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ABSTRACT: This research is devoted to the construction afodabilistic model of uncertainties for a rigid multibodyrtamical
system dynamic made up of uncertain rigid bodies. We firssttant a stochastic model of an uncertain rigid body by r@ptathe
mass, the center of mass and the tensor of inertia by randdables. The prior probability distributions of the stostia model
are constructed using the maximum entropy principle urttdeconstraints defined by the available information. Theegaor of
independent realizations corresponding to the prior poityadistribution of these random quantities are develdpThen, several
uncertain rigid bodies can be linked each others in ordeatocutate the random response of a multibody dynamical systen
application is proposed to illustrate the theoretical dmwment.

KEY WORDS: Uncertain rigid body; Random mass; Random cenifterass; Random tensor of inertia.

1 INTRODUCTION Section 2 is devoted to the construction of the mean model
for the rigid multibody dynamical system by using the cleaki

This study is devoted to the construction of a probabilistlrgethOd' In Section 3, firstly, we propose a general protigbili

model of uncertainties for a rigid multibody dynamical syst model for an unconstrained uncertain rigid body and segondl

made up of uncertain rigid bodies. In some cases, the mztjlhs% uncertain rigid multibody dynamical system is obtaibgd

e - . Ining this unconstrained uncertain rigid body to the otigid
distribution |n_3|de a rigid body is not perfectly kpovyn alr"!g)odie:s. The last section is devoted to an application which
must be considered as random (for example, the distribation.

o . . illustrates the proposed theory.
passengers inside a vehicle) and therefore, this unknovas ma
distribution inside the rigid body induces uncertaintiesthie > MEAN MODEL FOR THE RIGID MULTIBODY DY-
model of this rigid body. Here, we propose a new probabilisti  NAMICAL SYSTEM
modeling for uncertain rigid bodies in the context of the - . .
multibody dynamics. Concerning the modeling of uncertamt In this paper, _the usual model Of a rigid mu_Itlbody dynamlcgl
in multibody dynamical system, a very few previous reseagchSYStem for which all the mechanical propertles are knowh WI|
have been carried out. These researches concerned palsam_B?eca"ed the mean model ((_)r the nominal model). This seqtl_on
which describe the joints linking each rigid body to the othe'S d€voted to the construction of the mean model for a rigid
and the external sources (see [7], [16], [3]), [12] ,[13Dt bot mu_Itlbody dynamlcal_ system. 'I_'hls mean model is constructed
rigid bodies themselves. In the field of uncertain rigid tesgia 2 1N ((14], [15]) and is summarized below.
first work has been proposed in [9], [10], in which the authoks, Dynarmical equations for a rigid body of the multibody
take into account uncertain rigid bodies for rotor dynarhica system
systems using the nonparametric probabilistic approash [1

[19] consisting in replacing the mass and gyroscopic mesric-€t RB be the rigid body occupying a bounded doméln
by random matrices. with a given geometry. Lef be the generic point of the three

_ _ dimensional space. Let= (x1,Xz,X3) be the position vector
In this paper, a general and complete stochastic modeloispoint & defined in a fixed inertial framé0,Xo.1,%0.2,%0.3),

constructed for an uncertain rigid body. The mass, the ceng ch tha — O_E> The rigid body class is then defined by three
of mass and the tensor of inertia which describe the rig antities

body are modeled by random variables. The prior probabilit (1) The first one is the mass of RB; which is such that
distributions of the random variables are constructedgutie
maximum entropy principle [6] from Information Theory [17] m= [ px)dx , 1)
The generator of independent realizations correspondiriget Q

prior probability distributions of these random quanttiare herep(x) is the mass density
developed and presented. Then, several uncertain rigitdesbodv (2) The second quantity is tﬁe position veatpof the center
can be linked each others in order to calculate the randommassG defined in the fixed inertial frame. b

response of an uncertain multibody dynamical system. TRe N Y

stochastic multibody dynamical equations are solved ufing 1

Monte Carlo simulation method. fi = m Jo, Xpijax . (2)
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3.1 Sochastic model for an uncertain rigid body of the
(3) Let (Gi,X 1,%2,X% 3) be the local frame for which the multibody dynamical system

origin is Gi and which is def’“ﬂ from the .flxed framq—he properties of the mean model (or the nominal model) of
(0,%0.1,%.2,%0,3) by the translatiol®G; and a rotation defined the rigid body RB are defined by its massy, the position
by the three Euler angles, i andy. The third quantity is the vectorr,; of its center of mas; at initial timet = 0 and the
positive-definite matrixJ] of the tensor of inertia in the local matrix [J;] of its tensor of inertia with respect to the local frame

frame such that (Gi,X1:X,.X5). The probabilistic model of uncertainties
Hu=— [ ¥ xxxuox)dx Vu € R3 3 for this rigid body is cpnstructed by repla_cing these three
3] /Qi XX xup(x) ’ < ’ 3 parameters by the following three random variables: thdaem

massM;, the random position vectd®g; of its random center
? ) ) Lo ) of massG; at initial timet = 0 and the random matrid;] of

Gi¢ are givenin(Gi, X 1,X 2,% 3)- In the above equation,x v jis random tensor of inertia with respect to the random local
denotes the cross product between the vect@nsdv. frame (Gi, X 1,X »,X ). The probability density functions
(PDF) of these three random variables are constructed using
the maximum entropy principle (see [17], [6]), that is to,day

The rigid multibody dynamical system is made up @f maximizing the uncertainties in the model under the coirgsa
rigid bodies and ideal joints including rigid joints, jonwith  gefined by the available information.

given motion (rheonomic constraints) and vanishing joffrese
motion). The interactions between the rigid bodies arézedl 3.1.1 Construction of the PDF for the random mass
by these ideal joints but also by springs, dampers or aatsiat
which produce forces between the bodies. In this paper, oLI
nc holonomic constraints are considered. Lidie the vector in
R8 such thati = (rq,...,n,,S1, -, S, ) IN Whichs = (ai, B, %)
is the rotation vector. The constraints are given by
implicit equations which are globally written ggu,t) = 0. The

in which the vectox’ = (x3,X,,%;) of the components of vector

2.2 Matrix model for therigid multibody dynamical system

) Available information

¥t E{.} be the mathematical expectation. The available

information for the random mashl; is defined as follows.

Firstly, the random variabl®l; must be positive almost surely.

Secondly, the mean value of the random nmdssust be equal

. i _ to the valuem, of the mean (or nominal) model. Thirdly, as it

(6ny, x 6n,) mass matri¥M] is defined by is proven in [19], the random mass must verify the inequality

M] 0 E{M, 2} < 4+ in order that a second-order solution exists for
M] = { 0 [MS } ) (4) the stochastic dynamical system. In addition, it is also/@no
that this constraint can be replaced|BflogM; }| < +co.

where the(3n, x 3n,) matricesM'] and[M?] are defined by (if) Maximum entropy principle

mfla] - 0 [H] -~ O The probability density functio — p,, (1) of the random
M= . : [MS] = CoL (5) variableM; is constructed by maximizing the entropy under the
. ' ' ’ T ’ constraints defined above. The solution of this optimizatio
0 - my[lg] 0 - [In] problem is the PDF of a gamma random variable defined on

in which [I3] is the(3 x 3) identity matrix. The functiofu(t),e 10,+[. This PDF depends on two parameters which mye
[0,T]} is then the solution of the following differential equatio®NdCw;. Since parameteCy; has no physical meaning, it is

(see [15]) eliminated in introducing the coefficient of variatidy) of the
M T , K random variabléV; such thatdy, = g, /m whereo,, is the
{ M] [¢5] ] { ;\J } = [ d a- da e | (6) standard deviation of the random varialbl. Therefore, the
6y [O] — @bt — [Pl U PDF of the random mass is completely defined by the mean
with the initial conditions valuem and by the dispersion parametgy.
u)=uo , U0 =vo , (7) 3.1.2 Construction of the PDF for the random position vector
in which k(u) is the vector of the Coriolis forces and where Ro;

[@u(u(t),t)]ij = d¢i(u(t),t)/duj(t) and ¢, = d¢/dt. The In this subsection, the PDF of the random initial positiontee
vectorg(u,u,t) is constituted of the applied forces and torqueRg; of the center of mass of RBat initial timet = 0 is
induced by springs, dampers and actuators. The véddr constructed.
is the vector of the Lagrange multipliers. Equation (6) cen b
solved using an adapted integration algorithm (see foaitst (i) Available information
[2]). The position vector,; of the center of mas§; at initial time
t = 0 of the mean (or nominal) model is given. However, the

3 STOCHASTIC MODEL FOR A MULTIBODY DYNAMI- real position is not exactly known amg; only corresponds to a

CAL SYSTEM WITH UNCERTAIN RIGID BODIES mean position. Consequently, there is an uncertainty aibeut
Firstly, a stochastic model for an uncertain rigid body aé threal position and this is the reason why this position is nextie
multibody dynamical system is proposed and secondly, thg the random vectoRg;. Some geometrical and mechanical
stochastic model for the multibody dynamical system witbonsiderations lead us to introduce an admissible doDaof
uncertain rigid bodies is constructed joining the stodbastrandom vectoRg;. We introduce the vectdr of the parameters
model of the uncertain rigid bodies. describing the geometry of domall. In addition, the mean
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value of the random vectdRg; must be equal to the valuereplaced by the random varialli4 and whergz;] is replaced
Iy; of the mean (or nominal) model. Therefore, the availabley [Z;]. We then obtain
information for random variablRg; can be written as

Car@), ., .
Ros D) . a 8 [zl]—Mi{—z 13 [J.}}, (19)
E{Roi} = oy € Di(h) - (b) ®

3 = Mt (Z) 13— Zi)} (14)

(if) Maximum entropy principle

The probability density functiora — pg, (a) of random jy ayajjable information concerning random matrix [Z]

variable Ro; is then constructed by maximizing the entropyet us introduce (1) the nominal valug;] of deterministic
with the constraints defined by the available information imatrix [z] such that[z,] = (1/m){tr([%])/2[l5] — [J]} and
Eq (8) The solution of this Optimization prOblem depends C(Z) the upper boun@ZimaX} of random matrix[zi]_ Then, the

two parameters which ang; and vector-valued parametey  available information fofZ;] can be summarized as follows,
and is such that

(Zi] e M3 (R) as. ,

. _ —<A,a>

pRo.i (a, h) = ]lDi(h) (a)COe . (9) {[ZlmaX] _ [Zi]} c M%— (R) as. ,
The positive valued paramet€ and vectorA are the unique E{lzi]} =zZ] . (15)
solution of the equations E{log(defzi))} =C' , |C|<+o |,

Cofoyme P da=1 (@ E{log(det[Z/™] ~[Z])} =C! . G <+ (¢
Co J, ae<ha>da—ry, (b) (10)
Bi(h) o For more convenience, random matfi&;] is normalized as
follow. Matrix [Z;] being positive definite, its Cholesky

_ o decomposition yield§Z;] = [Lz]" [Lz] in which [Lz] is an
(iii) Generator of independent realizations upper triangular matrix in the séfi3(R) of all the (3 x 3) real

The independent realizations of random variaRig must be matrices. Then, random matii;] can be rewritten as
generated using the constructed Pbr!:m- Such a generator .
can be obtained using the Monte Carlo Markov Chain (MCMC) (zi] =[z] [Gi]lLz] , (16)

method (Metropolis-Hastings algorithm [5]). in which the matrix[G;j] is a random matrix for which the

3.1.3 Random matrifd;] of the random tensor of inertia, ~ 2vailable information is

In this subsection, the random matfik] of the random tensor [Gile M3 (R) as
of inertia with respect tdGi, X ;,X ,,X 3) is defined and an {[GM] — [Gi]} e M} (R) as
algebraic representation of this random matrix is congtdic
The mass distribution around the random center of n&ss E{Gi]} =[] , a7)
is uncertain and consequently, the tensor of inertia is also E{Iog(det[Gi])}:Ci" ’ |Ci|/\ < 4o |
uncertain. This is the reason why the mafdy of the tensor
of inertia of the mean (or nominal) model with respect to E{log(de([G"™]—[Gi]))} =C" , |G| <+
(Gi X 1,X 2,X 3) is replaced by a random matrig] which is
constructed by using the maximum entropy principle. in which C!" = C! — log(defz;]), C¥' = C! — log(detZ]) and
We introduce the positive-definite mati%] independent oft  \here the matriG™>] is an upper bound for random matrix
such that [Gi] and is defined byG"] = ([L]T)~[Z"] [Ly "%
[Zi] = 1 {@ [I3] — [Ji]} . (11) (ii) Maximum entropy principle
m 2 The probability distribution of random matri;] is constructed

using the maximum entropy principle under the constraints
defined by the available information given by Eq. (17). The
3] = m{tr(Z]) 1a] - [Z]} . (12) probability deniity functionpg,([G]) with respect to the
volume elemendG of random matri{G;] is then written as
It can be proven thalz;] is positive definite and that each max
positive definite matriXJ;| constructed using Eq. (12), where P ([G]) = ]lMQT(R)([GD x JIMQ(R)([Gi ]=1G]) xCe,
[Z] is a given positive definite matrix, can be interpreted as the  x (det[G])fA' x (det([G"] — [G}))”\” x e~ tr(KlE])
matrix of a tensor of inertia of a physical rigid body for whic (18)
the massis 1 (see [1]). in which the positive valued parametgg, is a normalization
The probabilistic modelingJ;] of [J] consists in introducing constant, the real parameteyis< 1 andA, < 1 are Lagrange
the random matri{Z;] and in using Eq. (12) in whiclry is multipliers relative to the two last constraints defined loy @.7)

Then[J] can be calculated as a function[df],



Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011 2623

and the symmetric real matriju] is a Lagrange multiplier 3.2 Sochastic matrix model for a multibody dynamical system
relative to the third constraint defined by Eq. (17). This  with uncertainrigid bodiesand its random response
probability density function is a particular case the Kumme,, oider to limit the developments, it is assumed that only
Beta matrix variate distribution (see [11], [4]) for whichet one of then, rigid bodies denoted by RBof the rigid

Iovl\:/)er bound |saz)\er(;\mat(r:;x. ) h ) \uti multibody system is uncertain. The extension to several
. haramete.rG:Gi, 1, Ay and matrixu] are the unique solution o 1ain rigid bodies is straightforward. Let theyfrandom
of the equations coordinates be represented by tfiéM-valued stochastic

E{]IMS(R)([G|])} = 1 i procesaJ = (Rlv"'7Rnbasla'~'7S"lb) indexed by[O,T} and |et
E{B[G-]} =l3] the n; random Lagrange multipliers be represented byRRe
: ¥ (19) valued stochastic proceAsndexed by[0, T]. The deterministic

E{log(de{G])} =C!" ,
E{log(det[G"™] - [Gi]))} = CV

For fixed values off; and A,, parameter€g, and [u] can i M] [¢U]T ] [ u } _ [ q-K 22)
be estimated using Eq. (19). In Eq. (19), since the parasetet. [¢,] [0 A —§0 - [§9JU |

Ci'/ andC! have no real physical meaning, the paramedgrs
andA, are kept as parameters which then allows the "shape” of .
the PDF to bg contF;oIIed. If experimental data are avaiI&hFi)e U0 =Uo , UOQ=v , as (23)
the responses of the dynamical system, then the two paresnejg \vnich the vectotdo = (fo,...,Rojs- -+ Tong: o1, - - Som)
A and A, can be identified solving an inverse problem. If i " [ \ i

- : s random due to the random vecRy;. For all given real vector
experimental data are not available, these two paramdtevs a (i, the vectork (1) of the Coriolis forces is random due to the

a sensitivity analysis of the solution to be carried out with,,4om matrixJi]. The random mass matrjM] is defined by
respect to the level of uncertainties.

Eq. (6) becomes the following stochastic equation

_ | MT 0o
(iii) Properties for random matrix [J;] [M]—[ 0 [MS ) (24)
It is proven in [1] that using Eq. (14) and the available
information defined by Eq. (15), the following importanin which the (3n, x 3n,) random matricesM'] and [M]° are

properties for random matri¥;] can be deduced, defined by
{(3tr(3) 1s] - 9]} e M3 (R) as | (a) mil - 0
JmX) _ (3]} e Mg (R) as b . - :
{3} =13] . (c) 0 . .
My |13
A< =20 <0} = E{[3] 1} <+, (d) "
in which the random matrifJ"™®], which represents a random [34] 0
upper bound for random matrf;], is defined by ! .
(9] = Mi{tr(1Z"9) [13] - 2™} (21) MT=1 3] N (26)
It should be noted that Eq. (20-a) implies that each reatinat 0 S [In,]

of random matrix[Ji] corresponds to the matrix of a tensor )
of inertia of a physical rigid body. In addition, this equati Random Egs. (22) and (23) are solved using the Monte Carlo
implies that random matriid;] is almost surely positive definite. Simulation method.
Eqg. (20-b) provides a random upper bound for random matrjx
[Ji]. Eg. (20-c) corresponds to a construction for which thAé APPLICATION
mean value of random matr[d;] is equal to the nominal value In this section, we present a numerical application which
[J;]. Finally, Eq. (20-d) is necessary for that the random sotuti validates the methodology presented in this paper.
of the nonlinear dynamical system be a second-order stichas L
process. 4.1 Description of the mean model

The rigid multibody model is made up of five rigid bodies
(iv) Generator of independent realizations for random matrix and six joints which are described in the fixed frame
[3i] (0,%0.1,%0.2,%0.3) (See Fig. 1). The plan defined b®, X0 1,%02)
The generator of independent realizations of random matisxidentified below as the "ground”. The gravity forces in the
[Gi] is based on the Monte Carlo Markov Chain (MCMC)gz-direction are taken into account.
(Metropolis-Hastings algorithm [5] with the PDF defined byi) Rigid bodies
Eq. (18). Then, independent realizations of random ma#ix In the initial configuration, the rigid bodig@bl, Rb2, Rb3 and
are obtained using Eq. (16). Finally, independent reatinatof Rb4 are cylinders for which the axes follow tixgs-direction.
random matriXJ;] are obtained using Eqg. (14) and independefni the initial configuration, the rigid bodfrb5 is supposed
realizations of random mas4;. to be symmetric with respect to the plan@sb, xg 1,%p,2) and
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Figure 1. Rigid multibody system.

o
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(G5,%0.1,%0,3) in which G5 is the center of mass &b5.

(i) Joints

— The joint Ground-Rbl is made up of a prismatic joint
following xps-direction. The displacement followingg s-

direction, denoted byl(t), is imposed. Displacementl(t) 40 : W

o
o

acceleration (mlsz)
o
angular acc. (rad/sQ)
S
- o

|
=)
N

|
o
w

IS Zero In the rang¢0,1 X 1073]8, Is Ilnearly InscreaSIng In 7600 0.005 0.01 0.015 0.02 0.025 0.03 70'40 0.005 001 0015 002 0025 0.03

the rangef1 x 1072,6 x 10~%]s and is equal to 1&* min the time (3 tme (5

rangel6 x 10~3,3x 10~?s. The jointGround-Rb2is a prismatic Figure 3.  Random transient acceleration of poas,

joint following Xo 3-direction. The displacement following s- Case 2: confidence region (upper and lower envelopes),
direction denoted by2(t), is imposed. Displacement(t) is mean response and response of the mean model are
zero in the rangé0,1.1 x 10-?]s, is linearly inscreasing in the superimposed; xg 3-acceleration (left figure) andq -
range[1.1x 1072,1.6 x 10~?|s and is equal to 10 min the angular acceleration (right figure). ’

range[1.6 x 10-2,3 x 10~2]s. The displacement followingy ;-
direction is unconstrained.

— The joints Rb1-Rb3 and Rb2-Rb4 are constituted of 6D
spring-dampers..

— Finally, the jointsRb3-Rb5 andRb4-Rb5 arexg »-direction
revolute joints.

random acceleration of poirRy,s is plotted in Fig. 3. We

can remark, as it was expected, that the angular acceleiiatio

sensitive to uncertainties on the tensor of inertia.

(iii) Case 3:Ms is deterministic,Rgs is random andJs] is

deterministic.

The domain ofRg5 is supposed to be a parallelepiped which

Rigid body Rb5a is considered as uncertain and is therefolg centered at point0,0,0.55) for which its edges are parallel

modeled by a random rigid body. As explained in Sectid the directions s, xo2 andxo3 and for which the lengths

3, the elements of inertia of the uncertain rigid BoRps following these three directions are respectivel§,00.2 and

are replaced by random quantities. The fluctuation of ti02. The confidence region, with a probability lef#el= 0.90,

response is controlled by four parametés , h, A andA,. Of the random acceleration of poiftps is plotted in Fig. 4.

A sensitivity analysis is carried out with réspect to theserf Ve can remark that the angular acceleration is sensitive to

parameters. Statistics on the transient response areagstimuncertainties on initial center of massRiSS.

using the Monte Carlo simulation method with 500 independel#v) Case 4Ms, Ros and[Js] are random.

realizations. The initial velocities and angular velasstiare The values of the parameters of the PDF are those fixed in the

zero. The observation poiRt,s belongs taRb5. three previous cases. The confidence region, with a pratyabil
level P. = 0.90, of the random acceleration of poiRfys is

(i) Case 1: Ms is random,Rgs is deterministic andJs) is Plotted in Fig. 5. It can be viewed that (1) the randomness on

deterministic. the acceleration is mainly due to the randomness of riviss

We choosd), = 0.5. The confidence region, with a probability(2) the randomness on the angular acceleration is mainlyaue

level P, = 0.90, of the random acceleration of poiRY,s is the randomness of the initial positiéty s of the center of mass

plotted in Fig. 2. It can be noted that the acceleration isiga @nd the random tensor of inerfizs|.

to the mass uncertainties.

(i) Case 2:M; is deterministicRo s is deterministic andJs] is 5 CONCLUSION

random. We have presented a complete and general probabilistic

We choose\| = —5 andA, = —5 for random matri{Js]. The modeling of uncertain rigid bodies taking into account all

confidence region, with a probability lev€t = 0.90, of the the known mechanical and mathematical properties. This

4.2 Randomresponse of the stochastic model
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The random dynamical responses can then be calculatece In th
proposed probabilistic model, the mass, the center of ntas a
the tensor of inertia are modeled by random variables fockvhi
the prior probability density functions are constructemhgshe
maximum entropy principle under the constraints definedlby a
the available mathematical, mechanical and design priegert
Several uncertain rigid bodies can be linked each others in
order to obtain the stochastic dynamical model of the uagert
multibody dynamical system. The theory proposed has been
illustrated analyzing a simple example. The results olethin
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were available on the responses, then the parameters which
control the level of uncertainties could be estimated byiag|
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