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Multibody system dynamics with uncertain rigid bodies
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ABSTRACT: This research is devoted to the construction of a probabilistic model of uncertainties for a rigid multibody dynamical
system dynamic made up of uncertain rigid bodies. We first construct a stochastic model of an uncertain rigid body by replacing the
mass, the center of mass and the tensor of inertia by random variables. The prior probability distributions of the stochastic model
are constructed using the maximum entropy principle under the constraints defined by the available information. The generator of
independent realizations corresponding to the prior probability distribution of these random quantities are developed. Then, several
uncertain rigid bodies can be linked each others in order to calculate the random response of a multibody dynamical system. An
application is proposed to illustrate the theoretical development.

KEY WORDS: Uncertain rigid body; Random mass; Random centerof mass; Random tensor of inertia.

1 INTRODUCTION

This study is devoted to the construction of a probabilistic
model of uncertainties for a rigid multibody dynamical system
made up of uncertain rigid bodies. In some cases, the mass
distribution inside a rigid body is not perfectly known and
must be considered as random (for example, the distributionof
passengers inside a vehicle) and therefore, this unknown mass
distribution inside the rigid body induces uncertainties in the
model of this rigid body. Here, we propose a new probabilistic
modeling for uncertain rigid bodies in the context of the
multibody dynamics. Concerning the modeling of uncertainties
in multibody dynamical system, a very few previous researches
have been carried out. These researches concerned parameters
which describe the joints linking each rigid body to the others
and the external sources (see [7], [16], [3]), [12] ,[13]), but not
rigid bodies themselves. In the field of uncertain rigid bodies, a
first work has been proposed in [9], [10], in which the authors
take into account uncertain rigid bodies for rotor dynamical
systems using the nonparametric probabilistic approach [18],
[19] consisting in replacing the mass and gyroscopic matrices
by random matrices.

In this paper, a general and complete stochastic model is
constructed for an uncertain rigid body. The mass, the center
of mass and the tensor of inertia which describe the rigid
body are modeled by random variables. The prior probability
distributions of the random variables are constructed using the
maximum entropy principle [6] from Information Theory [17].
The generator of independent realizations corresponding to the
prior probability distributions of these random quantities are
developed and presented. Then, several uncertain rigid bodies
can be linked each others in order to calculate the random
response of an uncertain multibody dynamical system. The
stochastic multibody dynamical equations are solved usingthe
Monte Carlo simulation method.

Section 2 is devoted to the construction of the mean model
for the rigid multibody dynamical system by using the classical
method. In Section 3, firstly, we propose a general probability
model for an unconstrained uncertain rigid body and secondly,
the uncertain rigid multibody dynamical system is obtainedby
joining this unconstrained uncertain rigid body to the other rigid
bodies. The last section is devoted to an application which
illustrates the proposed theory.

2 MEAN MODEL FOR THE RIGID MULTIBODY DY-
NAMICAL SYSTEM

In this paper, the usual model of a rigid multibody dynamical
system for which all the mechanical properties are known will
be called the mean model (or the nominal model). This section
is devoted to the construction of the mean model for a rigid
multibody dynamical system. This mean model is constructed
as in ([14], [15]) and is summarized below.

2.1 Dynamical equations for a rigid body of the multibody
system

Let RBi be the rigid body occupying a bounded domainΩi

with a given geometry. Letξ be the generic point of the three
dimensional space. Letx = (x1,x2,x3) be the position vector
of point ξ defined in a fixed inertial frame(O ,x0,1 ,x0,2 ,x0,3),

such thatx =
−→
Oξ . The rigid body class is then defined by three

quantities.
(1) The first one is the massmi of RBi which is such that

mi =
∫

Ωi

ρ(x)dx , (1)

whereρ(x) is the mass density.
(2) The second quantity is the position vectorri of the center

of massGi, defined in the fixed inertial frame, by

ri =
1
mi

∫

Ωi

xρ(x)dx . (2)
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(3) Let (Gi ,x′i,1 ,x
′
i,2 ,x

′
i,3) be the local frame for which the

origin is Gi and which is deduced from the fixed frame
(O ,x0,1 ,x0,2 ,x0,3) by the translation

−−→
OGi and a rotation defined

by the three Euler anglesαi, βi andγi. The third quantity is the
positive-definite matrix[Ji] of the tensor of inertia in the local
frame such that

[Ji]u =−
∫

Ωi

x′× x′×uρ(x′)dx′ , ∀u ∈ R3 , (3)

in which the vectorx′ = (x′1,x
′
2,x

′
3) of the components of vector−−→

Giξ are given in(Gi ,x′i,1 ,x
′
i,2 ,x

′
i,3). In the above equation,u×v

denotes the cross product between the vectorsu andv.

2.2 Matrix model for the rigid multibody dynamical system

The rigid multibody dynamical system is made up ofnb

rigid bodies and ideal joints including rigid joints, joints with
given motion (rheonomic constraints) and vanishing joints(free
motion). The interactions between the rigid bodies are realized
by these ideal joints but also by springs, dampers or actuators
which produce forces between the bodies. In this paper, only
nc holonomic constraints are considered. Letu be the vector in
R6nb such thatu= (r1, ...,rnb ,s1, ...,snb) in whichsi = (αi,βi,γi)
is the rotation vector. Thenc constraints are given bync

implicit equations which are globally written asϕ(u, t) = 0. The
(6nb ×6nb) mass matrix[M] is defined by

[M] =

[
[Mr] 0

0 [Ms]

]
, (4)

where the(3nb ×3nb) matrices[Mr] and[Ms] are defined by

[Mr]=




m1[I3] · · · 0
...

...
...

0 · · · mnb [I3]


 , [Ms] =




[J1] · · · 0
...

...
...

0 · · · [Jnb ]


 , (5)

in which [I3] is the(3×3) identity matrix. The function{u(t) ,∈
[0,T ]} is then the solution of the following differential equation
(see [15])

[
[M] [ϕu]

T

[ϕu] [0]

][
ü
λ

]
=

[
q−k

− d
dt ϕt − [ d

dt ϕu] u̇

]
, (6)

with the initial conditions

u(0) = u0 , u̇(0) = v0 , (7)

in which k(u̇) is the vector of the Coriolis forces and where
[ϕu(u(t), t)]i j = ∂ϕi(u(t), t)/∂u j(t) and ϕt = ∂ϕ/∂ t. The
vectorq(u, u̇, t) is constituted of the applied forces and torques
induced by springs, dampers and actuators. The vectorλ (t)
is the vector of the Lagrange multipliers. Equation (6) can be
solved using an adapted integration algorithm (see for instance
[2]).

3 STOCHASTIC MODEL FOR A MULTIBODY DYNAMI-
CAL SYSTEM WITH UNCERTAIN RIGID BODIES

Firstly, a stochastic model for an uncertain rigid body of the
multibody dynamical system is proposed and secondly, the
stochastic model for the multibody dynamical system with
uncertain rigid bodies is constructed joining the stochastic
model of the uncertain rigid bodies.

3.1 Stochastic model for an uncertain rigid body of the
multibody dynamical system

The properties of the mean model (or the nominal model) of
the rigid body RBi are defined by its massmi, the position
vectorr0,i of its center of massGi at initial time t = 0 and the
matrix [Ji] of its tensor of inertia with respect to the local frame
(Gi ,x

′
i,1 ,x

′
i,2 ,x

′
i,3). The probabilistic model of uncertainties

for this rigid body is constructed by replacing these three
parameters by the following three random variables: the random
massMi, the random position vectorR0,i of its random center
of massGi at initial time t = 0 and the random matrix[Ji] of
its random tensor of inertia with respect to the random local
frame (Gi ,x′i,1 ,x

′
i,2 ,x

′
i,3). The probability density functions

(PDF) of these three random variables are constructed using
the maximum entropy principle (see [17], [6]), that is to say, in
maximizing the uncertainties in the model under the constraints
defined by the available information.

3.1.1 Construction of the PDF for the random mass

(i) Available information
Let E{.} be the mathematical expectation. The available
information for the random massMi is defined as follows.
Firstly, the random variableMi must be positive almost surely.
Secondly, the mean value of the random massMi must be equal
to the valuemi of the mean (or nominal) model. Thirdly, as it
is proven in [19], the random mass must verify the inequality
E{M−2

i } < +∞ in order that a second-order solution exists for
the stochastic dynamical system. In addition, it is also proven
that this constraint can be replaced by|E{logMi}|<+∞.
(ii) Maximum entropy principle
The probability density functionµ 7→ pMi

(µ) of the random
variableMi is constructed by maximizing the entropy under the
constraints defined above. The solution of this optimization
problem is the PDF of a gamma random variable defined on
]0,+∞[. This PDF depends on two parameters which aremi
andCMi . Since parameterCMi has no physical meaning, it is
eliminated in introducing the coefficient of variationδMi

of the
random variableMi such thatδMi = σMi

/mi whereσMi
is the

standard deviation of the random variableMi. Therefore, the
PDF of the random mass is completely defined by the mean
valuemi and by the dispersion parameterδMi

.

3.1.2 Construction of the PDF for the random position vector
R0,i

In this subsection, the PDF of the random initial position vector
R0,i of the center of mass of RBi at initial time t = 0 is
constructed.

(i) Available information
The position vectorr0,i of the center of massGi at initial time
t = 0 of the mean (or nominal) model is given. However, the
real position is not exactly known andr0,i only corresponds to a
mean position. Consequently, there is an uncertainty aboutthe
real position and this is the reason why this position is modeled
by the random vectorR0,i. Some geometrical and mechanical
considerations lead us to introduce an admissible domainDi of
random vectorR0,i. We introduce the vectorh of the parameters
describing the geometry of domainDi. In addition, the mean
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value of the random vectorR0,i must be equal to the value
r0,i of the mean (or nominal) model. Therefore, the available
information for random variableR0,i can be written as

R0,i ∈ Di(h) a.s. , (a)

E{R0,i}= r0,i ∈ Di(h) . (b)
(8)

(ii) Maximum entropy principle
The probability density functiona 7→ pR0,i

(a) of random
variable R0,i is then constructed by maximizing the entropy
with the constraints defined by the available information in
Eq. (8). The solution of this optimization problem depends on
two parameters which arer0,i and vector-valued parameterh,
and is such that

pR0,i
(a;h) = 1lDi(h) (a)C0 e−<λ ,a> . (9)

The positive valued parameterC0 and vectorλ are the unique
solution of the equations

C0
∫

Di(h) e−<λ ,a> da = 1 , (a)

C0
∫

Di(h) ae−<λ ,a> da = r0,i . (b)
(10)

(iii) Generator of independent realizations
The independent realizations of random variableR0,i must be
generated using the constructed PDFpR0,i

. Such a generator
can be obtained using the Monte Carlo Markov Chain (MCMC)
method (Metropolis-Hastings algorithm [5]).

3.1.3 Random matrix[Ji] of the random tensor of inertia.

In this subsection, the random matrix[Ji] of the random tensor
of inertia with respect to(Gi ,x′i,1 ,x

′
i,2 ,x

′
i,3) is defined and an

algebraic representation of this random matrix is constructed.
The mass distribution around the random center of massGi

is uncertain and consequently, the tensor of inertia is also
uncertain. This is the reason why the matrix[Ji] of the tensor
of inertia of the mean (or nominal) model with respect to
(Gi ,x

′
i,1 ,x

′
i,2 ,x

′
i,3) is replaced by a random matrix[Ji] which is

constructed by using the maximum entropy principle.
We introduce the positive-definite matrix[Zi] independent ofmi

such that

[Zi] =
1
mi

{
tr([Ji])

2
[I3]− [Ji]

}
. (11)

Then[Ji] can be calculated as a function of[Zi],

[Ji] = mi{tr([Zi]) [I3]− [Zi]} . (12)

It can be proven that[Zi] is positive definite and that each
positive definite matrix[Ji] constructed using Eq. (12), where
[Zi] is a given positive definite matrix, can be interpreted as the
matrix of a tensor of inertia of a physical rigid body for which
the mass is 1 (see [1]).

The probabilistic modeling[Ji] of [Ji] consists in introducing
the random matrix[Zi] and in using Eq. (12) in whichmi is

replaced by the random variableMi and where[Zi] is replaced
by [Zi]. We then obtain

[Zi] =
1

Mi

{
tr([Ji])

2
[I3]− [Ji]

}
, (13)

[Ji] = Mi{tr([Zi]) [I3]− [Zi]} . (14)

(i) Available information concerning random matrix [Zi]
Let us introduce (1) the nominal value[Zi] of deterministic
matrix [Zi] such that[Zi] = (1/mi){tr([Ji])/2[I3]− [Ji]} and
(2) the upper bound[Zmax

i ] of random matrix[Zi]. Then, the
available information for[Zi] can be summarized as follows,

[Zi] ∈M+
3 (R) a.s. ,

{[Zmax
i ]− [Zi]} ∈M+

3 (R) a.s. ,

E{[Zi]}= [Zi] ,

E{log(det[Zi])}=Cl
i , |Cl

i |<+∞ ,

E{log(det([Zmax
i ]− [Zi]))}=Cu

i , |Cu
i |<+∞ .(e)

(15)

For more convenience, random matrix[Zi] is normalized as
follow. Matrix [Zi] being positive definite, its Cholesky
decomposition yields[Zi] = [LZi

]T [LZi
] in which [LZi

] is an
upper triangular matrix in the setM3(R) of all the (3×3) real
matrices. Then, random matrix[Zi] can be rewritten as

[Zi] = [LZi
]T [Gi] [LZi

] , (16)

in which the matrix[Gi] is a random matrix for which the
available information is

[Gi] ∈M+
3 (R) a.s. ,

{[Gmax
i ]− [Gi]} ∈M+

3 (R) a.s. ,

E{[Gi]}= [I3] ,

E{log(det[Gi])}=Cl
i
′

, |Cl
i
′|<+∞ ,

E{log(det([Gmax
i ]− [Gi]))}=Cu

i
′ , |Cu

i
′|<+∞ ,

(17)

in which Cl
i
′
= Cl

i − log(det[Zi]), Cu
i
′ = Cu

i − log(det[Zi]) and
where the matrix[Gmax

i ] is an upper bound for random matrix
[Gi] and is defined by[Gmax

i ] = ([LZi
]T )−1 [Zmax

i ] [LZi
]−1.

(ii) Maximum entropy principle
The probability distribution of random matrix[Gi] is constructed
using the maximum entropy principle under the constraints
defined by the available information given by Eq. (17). The
probability density functionp[Gi]([G ]) with respect to the

volume element̃dG of random matrix[Gi] is then written as

p[Gi]([G ]) = 1lM+
3 (R)([G ])×1lM+

3 (R)([G
max
i ]− [G ])×CGi

×
(
det[G ]

)−λl ×
(
det([Gmax

i ]− [G ])
)−λu × e− tr([µ][G]) ,

(18)
in which the positive valued parameterCGi is a normalization
constant, the real parametersλl < 1 andλu < 1 are Lagrange
multipliers relative to the two last constraints defined by Eq. (17)
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and the symmetric real matrix[µ ] is a Lagrange multiplier
relative to the third constraint defined by Eq. (17). This
probability density function is a particular case the Kummer-
Beta matrix variate distribution (see [11], [4]) for which the
lower bound is a zero matrix.

ParametersCGi , λl , λu and matrix[µ ] are the unique solution
of the equations

E{1lMS
3(R)

([Gi])}= 1 ,

E{[Gi]}= [I3] ,

E{log(det[Gi])}=Cl
i
′

,
E{log(det([Gmax

i ]− [Gi]))}=Cu
i
′ .

(19)

For fixed values ofλl and λu, parametersCGi and [µ ] can
be estimated using Eq. (19). In Eq. (19), since the parameters
Cl

i
′

andCu
i
′ have no real physical meaning, the parametersλl

andλu are kept as parameters which then allows the ”shape” of
the PDF to be controlled. If experimental data are availablefor
the responses of the dynamical system, then the two parameters
λl and λu can be identified solving an inverse problem. If
experimental data are not available, these two parameters allow
a sensitivity analysis of the solution to be carried out with
respect to the level of uncertainties.

(iii) Properties for random matrix [Ji]
It is proven in [1] that using Eq. (14) and the available
information defined by Eq. (15), the following important
properties for random matrix[Ji] can be deduced,

{ 1
2tr([Ji]) [I3]− [Ji]} ∈M+

3 (R) a.s , (a)

{[Jmax
i ]− [Ji]} ∈M+

3 (R) a.s , (b)

E{[Ji]}= [Ji] , (c)

{λl <−2,λu < 0}⇒ E{‖[Ji]
−1‖2}<+∞ , (d)

(20)

in which the random matrix[Jmax
i ], which represents a random

upper bound for random matrix[Ji], is defined by

[Jmax
i ] = Mi{tr([Zmax

i ]) [I3]− [Zmax
i ]} . (21)

It should be noted that Eq. (20-a) implies that each realization
of random matrix[Ji] corresponds to the matrix of a tensor
of inertia of a physical rigid body. In addition, this equation
implies that random matrix[Ji] is almost surely positive definite.
Eq. (20-b) provides a random upper bound for random matrix
[Ji]. Eq. (20-c) corresponds to a construction for which the
mean value of random matrix[Ji] is equal to the nominal value
[Ji]. Finally, Eq. (20-d) is necessary for that the random solution
of the nonlinear dynamical system be a second-order stochastic
process.

(iv) Generator of independent realizations for random matrix
[Ji]
The generator of independent realizations of random matrix
[Gi] is based on the Monte Carlo Markov Chain (MCMC)
(Metropolis-Hastings algorithm [5] with the PDF defined by
Eq. (18). Then, independent realizations of random matrix[Zi]
are obtained using Eq. (16). Finally, independent realizations of
random matrix[Ji] are obtained using Eq. (14) and independent
realizations of random massMi.

3.2 Stochastic matrix model for a multibody dynamical system
with uncertain rigid bodies and its random response

In order to limit the developments, it is assumed that only
one of the nb rigid bodies denoted by RBi of the rigid
multibody system is uncertain. The extension to several
uncertain rigid bodies is straightforward. Let the 6nb random
coordinates be represented by theR6nb-valued stochastic
processU = (R1, ...,Rnb ,S1, ...,Snb) indexed by[0,T ] and let
thenc random Lagrange multipliers be represented by theRnc-
valued stochastic processΛ indexed by[0,T ]. The deterministic
Eq. (6) becomes the following stochastic equation

[
[M]

[
ϕ

u

]T
[
ϕ

u

]
[0]

][
Ü
Λ

]
=

[
q−K

− d
dt ϕt −

[
d
dt ϕ

u

]
U̇

]
, (22)

U(0) = U0 , U̇(0) = v0 , a.s. (23)

in which the vectorU0 = (r0,1, . . . ,R0,i, . . . ,r0,nb ,s0,1, . . . ,s0,nb)
is random due to the random vectorR0,i. For all given real vector
u̇, the vectorK(u̇) of the Coriolis forces is random due to the
random matrix[Ji]. The random mass matrix[M] is defined by

[M] =

[
[Mr] 0

0 [Ms]

]
, (24)

in which the(3nb × 3nb) random matrices[Mr] and [M]s are
defined by

[Mr] =




m1[I3] · · · 0
...

... Mi[I3]
...

. . .
0 · · · mnb [I3]


 , (25)

[Ms] =




[J1] · · · 0
...

... [Ji]
...

. . .
0 · · · [Jnb ]


 . (26)

Random Eqs. (22) and (23) are solved using the Monte Carlo
simulation method.

4 APPLICATION

In this section, we present a numerical application which
validates the methodology presented in this paper.

4.1 Description of the mean model

The rigid multibody model is made up of five rigid bodies
and six joints which are described in the fixed frame
(O,x0,1,x0,2,x0,3) (see Fig. 1). The plan defined by(O,x0,1,x0,2)
is identified below as the ”ground”. The gravity forces in the
x0,3-direction are taken into account.
(i) Rigid bodies
In the initial configuration, the rigid bodiesRb1, Rb2, Rb3 and
Rb4 are cylinders for which the axes follow thex0,3-direction.
In the initial configuration, the rigid bodyRb5 is supposed
to be symmetric with respect to the planes(G5,x0,1,x0,2) and
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u1 u2

G5

Rb1

Rb3

Rb4

Rb2

Rb5

x0,1

x0,2

x0,3

Figure 1. Rigid multibody system.

(G5,x0,1,x0,3) in whichG5 is the center of mass ofRb5.
(ii) Joints
− The joint Ground-Rb1 is made up of a prismatic joint
following x0,3-direction. The displacement followingx0,3-
direction, denoted byu1(t), is imposed. Displacementu1(t)
is zero in the range[0,1× 10−3]s, is linearly inscreasing in
the range[1× 10−3,6× 10−3]s and is equal to 10−2 m in the
range[6×10−3,3×10−2]s. The jointGround-Rb2 is a prismatic
joint following x0,3-direction. The displacement followingx0,3-
direction denoted byu2(t), is imposed. Displacementu1(t) is
zero in the range[0,1.1×10−2]s, is linearly inscreasing in the
range[1.1× 10−2,1.6× 10−2]s and is equal to 10−2 m in the
range[1.6×10−2,3×10−2]s. The displacement followingx0,1-
direction is unconstrained.
− The joints Rb1-Rb3 and Rb2-Rb4 are constituted of 6D
spring-dampers..
− Finally, the jointsRb3-Rb5 andRb4-Rb5 arex0,2-direction
revolute joints.

4.2 Random response of the stochastic model

Rigid body Rb5a is considered as uncertain and is therefore
modeled by a random rigid body. As explained in Section
3, the elements of inertia of the uncertain rigid BodyRb5
are replaced by random quantities. The fluctuation of the
response is controlled by four parametersδM5

, h, λl and λu.
A sensitivity analysis is carried out with respect to these four
parameters. Statistics on the transient response are estimated
using the Monte Carlo simulation method with 500 independent
realizations. The initial velocities and angular velocities are
zero. The observation pointPobs belongs toRb5.

(i) Case 1: M5 is random,R0,5 is deterministic and[J5] is
deterministic.
We chooseδM5

= 0.5. The confidence region, with a probability
level Pc = 0.90, of the random acceleration of pointPobs is
plotted in Fig. 2. It can be noted that the acceleration is sensitive
to the mass uncertainties.
(ii) Case 2:Mi is deterministic,R0,5 is deterministic and[J5] is
random.
We chooseλl = −5 andλu = −5 for random matrix[J5]. The
confidence region, with a probability levelPc = 0.90, of the
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Figure 2. Random transient acceleration of pointPobs, Case
1: confidence region (upper and lower thin solid lines),
mean response (thick solid line) and response of the mean
model (dashed line);x0,3-acceleration (left figure) andx0,1-
angular acceleration (right figure).
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Figure 3. Random transient acceleration of pointPobs,
Case 2: confidence region (upper and lower envelopes),
mean response and response of the mean model are
superimposed;x0,3-acceleration (left figure) andx0,1-
angular acceleration (right figure).

random acceleration of pointPobs is plotted in Fig. 3. We
can remark, as it was expected, that the angular acceleration is
sensitive to uncertainties on the tensor of inertia.
(iii) Case 3: M5 is deterministic,R0,5 is random and[J5] is
deterministic.
The domain ofR0,5 is supposed to be a parallelepiped which
is centered at point(0,0,0.55) for which its edges are parallel
to the directionsx0,1, x0,2 and x0,3 and for which the lengths
following these three directions are respectively 0.5, 0.2 and
0.02. The confidence region, with a probability levelPc = 0.90,
of the random acceleration of pointPobs is plotted in Fig. 4.
We can remark that the angular acceleration is sensitive to
uncertainties on initial center of mass ofRb5.
(iv) Case 4:M5, R0,5 and[J5] are random.
The values of the parameters of the PDF are those fixed in the
three previous cases. The confidence region, with a probability
level Pc = 0.90, of the random acceleration of pointPobs is
plotted in Fig. 5. It can be viewed that (1) the randomness on
the acceleration is mainly due to the randomness of massM5,
(2) the randomness on the angular acceleration is mainly dueto
the randomness of the initial positionR0,5 of the center of mass
and the random tensor of inertia[J5].

5 CONCLUSION

We have presented a complete and general probabilistic
modeling of uncertain rigid bodies taking into account all
the known mechanical and mathematical properties. This
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Figure 4. Random transient acceleration of pointPobs,
Case 3: confidence region (upper and lower envelopes),
mean response and response of the mean model are
superimposed;x0,3-acceleration (left figure) andx0,1-
angular acceleration (right figure).
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Figure 5. Random transient acceleration of pointPobs, Case
4: confidence region (upper and lower thin solid lines),
mean response (thick solid line) and response of the mean
model (dashed line);x0,3-acceleration (left figure) andx0,1-
angular acceleration (right figure).

probabilistic model of uncertainties is used to construct the
stochastic equations of uncertain multibody dynamical systems.
The random dynamical responses can then be calculated. In the
proposed probabilistic model, the mass, the center of mass and
the tensor of inertia are modeled by random variables for which
the prior probability density functions are constructed using the
maximum entropy principle under the constraints defined by all
the available mathematical, mechanical and design properties.
Several uncertain rigid bodies can be linked each others in
order to obtain the stochastic dynamical model of the uncertain
multibody dynamical system. The theory proposed has been
illustrated analyzing a simple example. The results obtained
clearly show the role played by uncertainties and the sensitivity
of the responses due to uncertainties on (1) the mass (2) the
center of mass and (3) the tensor of inertia. Such a prior
stochastic model allows the robustness of the responses to be
analyzed with respect to uncertainties. If experimental data
were available on the responses, then the parameters which
control the level of uncertainties could be estimated by solving
an inverse stochastic problem.
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