂p
ϕ

(p)
t (·, ·, s) ds

where we set:

∂ H(p)

∂p
ϕ (i, x, s) :=

∑
j∈E

∂a(p)

∂p
(i, j, x)

∫
V

ϕ( j, y, s) μ
(p)

(i, j,x)(dy)

+
∑
j∈E

a(p)(i, j, x)
∂

∂p

(∫
V

ϕ( j, y, s) μ
(p)

(i, j,x)(dy))

)

+∂v(p)

∂p
(i, x) · ∇ϕ(i, x, s)

for all ϕ ∈ DH and all (i, x, s) ∈ E × V × R+.

Proof Thanks to Proposition 2, functions ϕ
(p)
t (i, x, s) and ∂ϕ

(p)
t

∂p (i, x, s) are in DH . We

first know from the Chapman–Kolmogorov Eq. 6 applied to ϕ
(p)
t that:

∫ t

0
ρ(p)

s H(p)ϕ
(p)
t (·, ·, s) ds = ρ

(p)
t ϕ

(p)
t (·, ·, t) − ρ0ϕ

(p)
t (·, ·, 0) = −ρ0ϕ

(p)
t (·, ·, 0)

due to ϕ
(p)
t (·, ·, t) = 0. By differentiating this expression with respect to p, we derive:

∫ t

0

〈
∂ρ

(p)
s

∂p
, H(p)ϕ

(p)
t (·, ·, s)

〉
ds +

∫ t

0
ρ(p)

s
∂ H(p)

∂p
ϕ

(p)
t (·, ·, s) ds

+
∫ t

0
ρ(p)

s H(p) ∂ϕ
(p)
t

∂p
(·, ·, s) ds = −ρ0

∂ϕ
(p)
t

∂p
(·, ·, 0) . (14)

Chapman–Kolmogorov Eq. 6 applied to ∂ϕ
(p)
t

∂p gives:

∫ t

0
ρ(p)

s H(p) ∂ϕ
(p)
t

∂p
(·, ·, s) ds = ρ

(p)
t

∂ϕ
(p)
t

∂p
(·, ·, t) − ρ0

∂ϕ
(p)
t

∂p
(·, ·, 0)

= −ρ0
∂ϕ

(p)
t

∂p
(·, ·, 0) .

Hence the result, substituting this last outcome in Eq. 14. �


We easily derive the following result, using the definition of R(p)
ρ0 (t) and of

ϕ
(p)
t (·, ·, s).
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Theorem 2 Under assumptions H2, we have:

∂ R(p)
ρ0

∂p
(t) =

∫ t

0
ρ(p)

s
∂h(p)

∂p
ds −

∫ t

0
ρ(p)

s
∂ H(p)

∂p
ϕ

(p)
t (·, ·, s) ds, (15)

where ϕ
(p)
t is the importance function associated to

(
h(p), t

)
.

Remark 3 In case that Rρ0 (t) depends on a family of parameters P, the computation

of all
∂ R(P)

ρ0
∂p (t) for each p ∈ P consequently requires only one single computation of

both ρ
(P)
s and ϕ

(P)
t , and simple summations on [0, t] for each value of p. This is to be

compared to the usual finite differences method, which requires one first evaluation

of ρ
(P)
s and another evaluation of ρ

(Pp,ε)
s for each value of p ∈ P and some ε > 0,

where Pp,ε stands for the family P in which parameter p has been changed into
p + ε. In case of a large P, the present methods, which only requires two effective
computations, consequently appears as cheaper than finite differences.

In applications, the importance function will generally be computed numerically.
An analytical form is however available, which is also useful for the asymptotic study:

Lemma 2 Let t > 0. Under assumptions H1, the importance function associated to(
h(p), t

)
is given by:

ϕ
(p)
t (i, x, s) =

⎧⎨
⎩

−
∫ t−s

0

(
P(p)

u h(p)
)
(i, x) du if 0 ≤ s ≤ t

0 otherwise
(16)

for all (i, x) ∈ E × V.

Proof Let ϕ
(p)
t be the function defined by Eq. 16. It is clear that ϕ

(p)
t (i, x, t) = 0 for

all (i, x) ∈ E × V and thanks to Proposition 1, the function ϕ
(p)
t is in DH . Besides, for

0 ≤ s < t, we have:
(

H(p)ϕ
(p)
t

)
(·, ·, s) = −H(p)

∫ t−s

0
P(p)

u h(p) du

= −H(p)

0

(∫ t−s

0
P(p)

u h(p) du
)

− ∂

∂s

(∫ t−s

0
P(p)

u h(p) du
)

= −
∫ t−s

0
H(p)

0
(
P(p)

u h(p)
)

du + P(p)
t−sh

(p)

= h(p)

due to the Chapman–Kolmogorov Eq. 3, which completes the proof. �


We easily derive the following Corollary from Theorem 2 and the previous lemma.

Corollary 2 Under assumptions H2, we have:

∂ R(p)
ρ0

∂p
(t) =

∫ t

0
ρ(p)

s
∂h(p)

∂p
ds +

∫ t

0
ρ(p)

s
∂ H(p)

∂p

(∫ t−s

0
P(p)

u h(p) du
)

ds (17)

11



Equation 17 is an extension of the results of Gandini (1990) for pure jump Markov
processes with countable state space.

5 Asymptotic Results

We are now interested in asymptotic results and we need to assume the process
(It, Xt)t≥0 to be uniformly ergodic, according to the following assumptions H3:

– the process (It, Xt)t≥0 is positive Harris-recurrent with π(p) as unique stationary
distribution,

– for each p ∈ O, there exists a function f (p) such that∫ +∞

0
f (p)(u) du < +∞,

∫ +∞

0
u f (p)(u) du < +∞, lim

u→+∞ f (p)(u) = 0, (18)

and ∣∣(P(p)
u h(p)

)
(i, x) − π(p)h(p)

∣∣ ≤ f (p)(u) (19)

for all (i, x) ∈ E × V and all u ≥ 0.

As already noted in the introduction, such assumptions may be proved to be true
by using results for Markov processes on general state spaces or specific results for
piecewise deterministic Markov processes (see the introduction for references).

In order not to give too technical assumptions difficult to check in practice,
we constraint our asymptotic study to the special case where only the jump rates
a(p)(i, j, x) and the function h(p) (i, x) depend on the parameter p. The quantities
μ(i, j,x) and v(i, x) are consequently assumed to be independent of p. Assumptions
H2 are then substituted by assumptions H′

2, where conditions on μ(i, j,x) and on v(i, x)

are removed.
We now transform Eq. 17 in view of studying its asymptotic expression.

Lemma 3 Under assumptions H2 and H3, we have:

1
t
∂ R(p)

ρ0

∂p
(t) = 1

t

∫ t

0
ρ(p)

s
∂h(p)

∂p
ds

+1
t

∫ t

0
ρ(p)

s
∂ H(p)

∂p

(∫ t−s

0

(
P(p)

u h(p) − π(p)h(p)
)

du
)

ds (20)

Proof The first term is clear. Besides, setting 1 to be the constant function equal to 1,
we have: ∂ H(p)

∂p 1 = 0 since H(p)1 = 0. As π(p)h(p) is a constant (independent of (i, x)),
we derive

∂ H(p)

∂p

(
π(p)h(p)

) = (
π(p)h(p)

) ∂ H(p)

∂p
1 = 0

and consequently:

∂ H(p)

∂p

(∫ t−s

0
π(p)h(p) du

)
= (t − s)

∂ H(p)

∂p

(
π(p)h(p)

) = 0.

Whence the result. �
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We may now prove existence and provide an asymptotic expression for 1
t

∂ R(p)
ρ0

∂p (t).

Theorem 3 Let us assume that μ(i, j,x) and v(i, x) are independent of p and that H′
2,

H3 are true. Then:

Uh(p) (i, x) :=
∫ +∞

0

((
P(p)

u h(p)
)
(i, x) − π(p)h(p)

)
du

exists for all (i, x) ∈ E × V and Uh(p) is element of DH0 . Besides:

lim
t→+∞

1
t
∂ R(p)

ρ0

∂p
(t) = π(p) ∂h(p)

∂p
+ π(p) ∂ H(p)

0
∂p

Uh(p) (21)

where we set:

∂ H(p)

0
∂p

ϕ0 (i, x) :=
∑
j∈E

∂a(p)

∂p
(i, j, x)

∫
V

ϕ0( j, y) μ(i, j,x)(dy)

for all ϕ0 ∈ DH0 and all (i, x) ∈ E × V.

Proof Due to H3, the quantity Uh(p) (i, x) is clearly defined for all (i, x) ∈ E × V and
Uh(p) is element of DH0 . Under H3, we know that:

lim
t→+∞

1
t

∫ t

0
ρ(p)

s ϕ(p) ds = π(p)ϕ(p) (22)

for each measurable and bounded ϕ(p). The first term in right side of Eq. 20
consequently converges to the first term in Eq. 21. For the second term, setting

Us := ∫ +∞
s

(
P(p)

u h(p) − π(p)h(p)
)

du, we have:

1
t

∫ t

0
ρ(p)

s
∂ H(p)

∂p

(∫ t−s

0

(
P(p)

u h(p) − π(p)h(p)
)

du
)

ds

= 1
t

∫ t

0
ρ(p)

s
∂ H(p)

∂p
Uh(p) ds − 1

t

∫ t

0
ρ(p)

s
∂ H(p)

∂p
Ut−s ds.

By assumption, the function ∂ H(p)

∂p Uh(p) is bounded and independent of time, and
consequently:

lim
t→+∞

1
t

∫ t

0
ρ(p)

s
∂ H(p)

∂p
Uh(p) ds = π(p) ∂ H(p)

∂p
Uh(p) = π(p) ∂ H(p)

0
∂p

Uh(p).

It now remains to prove that

lim
t→+∞

1
t

∫ t

0
ρ(p)

s
∂ H(p)

∂p
Ut−s ds = 0.

We have: ∣∣∣∣∂ H(p)

∂p
Ut−s(i, x)

∣∣∣∣ ≤
∑
j∈E

∣∣∣∣∂a(p)

∂p
(i, j, x)

∣∣∣∣
∣∣∣∣
∫

V
Ut−s( j, y)μ(i, j,x)(dy)

∣∣∣∣

13



As |Us(i, x)| ≤ ∫ +∞
s f (p)(u) du due to H3, we have:

∣∣∣∣∂ H(p)

∂p
Ut−s(i, x)

∣∣∣∣ ≤ K
∫ +∞

t−s
f (p)(u) du

and ∣∣∣∣1t
∫ t

0
ρ(p)

s
∂ H(p)

∂p
Ut−s ds

∣∣∣∣ ≤ K
1
t

∫ t

0

(∫ +∞

t−s
f (p)(u) du

)
ds

≤ K
1
t

∫ +∞

0
u f (p)(u) du.

This ends the proof. �


The previous theorem provides an extension of the results given in Cao and Chen
(1997) for pure jump Markov processes with countable state space.

Next proposition gives a tool to compute the function Uh(p).

Proposition 3 Let us assume that μ(i, j,x) and v(i, x) are independent of p and that H′
2,

H3 are true. Then the function Uh(p) is the unique solution of the following ordinary
differential equation:

H(p)

0 Uh(p) (i, x) = π(p)h(p) − h(p)(i, x) (23)

for all (i, x) ∈ E × V such that π(p)Uh(p) = 0.

Proof Under assumptions H3, we clearly have π(p)Uh(p) = 0 by Fubini’s theorem.
We now check that Uh(p) is solution of Eq. 23: under H3, we may write

H(p)

0 Uh(p) (i, x) = H(p)

0

∫ +∞

0

((
P(p)

u h(p)
)
(i, x) − π(p)h(p)

)
du

=
∫ +∞

0
H(p)

0 P(p)
u h(p) (i, x) du

since H(p)

0
(
π(p)h(p)

) = (
π(p)h(p)

)
H(p)

0 1 = 0. We derive:

H(p)

0 Uh(p) (i, x) = lim
t→+∞

∫ t

0

(
H(p)

0 P(p)
u h(p) (i, x)

)
du

= lim
t→+∞ P(p)

t h(p) (i, x) − h(p) (i, x) (Chapman–Kolmogorov equation)

= π(p)h(p) − h(p) (i, x) ,

which shows that Uh(p) is solution of Eq. 23. Now, let ϕ be the difference between two
solutions ϕ1, ϕ2 of Eq. 23 such that π(p)ϕ1 = π(p)ϕ2 = 0. We then have: H(p)

0 ϕ = 0 and
consequently: Pt H

(p)

0 ϕ = 0 for all t > 0. Using Pt H
(p)

0 ϕ = H(p)

0 Ptϕ (see Davis 1993,
e.g.) and Eq. 3, we get Ptϕ = ϕ and:

ϕ (i, x) = lim
t→+∞

1
t

∫ t

0
(Ptϕ) (i, x) = π(p)ϕ

for all (i, x) ∈ E × V. Whence the result, using π(p)ϕ = π(p)ϕ1 − π(p)ϕ2 = 0. �
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Remark 4 Just as for the transitory results, in the case when the data depend on

some family of parameters P, the evaluation of all limt→+∞ 1
t

∂ R(P)
ρ0

∂p (t) only requires
one single computation of both π(P) and Uh(P), which seems cheaper than finite
differences methods in case of a large P.

6 Numerical Procedure

In this section, we propose some method for the numerical evaluation of ∂ R(p)
ρ0

∂p (t) and
of its asymptotic rate per unit time when t → +∞, based on the implicit finite volume
scheme given in Eymard et al. (2008). These methods are obtained by translating
the continuous procedure described above into the discrete setting of finite volume
methods, and are provided without proof.

6.1 Principle of the Numerical Scheme in the Transient Case

Here, we consider the general case where any quantity (except ρ0) may depend on
p. We consider a mesh (or partition) M of V ⊂ R

d which satisfies some regularity
hypotheses (details are given in Eymard et al. 2008), and some time step δt > 0.
Realizing a discrete version of the Chapman–Kolmogorov Eq. 4 and starting
from ρ(0) = ρ0, the scheme resumes to compute the family of real values(
ρ

(n)

i,K

)
(i,K,n)∈E×M×N

, such that ρ
(n)

i,K is an approximation of
∫

K ρ
(p)
t (i, dx) for t ∈

[nδt, (n + 1) δt[.
Introducing an infinite matrix A = (

A(i,K)( j,L)

)
(i,K),( j,L)∈E×M, the scheme can be

written as

∑
( j,L)∈E×M

A(i,K)( j,L)ρ
(n+1)
j,L + ρ

(n+1)
i,K − ρ

(n)

i,K

δt
= 0

for all (i, K, n) ∈ E × M × N (see the quoted reference for the detailed coefficients),
or equivalently

Aρ(n+1) + ρ(n+1) − ρ(n)

δt
= 0 (24)

for all n ∈ N, setting ρ(n) :=
(
ρ

(n)

i,K

)
(i,K)∈E×M

.

For t = Mδt with M ≥ 1, a discrete approximation of R(p)
ρ0 (t) then is R̄(p)

M with:

R̄(p)

M =
M∑

n=1

∑
i∈E

∑
K∈M

δt ρ
(n)

i,Kh̄i,K (25)

and

h̄i,K = 1
m(K)

∫
K

h(p) (i, x) dx (26)

for all (i, K) ∈ E × M, where m(K) stands for the d−dimensional Lebesgue measure
of K.
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In order to mimic the procedure used to evaluate ∂
∂p R(p)

ρ0 (t) in Eq. 15, we define a

discrete version H̄ of H:

(
H̄ (θ)

)(n) = Atθ(n) + θ(n) − θ(n+1)

δt
(27)

for all bounded families θ =
(
θ

(n)

i,K

)
(i,K,n)∈E×M×N

.

We next introduce a discrete approximation of the importance functions ϕt as

ϕ̄ =
(
ϕ̄

(n)

i,K

)
(i,K,n)∈E×M×N

, single bounded family solution of:

(
H̄ (ϕ̄)

)(n) = h̄ for all n ∈ {0, ..., M − 1} (28)

with ϕ̄
(n)

i,K = 0 for all (i, K) ∈ E × M and all n ≥ M. The mathematical study of the
well-posedness of Eq. 27 and of the resolution of Eq. 28 might be driven under
classical hypothesis.

Following the same calculation steps as in the continuous case, we now get:

∂

∂p

(
R̄(p)

M

)
= δt

∑
i∈E

∑
K∈M

M∑
n=1

ρ
(n)

i,K

⎛
⎝ ∂

∂p
h̄i,K −

(
∂ H̄
∂p

(ϕ̄)

)(n−1)

i,K

⎞
⎠ (29)

where, for all (i, K, n) ∈ E × M × N:
(

∂ H̄
∂p

(ϕ̄)

)(n)

i,K

=
∑

( j,L)∈E×M

∂ A( j,L)(i,K)

∂p
ϕ̄

(n)

j,L.

In the case when the data depends on a family P of parameters, the numerical

computation of ∂
∂p

(
R(P)

M

)
for all p ∈ P hence requires to solve two implicit volume

schemes provided by Eqs. 24 and 28, which are independent on the choice of
p in P (see Remark 3). Due to the definition of H̄ (see Eq. 27), such schemes
appear as dual schemes, which clearly simplifies their implementation. Also, the
different summations required for each p ∈ P for the estimation of Eq. 29 are made
simultaneously by solving the schemes, which helps saving CPU time and memory
stocking size too.

6.2 Asymptotical Numerical Procedure

Following the discretization technique introduced in the transient case, a discrete
solution of the asymptotic problem is a family of real values

(
π̄i,K

)
(i,K)∈E×M, such

that π̄i,K is an approximation of the quantity
∫

K π(p) (i, dx). Using again the infinite
matrix A = (

A(i,K)( j,L)

)
(i,K),( j,L)∈E×M, the asymptotic scheme can then be written as:

∑
( j,L)∈E×M

A(i,K)( j,L)π̄ j,L = 0 (30)

for all (i, K) ∈ E × M, under the constraint∑
( j,L)∈E×M

π̄ j,L = 1. (31)
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Equivalently, the scheme writes:

Aπ̄ = 0 and π̄ · 1 = 1, (32)

where 1 is the constant family with the required dimension and generic term equal
to 1, and where · stands for the dot product (x · y = ∑

(i,K)∈E×M xi,K yi,K for all
x = (

xi,K
)
(i,K)∈E×M and y = (

yi,K
)
(i,K)∈E×M). This scheme is assumed to have a

unique solution.
An approximation R̄(p)

π̄ of limt→+∞ 1
t R(p)

ρ0 (t) now is:

R̄(p)

π̄ =
∑
i∈E

∑
K∈M

π̄i,Kh̄i,K = π̄ · h̄,

where h̄i,K is provided by Eq. 26 and h̄ =
(

h̄i,K

)
(i,K)∈E×M

.

In the same way as in the transient case, we mimic the continuous procedure and
we consider the discrete version H̄0 of H0, given by:(

H̄0 (θ)
) = At θ

for all bounded families θ = (
θi,K

)
(i,K)∈E×M.

We next introduce a discrete version Ū of the potential function Uh(p),
solution to

H̄0Ū =
(
π̄ · h̄

)
1 − h̄ and π̄ · Ū = 0, (33)

which is assumed to have a unique solution. We finally derive the discrete approxi-

mation ∂ R̄(p)

π̄

∂p of limt→+∞ 1
t

∂ R(p)
ρ0

∂p (t), which is given by:

∂ R̄(p)

π̄

∂p
= π̄ · ∂ h̄

∂p
+ π̄ ·

(
∂ H̄0

∂p
Ū

)

with (
∂ H̄0

∂p
Ū

)
i,K

=
∑

( j,L)∈E×M

∂ A( j,L)(i,K)

∂p
Ū j,L

for all (i, K) ∈ E × M.
The same remarks as in the transitory case are still valid here and in case when the

data depends on a family P of parameters, the numerical computation of all ∂ R̄(p)

π̄

∂p for
each p ∈ P requires to solve exactly two dual volume schemes, provided by Eqs. 32
and 33.

7 A First Example

7.1 Presentation—Theoretical Results

A single component is considered, which is perfectly and instantaneously repaired at
each failure. The distribution of the life duration of the component (T1) is absolutely
continuous with respect of Lebesgue measure, with E (T1) > 0. The successive life
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durations make a renewal process. The time evolution of the component is described
by the process (Xt)t≥0 where Xt stands for the time elapsed at time t since the last
instantaneous repair (the backward recurrence time). There is one single discrete
state so that component It is here unnecessary. The failure rate for the component
at time t is λ (Xt) where λ (·) is some non negative continuous and bounded function.
The process (Xt)t≥0 is “renewed” after each repair so that μ(x) (dy) = δ0 (dy) and the
evolution of (Xt)t≥0 between renewals is given by g (x, t) = x + t.

We are interested in the rate of renewals on [0, t], namely in the quantity Q (t)
such that:

Q (t) = R (t)
t

= 1
t
E0

(∫ t

0
λ (Xs) ds

)

where R (t) is the renewal function associated to the underlying renewal process.
The function λ (x) is assumed to depend on some parameter p > 0 and to meet

with H′
2 (= H2) requirement. (Here, both μ(x) (dy) and v (x) are independent of p).

Assuming E

(
T(p)

1

)
< +∞, the process is known to have a unique stationary

distribution π(p) which has the following probability density function (p.d.f.):

f (p)
π (x) =

P

(
T(p)

1 > x
)

E

(
T(p)

1

) = e− ∫ x
0 λ(p)(u)du

E

(
T(p)

1

) . (34)

Besides:

Q(p) (∞) = 1

E0

(
T(p)

1

) = 1∫ +∞
0 e− ∫ v

0 λ(p)(u)dudv
, (35)

which is a direct consequence from the key renewal theorem.
We now provide conditions which ensure the process to be uniformly ergodic

(H3):

Proposition 4 Let us assume that E
(
eδT1

)
< +∞ for some 0 < δ < 1 and that T1 is

new better than used (NBU), namely such that for all x, t ≥ 0, we have F̄ (x + t) ≤
F̄ (x) F̄ (t), where F̄ is the survival function F̄ (t) = P (T1 > t). Then, there are some
C < +∞ and 0 < ρ < 1 such that:∣∣∣P(p)

t λ(p) (x) − π(p)λ(p)
∣∣∣ ≤ Cρ t

for all x ∈ R+.

Proof We use the following result by Konstantopoulos and Last (1999): assume that
E

(
eδT1

)
< +∞ for some δ > 0. Let η > 0 be such that η < δ or η ≤ δ ∧ 1 and define

Wδ,η (x) = 1+ e(δ−η)x
∫ +∞

0
eδt F̄ (x + t)

F̄ (x)
dt ≥ 1.

Then there are positive constants C1 < +∞ and ρ < 1 such that∥∥∥P(p)
t (x, ·) − π(p)

∥∥∥
Wδ,η

≤ C1Wδ,η (x) ρ t
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where

‖ν‖Wδ,η
= sup

|g|≤Wδ,η

|νg| .

Now, under the assumption E
(
eδT1

)
< +∞ for some 0 < δ < 1, let us choose η = δ.

As T1 is NBU, we know that F̄(x+t)
F̄(x)

≤ F̄ (t) for all x, t ≥ 0. Setting f to be the p.d.f. of
T1, we derive:

Wδ,η (x) ≤ 1+
∫ +∞

0
eδt F̄ (t) dt

= 1+
∫ +∞

0
eδt

∫ +∞

t
f (u) du dt

= 1+ 1
δ

(
E

(
eδT1

) − 1
)

< +∞
using Fubini’s theorem. From the quoted result, we now derive existence of C2 <

+∞ and ρ < 1 such that ∥∥∥P(p)
t (x, ·) − π

∥∥∥
Wδ,η

≤ C2ρ
t

which easily provides the result due to
∣∣∣ λ(p)

‖λ(p)‖∞

∣∣∣ ≤ 1 ≤ Wδ,η. �


7.2 Numerical Results

We assume that T1 is distributed according to some Weibull distribution, which is
slightly modified to meet with our assumptions:

λ(α,β) (x) =
⎧⎨
⎩

αβxβ−1 if x < x0
Pα,β,x0 (x) if x0≤ x < x0+2
αβ (x0 + 1)β−1 if x0+2 ≤ x

where (α, β) ∈ O =]0, +∞[×]2, +∞[, x0 is chosen such that T1 > x0 is a rare event
(i.e. P0 (T1 > x0) = e−αxβ

0 is small) and Pα,β,x0 (x) is some smoothing function which
makes x �−→ λ(α,β) (x) continuous and non decreasing on R+. For such a failure rate,
it is easy to check that assumptions H′

2 and H3 are true, using Proposition 4.
Taking (α, β) = (

10−5, 4
)

and x0 = 100 (which ensures P0 (T1 > x0) � 5× 10−435),

we compute IFp (t) = p
Q(p)(t)

∂ Q(p)(t)
∂p and the asymptotic value IFp(∞) for p ∈ {α, β} by

the finite volume methods (EMR) from Section 6.
For comparison purpose, we also compute such quantities by finite differences

(FD) using:

∂ Q (t)
∂p

� 1
ε

(
Q(p+ε) (t) − Q(p) (t)

)

for some small ε. As for the transitory FD quantities, we use the algorithm from
Mercier (2007) which provides an estimate for the renewal function R(p) (t) and
hence for Q(p) (t) = R(p)(t)

t . For the asymptotic FD quantities, we use the exact
formula Eq. 35.
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Table 1 IFα (∞) and IFβ (∞) by finite differences (FD) and by the present method (EMR)

ε IFα (∞) Relative error IFβ (∞) Relative error
between FD between FD
and EMR and EMR

FD 10−2 4.625×10−3 9.8× 10−1 2.8242 1.1× 10−3
10−4 8.212×10−2 6.7× 10−1 2.8214 1.2× 10−4
10−6 2.411×10−1 3.5× 10−2 2.8214 1.1× 10−4
10−8 2.499×10−1 3.0× 10−4 2.8214 1.1× 10−4
10−10 2.500×10−1 7.5× 10−5 2.8214 1.1× 10−4

EMR – 2.500×10−1 – 2.8211 –

The asymptotic results are gathered in Table 1.
The comparison between EMR and FD results for small ε clearly validate the

method. The results for IFβ (∞) by FD are good and very stable when choosing
different values for ε. The approximation for IFα (∞) by FD however requires
smaller ε to provide correct results.

The transitory results are next plotted in Figs. 1 and 2 for t ∈ [0, 50] and different
values of ε. We observe that FD provides similar results as EMR for IFβ (t) but
requires smaller ε for IFα (t) to get similar results as EMR, just as in the transitory
case.
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t

FD 10-2
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FD 10-3

FD 10-4
FD 10-5

FD 10-7

FD 10-6

IF
α
(∞)

Fig. 1 IFα (t) by finite differences (FD) for ε = 10−i with i ∈ {2, ..., 7} and by the present method
(EMR)
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(∞)
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FD 10-1

FD 10-4

EMR FD 10-2

Fig. 2 IFβ (t) by finite differences (FD) for ε = 10−i with i ∈ {1, 2, 4} and by the present method
(EMR)

Finally, comparing IFα (t) and IFβ (t) for t ≤ ∞, we may note that, for a Weibull
distribution, the shape parameter β is much more influent on the rate of renewals
than the scale parameter α.

8 A Second Example

8.1 Presentation—Theoretical Results

The following example is very similar to that from Boxma et al. (2005). The main
difference is that we here assume Xt to remain bounded (Xt ∈ [0, R]) whereas Xt

takes its values in R+ in the quoted paper.
A tank is considered, which may be filled in or emptied out using a pump. This

pump may be in two different states: “in” (state 0) or “out” (state 1). The level
of liquid in the tank goes from 0 up to R. The state of the system “pump-tank”
at time t is (It, Xt) where It is the discrete state of the pump (It ∈ {0, 1}) and Xt

is the continuous level in the tank (Xt ∈ [0, R]). The transition rate from state 0
(resp. 1) to state 1 (resp. 0) at time t is λ0 (Xt) (resp. λ1 (Xt)). The speed of variation
for the liquid level in state 0 is v0 (x) = r0 (x) with r0 (x) > 0 for all x ∈ [0, R[ and
r0 (R) = 0: the level increases in state 0 and tends towards R. Similarly, the speed
in state 1 is v1 (x) = −r1 (x) with r1 (x) > 0 for all x ∈]0, R] and r1 (0) = 0: the level
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of liquid decreases in state 1 and tends towards 0. For i = 0, 1, the function λi

(respectively ri) is assumed to be continuous (respectively Lipschitz continuous)
and consequently bounded on [0, R]. The level in the tank is continuous so that
μ (i, 1− i, x) (dy) = δx (dy) for i ∈ {0, 1} and x ∈ [0, R].

In order to ensure uniform ergodicity of the process (H3), we make the following
additional assumptions, where, for i ∈ E = {0, 1} and x, y ∈ [0, R], τ

(i)
x,y is the deter-

ministic time for reaching y following the curve (t, g (i, x, t)):

λ1 (0) > 0 and λ0 (R) > 0, (36)

τ
(0)
x0,R =

∫ R

x0

1
r0 (u)

du = +∞ (37)

τ
(1)
x0,0 =

∫ y0

0

1
r1 (u)

du = +∞ (38)

for all x0 ∈ [0, R[ and all y0 ∈]0, R]. This ensures the first jump time T1 to be finite
almost surely:

P(0,x0) (T1 < +∞) = 1− e− ∫ R
x0

λ0(u)

r0(u)
du = 1

P(1,y0) (T1 < +∞) = 1− e− ∫ y0
0

λ1(u)

r1(u)
du = 1

We get the following result:

Proposition 5 Under assumptions (36–38), the process (It, Xt)t≥0 is positive Harris
recurrent with single invariant distribution π given by:

π (i, dx) = fi (x) dx

for i = 0, 1 and

f0 (x) = Kπ

v0 (x)
e− ∫ x

R/2

(
λ1(u)

v1(u)
+ λ0(u)

v0(u)

)
du = Kπ

r0 (x)
e
∫ x

R/2

(
λ1(u)

r1(u)
− λ0(u)

r0(u)

)
du (39)

f1 (x) = − Kπ

v1 (x)
e− ∫ x

R/2

(
λ1(u)

v1(u)
+ λ0(u)

v0(u)

)
du = Kπ

r1 (x)
e
∫ x

R/2

(
λ1(u)

r1(u)
− λ0(u)

r0(u)

)
du (40)

for all x ∈]0, R[, where Kπ > 0 is a normalization constant.

Remark 5 Though such results are very similar to some special case from Boxma
et al. (2005), we have better give here a quick proof due to a few differences in the
results, such as some eventual masses for π at the bounds of the interval in the quoted
paper.

Proof Under our assumptions, one can first prove that the process (It, Xt)t≥0 with
values in F := {0, 1} × [0, R] is ϕ−irreducible (see Meyn and Tweedie 1993b), with
maximal irreducibility measure ϕ = c{0,1} × l where c{0,1} is the counting measure on
{0, 1} and l is the Lebesgue measure on [0, R]. Besides, the process (It, Xt)t≥0 is non-
evanescent, due to values in a compact set. One can also prove that it is a T-process,
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namely such that there is some probability measure a (dt) and some kernel T such
that for all i, j ∈ E :

∫ +∞

0
Pt ((i, x) , ( j, A)) a (dt) ≥ T ((i, x) , ( j, A))

for all x ∈ [0, R] and for all Borel set A ⊂ [0, R], where T ((i, ·) , ( j, A)) is lower semi-
continuous (l.s.c.) for all (i, j, A) and where T ((i, x) , E × [0, R]) > 0 for all (i, x).
Indeed, let t0 > 0 be fixed. For any Borel set A ⊂ [0, R] with interior Å, and any
(i, j, x) ∈ E2 × [0, R], we set

T ((i, x) , ( j, A)) = 1{i= j}P(i,x) (T1 > t0) 1Å (g(i, x, t0))

= 1{i= j}c(i,x) (t0) 1Å (g(i, x, t0))

where

c(i,x) (t0) = e− ∫ t0
0 λi(g(i,x,s))ds.

We then have:

Pt0 ((i, x) , ( j, A)) = E(i,x)

(
It0 = j, Xt0 ∈ A

)
≥ 1{i= j}c(i,x) (t0) 1A (g(i, x, t0))

≥ T ((i, x) , ( j, A))

where T ((i, ·) , ( j, A)) is l.s.c. because Å is an open set, so that (It, Xt)t≥0 is a
T-process. Using Theorem 3.3 from Meyn and Tweedie (1993b), the process
(It, Xt)t≥0 now is Harris recurrent and admits a unique invariant measure π up to
some multiplicative constant. Besides, π and ϕ = c{0,1} × l are mutually absolutely
continuous (see Down et al. 1995) and there is some positive measurable function fi

such that:

π (i, dx) = fi (x) dx

Using the fact that π (·, dx) is such that π H(p)

0 ϕ = 0 for all ϕ continuously differen-
tiable on E × [0, R] with

H0ϕ (1, x) = −r1(x)ϕ′ (1, x) − λ1(x)ϕ (1, x) + λ1(x)ϕ (0, x)

H0ϕ (0, x) = r0(x)ϕ′ (0, x) − λ0(x)ϕ (0, x) + λ0(x)ϕ (1, x)

one easily finds that

λ1−i (x) f1−i (x) − λi (x) fi (x) − d
dx

(vi (x) fi (x)) = 0

for i = 0, 1. Solving this system of o.d.e. provides ( f0, f1) of the form Eqs. 39–40.
Checking that, under our assumptions,

∫ R
0 fi (x) dx < ∞ for i = 0, 1, we derive that

π is a finite measure which can then be normalized in a single way into a probability
measure. Consequently, (It, Xt)t≥0 is a positive Harris recurrent process, which ends
the proof. �


We now prove that the process (It, Xt)t≥0 is uniformly ergodic (H3).
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Proposition 6 Under assumptions (36–38), assumption H3 is true, namely there is
some function f fulfilling Eq. 18 such that:

|(Pth) (i, x) − πh| ≤ f (t)

for all (i, x) ∈ E × [0, R] and all t ≥ 0.

Proof According to Theorem 8.1 by Meyn and Tweedie (1993a), if (It, Xt)t≥0 is
bounded in probability on average (condition 1), if there is some t0 ≥ 0 such
that the kernel

∑
n∈N

Pt0n ((i, x) , ·) possesses an everywhere non trivial continuous
component (condition 2) and if the state space is compact (condition 3), then there
is some ρ ∈ [0, 1[ such that:

lim
t→+∞ sup

(i,x)∈E×[0,R]
ρ−t ‖Pt ((i, x) , ·) − π‖TV = 0 (41)

where ‖.‖TV stands for the norm in total variation. Now, according to Theorem 3.2
from Meyn and Tweedie (1993a), as (It, Xt)t≥0 is a ϕ-irreducible T- process which is
positive Harris recurrent (see Proposition 5 and its proof), the process (It, Xt)t≥0 is
bounded in probability on average and condition 1 is true. The second condition
is clear too because setting T2 to be the second jump time, we have for any t0 > 0 :

Pt0 ((i, x) , ( j, A))

≥ P(i,x)

(
T1 ≤ t0 < T2, It0 = j, Xt0 ∈ A

)

= 1{ j=1−i}
∫ t0

0
c(i,x) (s) λ (i, g (i, x, s)) c( j,g(i,x,s)) (t0 − s) 1A (g ( j, g (i, x, s) , t0 − s)) ds

for any (i, j, x) ∈ E2 × [0, R] and for any Borel set A (see Cocozza-Thivent et al.
2006b). The kernel Pt0 ((i, x) , ·) then possesses an everywhere non trivial continuous
component, and

∑
n∈N

Pt0n ((i, x) , ·) does too. As the state space is compact, the three
conditions are verified and we derive that Eq. 41 is true. Consequently, there is some
t1 such that, for all t > t1, we have:

sup
(i,x)∈E×[0,R]

ρ−t ‖Pt ((i, x) , ·) − π‖TV ≤ 1

and hence:

|(Pth) (i, x) − πh| ≤ ‖h‖∞ ρ t

for all (i, x) ∈ E × [0, R] and all t > t1. Setting

f (t) =
{
sup(i,x)∈E×[0,R]

u≤t1
|(Pth) (i, x) − πh| ift ≤ t1

‖h‖∞ ρ t ift > t1

easily provides the result. �
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Table 2 IF(1)
p (∞) by

FD and EMR
p FD EMR Relative error

α0 −3.59 × 10−2 −3.57× 10−2 5, 40 × 10−3
α1 −4.45 × 10−2 −4.43× 10−2 3, 65 × 10−3
ρ0 3.19× 10−1 3.17× 10−1 6, 95 × 10−3
ρ1 2.80× 10−1 2.78× 10−1 7, 19 × 10−3
a 4.98× 10−1 4.98× 10−1 1, 06 × 10−7
b 5.09× 10−1 5.09× 10−1 1, 53 × 10−7

8.2 Quantities of Interest

We are interested in two quantities: first, the proportion of time spent by the level in
the tank between two fixed bounds R

2 − a and R
2 + b with 0 < a, b < R

2 and we set:

Q1 (t) = 1
t
Eρ0

(∫ t

0
1{ R

2 −a≤Xs≤ R
2 +b}ds

)

= 1
t

1∑
i=0

∫ t

0

∫ R
2 +b

R
2 −a

ρs (i, dx) ds

= 1
t

∫ t

0
ρsh1 ds (42)

with h1 (i, x) = 1[ R
2 −a, R

2 +b
] (x).

The second quantity of interest is the mean number of times the pump is turned
off, namely turned from state “in” (0) to state “out” (1) by unit time, namely:

Q2 (t) = 1
t
Eρ0

( ∑
0<s≤t

1{Is−=0 and Is=1}

)

= 1
t
Eρ0

(∫ t

0
λ0 (Xs) 1{Is=0}ds

)

= 1
t

∫ t

0

∫ R

0
λ0 (x) ρs (0, dx) ds

= 1
t

∫ t

0
ρsh2 ds (43)

with h2 (i, x) = 1{i=0}λ0 (x).

Table 3 IF(2)
p (∞) by FD

and EMR
p FD EMR Relative error

α0 −1.81 × 10−1 −1.81× 10−1 1, 67 × 10−4
α1 −1.71 × 10−1 −1.71× 10−1 1, 30 × 10−4
ρ0 −6.22 × 10−2 −6.19× 10−2 5, 21 × 10−3
ρ1 −6.05 × 10−2 −6.01× 10−2 5, 58 × 10−3
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Table 4 IF(1)
p (t) for t = 2

by FD and EMR
p FD EMR Relative error

α0 −8.83 × 10−2 −8.82× 10−2 1, 08 × 10−3
α1 −9.10 × 10−3 −9.05× 10−3 5, 29 × 10−3
ρ0 4.89× 10−1 4.85× 10−1 7, 51 × 10−3
ρ1 1.97× 10−1 1.97× 10−1 4, 04 × 10−3
a 2.48× 10−1 2.48× 10−1 4, 89 × 10−4
b 7.11× 10−1 7.11× 10−1 7, 77 × 10−6

8.3 Numerical Example

We assume that the system is initially in the state (I0, X0) = (0, R/2). Besides, we
take:

λ0 (x) = xα0 ; r0 (x) = (R − x)ρ0 ;
λ1 (x) = (R − x)α1 ; r1 (x) = xρ1

for x ∈ [0, R] with αi > 1 and ρi > 1. All conditions for irreducibility are here
achieved. Our aim is to compute the importance factors with respect to p for
p ∈ {α0, α1, r0, r1, a, b} both in Q1 (t) and Q2 (t), except for parameters a and b which
intervenes only in Q1 (t).

We take the following numerical values:

α0 = 1.05; ρ0 = 1.2; α1 = 1.10;
ρ1 = 1.1; R = 1; a = 0.2; b = 0.2.

Similarly as for the first method, we test our results using finite differences (FD).
For FD, the transitory results are computed via the finite volume scheme from
Eymard et al. (2008) and the asymptotic results via Eqs. 39–40. The results are here
rather stable choosing different values for ε and they are provided for ε = 10−2 in
case p ∈ {α0, α1, r0, r1} and for ε = 10−3 in case p ∈ {a, b}. EMR results are computed
using the finite volume methods from Section 6. The asymptotic results are given in
Tables 2 and 3, and the transitory ones are given in Tables 4 and 5 for t = 2.

The results are very similar by FD and EMR both for the asymptotic and
transitory quantities, which here again validate the method. Besides, we may observe
that the asymptotic results coincides by both methods, even in the case when the
velocity field v (i, x) depends on the parameter (here ρi), which however does not fit
with our technical assumptions from Section 5. Due to that (and to other examples
where the same remark is valid), one may conjecture that the results from Section 5
are valid under less restrictive assumptions than those given in that section.

Table 5 IF(2)
p (t) for t = 2

by FD and EMR
p FD EMR Relative error

α0 −2.06 × 10−1 −2.06× 10−1 9, 12 × 10−4
α1 −6.80 × 10−2 −6.79× 10−2 2, 12 × 10−3
ρ0 −1.25 × 10−1 −1.24× 10−1 4, 27 × 10−3
ρ1 −4.11 × 10−3 −4.03× 10−3 2, 00 × 10−2

26



As for the respective importance of the different parameters in Qi (t), one may
note that the importance factors at t = 2 of α0 and ρ0 in Qi (t) (i = 1, 2) are clearly
higher than the importance factors of α1 and ρ1 in Qi (t) (i = 1, 2). This must be due
to the fact that the system starts from state 0, so that on [0, 2], the system spends
more time in state 0 than in state 1. The parameters linked to state 0 hence are more
important than the ones linked to state 1. Similarly, the level is increasing in state 0
so that the upper bound b is more important than the lower one a.

In long-time run, the importance factors of α0 and α1 in Qi (t) (i = 1, 2) are
comparable, which is conform with intuition. The same remark is valid for ρ0 and
ρ1, as well as for a and b .

Finally, parameters ρ0 and ρ1 are more important than parameters α0 and α1 in
Q1 (t), conversely to what happens in Q2 (t). This seems coherent with the fact that
quantity Q1 (t) is linked to the level in the tank, and consequently to its evolution,
controlled by ρ0 and ρ1, whereas quantity Q2 (t) is linked to the transition rates, and
consequently to α0 and α1.
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Appendix

This appendix gives a result of existence, uniqueness and regularity for the solution
of the equation:

ϕ(t, i, z) = ϕ0(i, z) +
∫ t

t0
F(s, ϕ(s, ., .))(i, z) ds

We shall use the notations:

– I =]a, b [ bounded interval of R, E finite set and W open subset of R
K,

– Cb
1 (E, W) set of bounded function from E × W to R, continuously differentiable

with respect to the variables in W with bounded partial derivatives ,
– if � ∈ Cb

1 (E, W), ∇� is the vector of partial derivatives with respect to the
variables in W,

– if � ∈ Cb
1 (E, W), ‖�‖Cb

1 (E,W) = max (‖�‖∞, ‖∇�‖∞),
– Cb

1 (I, E, W) set of bounded functions ϕ(s, i, z) from I × E × W to R, continuous
in the variables in I × W, such that for all s in I, the function (i, z) → ϕ(s, i, z)

belongs to Cb
1 (E, W) and such that sups∈I ‖ϕ(s, ., .)‖Cb

1 (E,W) < +∞,
– if ϕ belongs to Cb

1 (I, E, W), ‖ϕ‖Cb
1 (I,E,W) = sups∈I ‖ϕ(s, ., .)‖Cb

1 (E,W),
– Cb

2 (E, W) set of bounded function from E × W to R, two times continuously
differentiable with respect to the variables in W with bounded partial derivatives,

– if � ∈ Cb
2 (E, W), J(�) is the matrix of second order derivatives with respect to

the variables in W,
– if � ∈ Cb

2 (E, W), ‖�‖Cb
2 (E,W) = max (‖�‖∞, ‖∇�‖∞, ‖J (�) ‖∞),

– Cb
2 (I, E, W) set of bounded functions ϕ(s, i, z) from I × E × W to R, continuous

in the variables in I × W, such that for all s in I, the function (i, z) → ϕ(s, i, z)

belongs to Cb
2 (E, W) and such that sups∈I ‖ϕ(s, ., .)‖Cb

2 (E,W) < +∞,
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– if ϕ belongs to Cb
2 (I, E, W), ‖ϕ‖Cb

2 (I,E,W) = sups∈I ‖ϕ(s, ., .)‖Cb
2 (E,W).

Theorem 4 Let us consider the equation

ϕ(t, i, z) = ϕ0(i, z) +
∫ t

t0
F(s, ϕ(s, ., .))(i, z) ds

and let us suppose that:

– t0 ∈ I, t ∈ I, i ∈ E, z ∈ W,
– ϕ0 belongs to Cb

1 (E, W),
– if ϕ belongs to Cb

1 (I, E, W), then the application (s, i, z) → F(s, ϕ(s, ., .))(i, z)

belongs to Cb
1 (I, E, W),

– if �1 and �2 are in Cb
1 (E, W) there exists a positive constant C such that for all s

in I :

‖F(s, �1) − F(s, �2)‖∞ ≤ C‖�1 − �2‖Cb
1 (E,W)

‖∇F(s, �1) − ∇F(s,�2)‖∞ ≤ C‖�1 − �2‖Cb
1 (E,W)

Then there exists a unique solution which belongs to Cb
1 (I, E, W) and is continuously

differentiable with respect to the first variable. If, in addition, we have

– ϕ0 belongs to Cb
2 (E, W),

– if ϕ belongs to Cb
2 (I, E, W), then the application (s, i, z) → F(s, ϕ(s, ., .))(i, z)

belongs to Cb
2 (I, E, W),

– if �1 and �2 are in Cb
2 (E, W) there exists a positive constant C such that for all s

in I:

‖J(F(s, �1)) − J(F(s, �2))‖∞ ≤ C‖�1 − �2‖Cb
2 (E,W)

then there exists a unique solution which belongs to Cb
2 (I, E, W) and is continuously

differentiable with respect to the first variable.

Proof Let us prove the first part of the theorem. To prove the existence of a solution,
starting from an initial function ϕ(0) of Cb

1 (I, E, W), we define a sequence ϕ(n) of
functions of Cb

1 (I, E, W) by:

ϕ(n+1)(t, i, z) = ϕ0(i, z) +
∫ t

t0
F(s, ϕ(n)(s, ., .))(i, z) ds (44)

Thanks to theorem of differentiation under integral, we can prove that these func-
tions are in Cb

1 (I, E, W) and that the vector of partial derivatives with respect to
variables in W satisfies:

∇ϕ(n+1)(t, i, z) = ∇ϕ0(i, z) +
∫ t

t0
∇F(s, ϕ(n)(s, ., .))(i, z) ds

We have

‖ϕ(n+1)(t, ., .) − ϕ(n)(t, ., .)‖∞ ≤ C
∫ t

t0
‖ϕ(n)(s, ., .) − ϕ(n−1)(s, ., .)‖Cb

1 (E,W) ds

28



and

‖∇ϕ(n+1)(t, ., .) − ∇ϕ(n)(t, ., .)‖∞ ≤ C
∫ t

t0
‖ϕ(n)(s, ., .) − ϕ(n−1)(s, ., .)‖Cb

1 (E,W) ds

so that

‖ϕ(n+1)(t, ., .) − ϕ(n)(t, ., .)‖Cb
1 (E,W) ≤ C

∫ t

t0
‖ϕ(n)(s, ., .) − ϕ(n−1)(s, ., .)‖Cb

1 (E,W) ds

Iterating this inequality, we obtain for all t in I:

‖ϕ(n)(t, ., .) − ϕ(n−1)(t, ., .)‖Cb
1 (E,W) ≤ K

Cn(t − t0)n

n!
Hence

‖ϕ(n) − ϕ(n−1)‖Cb
1 (I,E,W) ≤ K

Cn(b − a)n

n!
Then the sequence ϕ(n) is a Cauchy sequence in the Banach space Cb

1 (I, E, W) and
it converges to a function ϕ in Cb

1 (I, E, W) as n tends to infinity. Taking the limit in
Eq. 44, we obtain:

ϕ(t, i, z) = ϕ0(i, z) +
∫ t

t0
F(s, ϕ(s, ., .)(i, z) ds

In order to prove the uniqueness of the solution, let ϕ1, ϕ2 ∈ Cb
1 (I, E, W) be two

different solutions of the equation. We have:

ϕ1(t, i, z) − ϕ2(t, i, z) =
∫ t

t0
(F(s, ϕ1(s, ., .)) − F(s, ϕ2(s, ., .))) ds

and

∇ϕ1(t, i, z) − ∇ϕ2(t, i, z) =
∫ t

t0
(∇F(s, ϕ1(s, ., .)) − ∇F(s, ϕ2(s, ., .))) ds

Then

‖ϕ1(t, ., .) − ϕ2(t, ., .)‖Cb
1 (E,W) ≤ C

∫ t

t0
‖ϕ1(s, ., .) − ϕ2(s, ., .)‖Cb

1 (E,W) ds

and by iteration

‖ϕ1(t, ., .) − ϕ2(t, ., .)‖Cb
1 (E,W) ≤ K

Cn(t − t0)n

n!
Hence for all n in N:

‖ϕ1 − ϕ2‖Cb
1 (I,E,W) ≤ K

Cn(b − a)n

n!
The uniqueness follows. We can prove the second part of theorem in the same way.

�
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