THE GL-LUST. CONSTANT AND ASYMMETRY OF THE KALTON-PECK TWISTED SUM IN FINITE DIMENSIONS - Archive ouverte HAL Access content directly
Journal Articles Proceedings of the American Mathematical Society Year : 2011

THE GL-LUST. CONSTANT AND ASYMMETRY OF THE KALTON-PECK TWISTED SUM IN FINITE DIMENSIONS

M. Junge
  • Function : Author
S. Reisner
  • Function : Author

Abstract

We prove that the Kalton-Peck twisted sum Z(2)(n) of n-dimensional Hilbert spaces has a GL-l.u.st. constant of order log n and bounded GL constant. This is the first concrete example which shows different explicit orders of growth in the GL and GL-l.u.s.t, constants. We also discuss the asymmetry constants of Z(2)(n).

Dates and versions

hal-00692983 , version 1 (01-05-2012)

Identifiers

Cite

Y. Gordon, M. Junge, Mathieu Meyer, S. Reisner. THE GL-LUST. CONSTANT AND ASYMMETRY OF THE KALTON-PECK TWISTED SUM IN FINITE DIMENSIONS. Proceedings of the American Mathematical Society, 2011, 139 (8), pp.2793--2805. ⟨10.1090/S0002-9939-2011-10715-9⟩. ⟨hal-00692983⟩
93 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More