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Abstract. A drill-string is a slender structure that drills rock to search for oil. The nonlinear interaction

between the bit and the rock is of great importance for the drill-string dynamics. The interaction model

has uncertainties, which are modeled using the nonparametric probabilistic approach. This paper deals

with a procedure to perform the identification of the dispersion parameter of the probabilistic model of

uncertainties of a bit-rock interaction model. The bit-rock interaction model is represented by a nonlinear

constitutive equation, and the identification of the parameter of this probabilistic model is carried out

using the Maximum Likelihood method together with a statistical reduction in the frequency domain

using the Principal Component Analysis.



1 INTRODUCTION

With the discovery of new oil reservoirs, there is an increasing interest on the development

of numerical models to support engineer decisions. In this context, uncertainties should be

taken into account in the computational model in order to improve the robustness of the nu-

merical predictions. Some deterministic models of a drill-string have been proposed, see, for

instance, (Christoforou and Yigit, 1997; Tucker and Wang, 1999; Khulief and Al-Naser, 2005;

Sampaio et al., 2007). The dynamics of a drill-string is highly affected by the bit-rock interac-

tion, hence, this interaction is of upmost importance for the drill-string dynamics. In addition,

modeling the bit-rock interaction is not trivial, hence simple models are usually considered in

the analysis. This is an important constraint when uncertainties are to be taken into account,

since the parametric probabilistic approach limits the analysis. Therefore, in Ritto et al. (2009)

it has been proposed to use the nonparametric probabilistic approach to model uncertainties in

the bit-rock interaction model of a drill-string system. This probabilistic approach is able to take

into account both system parameter and model uncertainties. Such a nonparametric probabilis-

tic approach (Soize, 2001, 2005, 2010) uses the random matrix theory for which the probability

distributions are constructed using the Maximum Entropy Principle (Jaynes, 2003).

The present paper proposes a procedure for the probabilistic identification of the bit-rock

interaction model. This bit-rock interaction comes from the dynamics of a drill-string system,

and it is represented by a nonlinear constitutive equation (Tucker and Wang, 2003). There are

different models in the literature for the bit-rock interaction, for example, autonomous mod-

els (Challamel, 2000; Tucker and Wang, 2003; Navarro-Lopez, 2009) or the distributed delay

model (Germay et al., 2009). The bit-rock interaction might lead to what is called stick-slip

phenomenon, when the bit gets stuck (zero rotational speed) and then is released (slips). The

present paper aims to propose a probabilistic identification procedure, thus, further analysis of

bit-rock interaction models or stick-slip phenomenon will not be addressed. It should be no-

ticed that the proposed identification procedure can be applied for different bit-rock interaction

models.

In the context of drill-string dynamics identification, Berzi and R. Beccu (1996) do the iden-

tification of the nonlinear dissipative spring mass model of a coupling sleeve joint, where the

identification is done minimizing the distance (calculated using the Euclidean norm) between

numerical and experimental responses. At the best of the authors knowledge, a probabilistic

drill-string dynamics identification has not yet been investigated in the literature.

Recently, Soize et al. (2008) present some strategies for probabilistic identification in uncer-

tain computational models for dynamical systems; in particular, this paper presents the use of

the maximum likelihood method (Aldrich, 1997; Serfling, 1980; Spall, 2003) in the case for

which the output observation vector of the dynamical system is a correlated stochastic process

indexed by an uncountable set. For such a case, it is proposed (Soize et al., 2008) to apply the

maximum likelihood method to the uncorrelated random variables corresponding to the coordi-

nates of the Principal Component Analysis (PCA) of the correlated stochastic process modeling

the output observation. Below, we propose to reuse such an approach to identify the probabilis-

tic model parameter δ (which measures the uncertainty level of the bit-rock interaction non-

parametric probabilistic model) in the context of nonlinear dynamics. The correlated stochastic

process which models the time dependent output observation vector (which is obtained by solv-

ing the nonlinear stochastic dynamical equation of the drill-string system) is reduced using the

PCA. Then, the maximum likelihood method is used to identify the uncertainties of a nonlinear

constitutive equation (bit-rock interaction model). In the present analysis, we aim to validate



this procedure with an experimental response that is actually generated numerically (such a

procedure could then be applied using the experimental response of a real drill-string system).

2 DETERMINISTIC MODEL

The deterministic model is briefly presented in this section; for a more detailed explanation

of the model see Ritto et al. (2009). The excitation of the dynamical system is an imposed

constant rotational speed applied at the top. The supporting force at the top (weight-on-hook)

is constant, the stabilizers are modeled as linear springs, the impact forces between the column

and the borehole are modeled with linear springs and the rubbing between the column and the

borehole is modeled as a frictional torque. The bit-rock interaction model applied in the analysis

is the one developed by Tucker and Wang (2003) and the fluid-structure interaction model used

follows the model developed in Paidoussis et al. (2008). This model considers the fluid that

flows downwards inside the column and then flows upwards in the annulus.

The nonlinear Timoshenko beam theory is applied to the column, in which finite strains are

taken into account; the finite strains couple axial, lateral and torsional vibrations. It is assumed

small rotations about the y and z-axis and small displacements in y and z directions. The

deterministic computational model is obtained using the finite element method and then it is

reduced using a modal basis. The model is written as (Ritto et al., 2009):

[Mr]q̈(t) + [Cr]q̇(t) + [Kr]q(t) = [Φ]T{fip(u(t)) + fbr(u(t)) − fNL(u(t), u̇(t), ü(t)) + g(t)}
q(0) = q0 , q̇(0) = v0 ,

(1)

where q0 and v0 are the initial conditions and u(t) = [Φ]q(t) is the response of the system

around the prestressed state, u(t) = u(t) − uS, where uS = [K]−1(fg + fc + ff). In this

expression fg is the gravity, fc is the concentrated reaction force at the bit and ff is the fluid axial

force. The reduced-order model is constructed using a modal basis selected from the normal

modes of the prestressed structure. The dimension of the modal matrix [Φ] made up of these

normal modes is m × n, where n is the number of normal modes selected to construct the

reduced-order model and m is the number of degrees of freedom of the finite element model.

The normal modes that compose matrix [Φ] must be conveniently chosen (so that axial, lateral

and torsional modes are included) in order that convergence of the response be reached.

The reduced mass, damping and stiffness matrices are written as [Mr] = [Φ]T [M ][Φ], [Cr] =
[Φ]T [C][Φ] and [Kr] = [Φ]T ([K] + [Kg(uS)])[Φ]. The mass [M ], damping [C] and stiffness

[K] finite element matrices include the structure and fluid parts, [Kg] is the geometric stiffness

matrix, fNL is the nonlinear force vector related to the nonlinear terms of the kinetic and strain

energy of the structure, fip is the force vector due to impact and rubbing, fbr is the force vector

due to the bit-rock interaction and g is the source force vector that appears due to the Dirichlet

boundary condition (constant rotational speed about the x-axis at the top). The proportional

damping matrix is such that [C] = α[M ] + β([K] + [Kg(uS)]) where α and β are two positive

real constants.

3 PROBABILISTIC MODEL

The probabilistic model introduced by Ritto et al. (2009) to take into account uncertainties in

the bit-rock interaction model is briefly summarized. The nonparametric probabilistic approach

(Soize, 2000, 2010) is used. It consists in modeling the operator of the bit-rock interaction

constitutive equation by a random operator depending of the random state of the system. Such



an approach allows both system-parameters uncertainties and modeling errors to be globally

taken into account. Let the generalized forces and velocities at the bit, fbit(ẋ(t)) and ẋ(t), be

such that fbit(ẋ(t)) = (fbit(ẋ(t)) tbit(ẋ(t)))T and ẋ(t) = (u̇bit(t) ωbit(t))
T , where fbit is the

force at the bit (or weight-on-bit), tbit is the torque at the bit (or torque-on-bit), u̇bit(t) is the

axial speed of the bit (or rate of penetration) and ωbit(t) is the rotational speed of the bit. The

deterministic constitutive equation of the bit-rock interaction (Tucker and Wang, 2003) can be

rewritten as

fbit(ẋ(t)) = −[Ab(ẋ(t))] ẋ(t)
(2)

with

[Ab(ẋ(t))]11 =
a1

a2 u̇bit(t)
+

1

a2 Z(ωbit(t))2
− a3 ωbit(t)

a2 Z(ωbit(t)) u̇bit(t)
, [Ab(ẋ(t))]12 = 0 ,

[Ab(ẋ(t))]22 =
a4 Z(ωbit(t))

2u̇bit(t)

ωbit(t)2
+

a5 Z(ωbit(t))

ωbit(t)
, [Ab(ẋ(t))]21 = 0 ,

(3)

in which a1, . . . , a5 are positive constants that depend on the bit and rock characteristics as well

as on the average weight-on-bit, and where Z is a regularization function. For all deterministic

velocity ẋ(t), [Ab(ẋ(t))] is a positive-definite matrix which is substituted, in the context of

the nonparametric probabilistic modeling of uncertainties, by a random matrix [Ab(ẋ(t))] with

values in the set M
+
2 (R) of all the positive-definite symmetric (2 × 2) real matrices. Thus, the

constitutive equation defined by Eq. (2) becomes a random constitutive equation which can be

written as

Fbit(ẋ(t)) = −[Ab(ẋ(t))] ẋ(t) . (4)

Following the construction introduced in Soize (2000, 2001); Ritto et al. (2009), for all fixed

vector ẋ(t), the probability distribution of random variable [Ab(ẋ(t))] is constructed as follows.

Using the Cholesky decomposition, the mean value of [Ab(ẋ(t))] and random matrix [Ab(ẋ(t))]
are written as

[Ab(ẋ(t))] = [Lb(ẋ(t))]T [Lb(ẋ(t))] and [Ab(ẋ(t))] = [Lb(ẋ(t))]T [Gb][Lb(ẋ(t))] , (5)

in which [Gb] is a random matrix whose dispersion parameter is defined by

δ =

{
1

2
E{||[Gb] − [I]||2F}

} 1

2

, (6)

where E{·} is the mathematical expectation and where ||[A]||F = (trace{[A][A]T})1/2 is the

Frobenius norm of matrix [A]. The probability distribution of [Gb] (which does not depend on

t) is constructed using the Maximum Entropy Principle under the constraints defined by the

available information and a generator of independent realizations is deduced as explained in

Soize (2001, 2005). The final stochastic system can be written as Ritto et al. (2009)

[Mr]Q̈(t) + [Cr]Q̇(t) + [Kr]Q(t) = [Φ]T{fip(U(t)) + Fbr(U(t)) − fNL(U(t), U̇(t), Ü(t)) + g(t)} ,

U(t) = [Φ]Q(t) , q(0) = q0 , q̇(0) = v0 ,

(7)



where U is the random response of the stochastic system and Fbr is the random force related to

the uncertainty of the bit-rock interaction model (see Eq. (4)).

4 IDENTIFICATION PROCEDURE

The identification of parameter δ of the probabilistic model of the bit-rock interaction is

carried out using the maximum likelihood method for the random observations. In order to

implement it, a statistical reduction of the random observations is performed.

4.1 Maximum likelihood method

Let {W (t, δ), t > 0} be a stochastic process of the dynamical system deduced from the

random response {U(t), t > 0} of the stochastic dynamical system defined by Eq. (7). For the

identification of parameter δ of the probabilistic model, we use the response in the frequency

domain. We then introduce the random frequency spectrum Ŵ (ω, δ) as the modulus of the

Fourier transform of W (t, δ) with the time window [ti , tf ], such that

Ŵ (ω, δ) =

∣∣∣∣
∫ tf

ti

e−iωt W (t, δ) dt

∣∣∣∣ , (8)

with i =
√
−1. The time interval [ti , tf ] only includes the random forced response of W (t, δ)

(transient part induced by the initial condition is vanished at time ti) and ω belongs to the

frequency band of the analysis B. This random spectrum is calculated using the stochas-

tic model with a frequency sampling {ω1, . . . , ωnω
} yielding the dependent random variables

Ŵ (ω1), . . . , Ŵ (ωnω
). It is assumed that only one experimental observation is available (that

is generally the case for such a complex dynamical system). The frequency-sampled exper-

imental observation corresponding to the frequency sampling of Ŵ (ω, δ) is then denoted by

ŵexp(ω1), . . . , ŵ
exp(ωnω

). The log-likelihood function L(δ) is such that (see for instance Serfling

(1980); Spall (2003)),

L(δ) = log10 p(ŵexp(ω1), . . . , ŵ
exp(ωnω

); δ) , (9)

in which p(w1, . . . , wnω
; δ) is the joint probability density function of the dependent random

variables Ŵ (ω1), . . . , Ŵ (ωnω
) which is estimated with the stochastic model. Parameter δ be-

longs to an admissible set Cδ and consequently, the maximum likelihood method allows the

optimal value δopt of δ to be calculated solving the following optimization problem,

δopt = arg max
δ ∈ Cδ

L(δ) . (10)

If nω is not small, that is generally the case, the numerical cost for solving this optimization

problem can be prohibitive. If the random variables Ŵ (ω1), . . . , Ŵ (ωnω
) were not correlated,

the following approximation L(δ) =
∑nω

k=1 log10 pŴ (ωk)(ŵ
exp(ωk); δ) of the log-likelihood func-

tion could be introduced in which pŴ (ωk)(wk; δ) would be the probability density function of

the random variable Ŵ (ωk). Since the dependent random variables Ŵ (ω1), . . . , Ŵ (ωnω
) are

correlated, such an approximation would not be correct. We then introduced a statistical reduc-

tion allowing the maximum likelihood method to be applied to uncorrelated random variables

as explained in Soize et al. (2008).



4.2 Statistical reduction

Let W(δ) = (Ŵ (ω1, δ), . . . , Ŵ (ωnω
, δ)) be the Rnω -valued random variable whose mean

value is M(δ) = E{W(δ)} and for which the positive nω × nω covariance matrix is [C(δ)] =
E{(W(δ) − M(δ)) (W(δ) − M(δ))T}. These second-order moments are usually estimated us-

ing mathematical statistics of the stochastic dynamical response. The statistical reduction is

then usually obtained by performing a Principal Component Analysis (see for instance Jolliffe

(1986)). We then introduce the following eigenvalue problem for the covariance matrix

[C(δ)] X(δ) = λ(δ)X(δ) . (11)

Let λ1(δ) ≥ . . . ≥ λNred
(δ) > 0 be the Nred < nω largest and strictly positive eigenvalues. Let

X
1(δ), . . . , XNred(δ) be the associated eigenvectors which constitute an orthonormal family for

the Euclidean inner product < · , · >. Therefore the approximation W
Nred(δ) of W(δ) is written

as

W
Nred(δ) = M(δ) +

Nred∑

k=1

√
λk(δ) Yk(δ) X

k(δ) . (12)

The random variables Y1(δ), . . . , YNred
(δ) are defined by

Yk(δ) =
1√

λk(δ)
< (W(δ) − M(δ)) , Xk(δ) > (13)

and are uncorrelated, centered, second-order, real-valued random variables, that is to say, are

such that E{Yk(δ)} = 0 and E{Yj(δ) Yk(δ)} = δjk, where δjk is the Kronecker delta. The

reduction is effective if Nred << nω, and it is chosen in order that |||W(δ) − W
Nred(δ)||| ≤√

ǫ |||W(δ)]||| in which ǫ is a given accuracy, where ||| · ||| is such that |||W|||2 = E{||W||2} and

where ‖·‖ is the Euclidean norm. Therefore, |||W(δ)−W
Nred(δ)|||2 = tr([C(δ)])−

∑Nred

k=1 λk(δ),
where tr(·) is the trace of a matrix. It can then be deduced that Nred has to be chosen such that

Nred = arg

{
max

N ∈ {1,2,..,nω}

(
1 −

∑N
k=1 λk(δ)

tr([C(δ)])

)
≤ ǫ

}
, (14)

Let W
exp = (ŵexp(ω1), . . . , ŵ

expωnω
). The experimental observations yexp

1 (δ), . . . , yexp

Nred
(δ) cor-

responding to the random variables Y1(δ), . . . , YNred
(δ) are then obtained using the projection

defined by Eq. (13), that is to say, they are written as

yexp

k (δ) =
1√

λk(δ)
< (Wexp − M(δ)) , Xk(δ) > . (15)

Let pY1,...,YNred
(y1, . . . , yNred

; δ) be the joint probability density function of the random variables

Y1, . . . , YNred
. The log-likelihood function is such that Lred(δ) = log10 pY1,..,YNred

(yexp
1 (δ), . . . , yexp

Nred
(δ) ; δ).

Since random variables Y1, . . . , YNred
are uncorrelated (but dependent), it is now reasonable to

introduce the following simplification for the log-likelihood function which is then rewritten as

Lred(δ) =

Nred∑

k=1

log10 pYk
(yexp

k (δ) ; δ) , (16)

in which pYk
(yk ; δ) is the probability density function of random variable Yk(δ) which is esti-

mated with the stochastic reduced model. The optimization problem is then rewritten as

δopt = arg max
δ ∈ Cδ

Lred(δ) . (17)



5 NUMERICAL RESULTS

The 1600 meters length drill-string defined in Ritto et al. (2009) with data given in Appendix

A is considered. For the construction of the reduced dynamical model, 158 lateral modes, 4
torsional modes, 3 axial modes and two rigid body modes (axial and torsional) of the structure

are used. As initial conditions, the column is moving axially with velocity 4.2 × 10−3 m/s,

rotating around the x-axis with 5.24 rd/s and deflected laterally. The system is excited by

a constant rotational speed at the top of 5.24 rd/s. For the time integration procedure, the

implicit Newmark integration scheme has been implemented with a predictor and a fix point

algorithm in order that the system be in equilibrium at each time step which is ∆t = 5 ×
10−5. All the numerical results presented below correspond to the forced response for which the

transient part of the response induced by the initial conditions has vanished. The time window

is [ti, tf ] = [150, 250] s. The frequency band of analysis is B = [0 , 1.5] Hz. The frequency

and the time samplings correspond to nω = 250 and nt = 10 000. To simplify the numerical

analysis and to speed-up the computational time, only stable behaviors are considered (no stick

phase). Nevertheless, the proposed probabilistic identification procedure can also be applied for

responses with stick-slip oscillations.

Figures 1 and 2 show the forced dynamical response of the system without uncertainties

(deterministic). Figure 1(a) shows the axial displacement of the bit and Fig. 1(b) shows the

axial speed at x= 700 m. It can be noticed that the drill-string is moving forward. Figure 2(a)

shows the rotation of the bit versus the rotational speed of the bit and Fig. 2(b) shows the

frequency spectrum of the rotational speed of the bit. This frequency spectrum is going to be

used in the stochastic analysis, as explained latter.
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Figure 1: (a) axial displacement of the bit and (b) axial speed at x=700 m.

There are some measurement equipment that might measure the dynamics of a real drill-

string system, while drilling. Among the measurements, one that is important for the analysis

is the rotational speed of the bit. Therefore, this dynamical response is used as observation for

the identification procedure and then the frequency spectrum observed Ŵ (ω, δ) is the frequency

spectrum Ŵbit(ω, δ) of the random rotational speed of the bit. The corresponding experiments

Ŵexp

bit (ω, δ) have been generated numerically for the present analysis. Figure 3(a) shows the

convergence of the stochastic analysis, where conv(ns) = 1
ns

∑ns

i=1

∫ tf
ti

||U(t, θi)||2dt in which

ns is the number of Monte Carlo simulations.

The trial method is used to solve the optimization problem defined by Eq. (17). The stochas-

tic nonlinear dynamical model is solved for δ in {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10}.

The value of ǫ is set ǫ = 1 × 10−4 yielding Nred=40 (see Eq. (14)). Figure 3(b) shows how the
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Figure 2: (a) rotation of the bit versus rotational speed of the bit and (b) frequency spectrum of the rotational speed

of the bit.

log-likelihood Lred (see Eq. (16)) varies with the dispersion parameter δ. We conclude that the

most likely value for the dispersion parameter δopt is 0.06.
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Figure 3: (a) convergence function and (b) log-likelihood function.

Figures 4 and 5 show the response of the stochastic system for the identified value 0.06 of

δ. Figure 4(a) shows random realizations of the rotational speed of the bit Wbit and Fig. 4(b)

shows the coefficient of variation δW (t) = σW (t)/µW (t) of the random rotational speed of the

bit at each time t in which σW (t) is the standard deviation and µW (t) is the mean value of

Wbit(t) at each instant t. Although δ is small (0.06), the coefficient of variation of the response

is significant (δW ∼ 0.4). Figure 5 shows the statistical envelope of the frequency spectrum Ŵbit

of the random rotational speed of the bit together with the response of the deterministic system

and the mean response of the stochastic system.

6 CONCLUDING REMARKS

A procedure has been proposed to identify the probabilistic model of a bit-rock interaction

model in the context of drill-string dynamics. The uncertainties related to the nonlinear con-

stitutive equation of the interaction model are modeled using the nonparametric probabilistic

approach, and the maximum likelihood method has been employed together with a statistical

reduction (PCA) for the identification procedure. The proposed procedure has been validated

using an experimental response generated numerically; such a procedure can then be applied to

the experimental response of any real drill-string system.
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Figure 4: (a) random realizations of the rotational speed of the bit for δ = 0.06 and (b) coefficient of variation of

Wbit at each instant for δ = 0.06.
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Figure 5: 90% statistical envelope of Ŵbit for δ = 0.06 together with the deterministic response and the mean of

the stochastic response.
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A DATA USED IN THE SIMULATION

Ldp = 1400 m (length of the drill pipe) Ldc = 200 m (length of the drill collar)

Dodp = 0.127 m (outside diameter, drill pipe) Dodc = 0.2286 m (outside diameter, drill collar)

Didp = 0.095 m (inside diameter, drill pipe) Didc = 0.0762 m (inside diameter, drill collar)

Dch = 0.3 m (diameter of the borehole) xstab = 1400 m (location of the stabilizer)

kstab = 17.5 MN/m (stabilizer stiffness) E = 210 GPa (elasticity modulus)

ρ = 7850 kg/m3 (density) ν = 0.29 (poisson coefficient)

ks = 6/7 (shearing correcting factor) kip = 1 × 108 N/m (stiffness of the impacts)

µip = 0.0005 (frictional coefficient) Ui0 = 4 m/s (inlet flow velocity)

ρf = 1200 kg/m3 (density of the fluid) Cf = 0.0125 (fluid viscous damping coefficient)

k = 0 (fluid viscous damping coefficient) g = 9.81 m/s2 (gravity acceleration)

a1 = 3.429 × 10−3 m/s (cte of the bit-rock interac.) a2 = 5.672 × 10−8 m/(N.s)

a3 = 1.374 × 10−4 m/rd a4 = 9.537 × 106 N.rd

a5 = 1.475 × 103 N.m e = 2 rd/s (regularization parameter).

The damping matrix is constructed using the relationship [C] = α([M ]+[Mf])+β([K]+[Kf]+
[Kg(uS)]) with α = 0.01 and β = 0.0003.
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