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Petr Dokládala,∗, Eva Dokládalováb
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Abstract

Many useful morphological filters are built as long concatenations of erosions and dilations: openings, closings,
size distributions, sequential filters, etc. This paper proposes a new algorithm implementing morphological dilation
and erosion of functions. It supports rectangular structuring element, runs in linear time w.r.t. the image size and
constant time w.r.t. the structuring element size, and has minimal memory usage.

It has zero algorithm latency and processes data in stream. These properties are inherited by operators composed
by concatenation, and allow their efficient implementation. We show how to compute in one pass an Alternate
Sequential Filter (ASFn) regardless the number of stages n.

This algorithm opens the way to such time-critical applications where the complexity and memory requirements
of serial morphological operators represented a bottleneck limiting their usability.

Keywords: Mathematical morphology, Nonlinear filters, Alternate sequential filters, Real-time

1. Introduction

Since its introduction in late sixties, the Mathematical
morphology provides a complete set of image processing
tools from filtering [1, 2], multi scale image analysis [3]
to pattern recognition [4, 5, 6]. They have been used in
unrivalled number of applications [7, 8]. The most signif-
icant examples include biomedical and medical imaging,
video surveillance, industrial control, video compression
[9], stereology or remote sensing [10].

Nonetheless, not all useful operators can be easily im-
plemented in real time with reasonable memory require-
ments. In demanding image-interpretation applications
requiring a high correct-decision liability, one often uses
robust but costly multi-criteria and/or multi-scale anal-
ysis.

These applications often consist of a serial concatena-
tion of alternating atomic operators dilation and erosion
with progressively increasing computing window called
structuring element (SE).

Such operators cannot be parallelized due to the se-
quential data dependency of the individual atomic oper-
ators. The only possibility is to minimize the latency of
each atomic operator and consider computing in stream.
The latency minimization reduces the time to wait for
individual pixel results. The stream computing allows
transferring them immediately to the next atomic oper-
ator, as soon as they are available and before the entire
image is processed. Thus, these atomic operators can
work simultaneously, on data delayed in time. In such
implementation, one has to sum the individual working
memories of every atomic operator. Then also the mem-
ory may become penalizing for large, high-resolution im-
ages.

∗Principal corresponding author

The work presented in this paper, aims to propose
a new dilation/erosion algorithm with a constant pro-
cessing time, low latency and low memory requirements
for implementation of the individual atomic operators.
Consequently, it allows to implement advantageously the
following:

1. Alternate Sequential Filters (ASF) - that are a
concatenation of openings and closings with a progres-
sively increasing structuring element, useful for multi-
scale analysis [1].

2. Size distributions (granulometries) - that are a con-
catenation of openings allowing to assess the size distri-
bution of a population of objects [3, 11, 12].

3. Statistical learning - a selected set of morphologi-
cal operators ξi can be separately applied to an image
f . Then for every pixel f(x, y), the vector of values
(ξi(f)(x, y)) can serve as vector of descriptors for pixel-
wise learning and classification [6]. Obtaining them may
be computationally intensive.

1.1. Paper organization

The remainder of the Introduction lists the most known
fast algorithms of morphological dilation and erosion and
discusses their properties, followed by the explanation of
Novelties in this paper.

The Preliminaries, Section 2, introduce the basic
principles of dilations, erosions and their combinations.

The Section 3 outlines the Principle of the new Al-
gorithm: i) the 2-D decomposition preserving sequential
access to data and zero latency, ii) elimination of useless
values, iii) the conversion of an anti-causal structuring el-
ement into a causal one, necessary to preserve the sequen-
tial access to data, and iv) the encoding used to reduce
the memory requirements and acceleration of computa-
tions.
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Sections 4 to 5 discuss the properties and section 6
presents the case of the four stage ASF as an example.

The paper concludes by Benchmarks, general Conclu-
sions and Future extensions, sections 7 to 9. The com-
mented pseudo code is given in the Appendix.

1.2. Existing work

The mathematical morphology relies on two funda-
mental, complementary operations: erosion and dilation.
They are local, defined within a computing window, spec-
ified by the so-called structuring element (SE), character-
ized by its size, its shape and origin. It is well known that,
with the increasing size of the SE, the direct implementa-
tion leads to an extremely high computing cost. Although
the fastest existing algorithms [13, 14, 15, 16] concentrate
mainly on the reduction of the number of comparisons,
few of them deal with the latency and memory require-
ments [17]. Moreover, the minimization of comparison
number is not always proportional to the overall perfor-
mance improvement [15].

In the following paragraphs, we concentrate on the
presentation of the existing state of the art. We discuss
it from the classical point of view of complexity, based
on the number of comparisons. We bring it face to face
with the latency and the memory requirements. For each
algorithm, we analyze the possibility of its stream im-
plementation since it is a key feature allowing efficient
chaining of the atomic operators.

Lets start by the definition of the used basic terms.
Consider a system Y = f(X) withX and Y the input and
output data streams. By latency understand the distance
between the same positions in the two streams. It is a di-
mensionless value, expressed in number of data samples.
It is the sum of several factors:

1) operator latency - is induced by non causal oper-
ators due to the fact that the value to output depends
on future signal samples. Consider a basic max filter
yj=max(xj−w/2, . . . , xj+w/2). One cannot output yj be-
fore having read all xi until xj+w/2,

2) algorithm latency - some algorithms continue read-
ing the input even after all needed input data are avail-
able. Several morphological dilation/erosion algorithms
run in two (forward and backward) data scans, e.g. [13,
18]. Typically, in [18], before processing one image line,
one needs to read the entire line. For 2-D dilation by a
rectangle, implemented separately in the horizontal and
vertical direction, one would need to wait the bottom of
the image before writing the result. In [13] these for-
ward and backward scans can be done on w pixels long
intervals.

For example, the naive implementation of the mor-
phological dilation (Eq. 3) has a considerable computa-
tion complexity O(w-1) per pixel, with w the SE width
(or area in 2-D), but no algorithm latency.

The operator latency - inherent to the operator - is in-
compressible. Consequently, the optimization effort should
focus on the algorithm latency and the computational
complexity.

The first concern related to the latency is therefore
the time response of the system. Another concern re-
lated to the latency is the memory requirements. This

can intuitively be explained by the fact that the latent
(meaning “hidden”) data need to be temporarily stored
somewhere to not to get lost. Obviously, a large latency
requires large storage. An interesting conclusion is that
using larger SE will have larger memory requirements.

1.2.1. State of the art

The scientific community has adopted several approa-
ches to speed up the erosion/dilation computation. The
first one, we call direct computation, consists of a straight-
forward optimization of the computation given the SE
shape.

The second approach relies on the SE decomposition
into a sequence of reduced SE. Consequently, the opti-
mization effort concentrates on the computation of this
smaller SE. The special attention is paid to the SE de-
composition into a series of 1-D SE, very popular in nu-
merous applications [19, 20]. It allows better data access,
reuse of intermediate results and is easy to parallelize.

In the following, refer to Tab. 1 and 2 summarizing
the properties of some algorithms cited below. By data
memory understand the temporary storage for input or
output data if the algorithm uses random data access.
For instance the direct implementation needs random ac-
cess to input data, whereas the output is written sequen-
tially. It includes also the image transposition used by
some algorithms. The working memory is any supple-
mentary memory space required by the algorithm. It in-
cludes the data structures like FIFOs, LUTs, histograms,
etc. Temporary constants, scalar variables, counters, etc,
are omitted.

Direct 2-D computation. Optimized algorithms reduce the
computing redundancy by using some well-suited data
structures to keep the intermediate results. The most
natural way is the approach used by Huang et al. [21]
for median filtering, by Chaudhuri et al. [22] for rank-
order filtering, and later by Van Droogenbroeck and Tal-
bot [23]. They use a histogram to store the values within
the span of the SE at some position in the image. During
the translation of the SE over later image positions the
histogram is updated by inclusion/deletion of the values
of the entering/leaving points. The family of available
shapes for the SE is arbitrary. On the other hand, using
histogram makes that the input data have to be integers.

SE decomposition. It has soon become evident that the
SE decomposition offers another possibility to obtain a
fast implementation of more complex SEs both on spe-
cialized hardware as well as on sequential computers, and
the literature soon became abundant see e.g. [24, 25, 26,
27, 28, 29, 30, 31]. The speedup is obtained by dividing
the effort in two independent key aspects, an efficient de-
composition and the algorithm used for computing the
atomic operations.

Various types of decompositions have been proposed.
Perhaps the most known decomposition of linear sets is
the linear decomposition which comes from the associativ-
ity of the dilation, see Matheron [28]. Pecht [29] has pro-
posed a more efficient logarithmic decomposition based
on the extreme set of some SE. For example, for a poly-
gon, the extreme set contains the vertices.
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Table 1: 2-D algorithms comparison

Algorithm SE Complexity Algorithm Data Working
type per pixel Latency Memory Memory

Naive 2-D User O(WH) 0 MN 0
Urbach- User O(Nc + log2(Lmax(C))) MN MN NH log2W
Wilkinson
Van Droogen- User O(H log2(G))

∗ 0 NH WHG

broeck-Talbot
This paper 2-D Rect. O(1) 0 0 2(NH+W )

W×H = SE size (Width×Height); N×M = image size; G = number of gray levels; Lmax(C) = maximum chord
length; Nc = number of chords; ∗ square SE

Table 2: Fast 1-D algorithms comparison.

Algorithm SE Comparisons Algorithm Overall
type per pixel Latency Memory

Naive 1-D User W − 1 0 N

van Herk Sym 3− 4
W W N+2W

Gil-Wermann

Gil-Kimmel Sym 1, 5 +
log

2
W

W + W N+3W
Even/Odd +O( 1

W )
Lemire Left 3 0 N+W
Lemonnier Sym nc N 2N
Van Droogen- Sym nc 0 2N+G
broeck-Buckley Even/Odd
This paper 1-D User O(1) 0 2W

Sym = symmetric SE; Left = Left sided SE; User = user defined; W=SE size; N=line size; G = number of gray levels;
nc = not communicated.

Van den Boomgaard and Wester [30] show that the
Pecht decomposition can be improved for convex shapes.
They propose a decomposition of an arbitrary shape into
the union of convex shapes taken from a fixed collection of
basis, efficiently decomposable shapes. Coltuc and Pitas
[31] propose a factorization based algorithm running effi-
ciently for 2n signals. Soille et al. [27] propose an exten-
sion of the 1-D van Herk algorithm to 2-D. The SE is a
line oriented in an arbitrary angle. The decomposition is
obtained by saving the 2-D image as an 1-D array, and re-
computing the pixel indices correspondingly to the given
orientation of the line. Another efficient algorithm has
been recently proposed by Urbach and Wilkinson [16].
It decomposes a flat, arbitrary-shape SE by using a set
of 1-D chords. The min/max statistics of the chords are
stored in LUT.

1-D algorithms. The 1-D algorithms compute the partial
1-D dilations after the SE decomposition into lines.

One of the earliest, and most often used 1-D algo-
rithms, is the van Herk algorithm [13] proposed in 1992.
The same algorithm completed by theoretical background
was also published by Gil and Werman [32], and later im-
proved by Gevorkian et al. [33] and Gil and Kimmel [14].
The computational complexity is independent of the SE
size. It requires two passes on the input data: causal
and anti-causal. Consequently, computing in stream is
impossible. Another, similar algorithm was proposed in
[34] using ring-type buffers. Recently, Clienti et al. [35]
propose an interesting modification of the Van Herk al-

gorithm reducing the memory to 2W , implemented on an
FPGA.

A different approach has been used by Lemonnier [18].
It identifies and propagates local extrema as long as it is
required by the SE size. Again, two passes are needed:
causal and anti-causal. Hence, the algorithm latency is
N . The stream execution is impossible.

Van Droogenbroeck and Buckley [15] publish an an-
chor based algorithm for erosions and openings. The an-
chors are these portions of signal that remain unchanged
by the operator. The algorithm gives good performance
in terms of the computing time. The erosion can not
run in place and stream processing is probably impossi-
ble. The principal disadvantage is in using histograms
(suited only for integer values, and making the algorithm
irregular).

Lemire proposes a fast, stream-processing algorithm
for a left-sided SE [17], and later for symetric SE [36].
Both versions simultaneously compute 1-D dilation and
erosion, run on floating point data and have low memory
requirements and zero latency. However, even though
the algorithms are supposed to run in stream, the inter-
mediate storage of coordinates of local extrema actually
represents a random access to the input data.

1.3. Latency issues

In order to asses the latency of 2-D algorithms we
need to consider separately these different algorithm cat-
egories:
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• For decompositions of rectangles using R = H ⊕
V (R=rectangle, H/V=horizontal/vertical segment re-
spectively) the latency in 2-D is a multiplicative factor
of the latency in 1-D and the image width. For two
pass algorithms, e.g. Lemonnier [18], the 2-D latency
equals one image frame. For locally two-pass algorithms,
[13, 32, 33, 27] a specific decomposition would have to
be found to optimize the latency in 2-D. The same holds
also for other 1-D algorithms that in 1-D allow streaming
processing [17, 36, 15].
• Regarding the direct computation in 2-D, though

UW [16] could theoretically read/write the input/output
images sequentially, the possibility of streaming process-
ing is not mentioned; they also use random accesses to
intermediate data. Van Droogenbroeck-Talbot [23] and
the naive implementation write output sequentially, but
use random accesses to input data.
• The computational complexity, used in the Tab. 1,

may introduce to the result a supplementary delay - the
time to compute the result. Whereas the two latencies are
relative to the stream rate, the additional delay depends
on the implementation and the computation platform. It
can be i) negligeable as in most R=H⊕V decompositions,
where the latency prevails, or 2) dominant like in the
direct implementation with large SE or in 3-D.

1.4. Novelty of this paper

Although one can find several 1-D algorithms running
with zero algorithm latency, none of the above cited al-
gorithms combines all the features necessary for efficient
implementation of composed operators in the form ξ =
δBn

εBn−1
. . . δB2

εB1
for 2-D images.

Suppose the atomic operators δ, ε implemented using
an algorithm with sequential access to data. This allows
to run in parallel the entire ξ despite its internal sequen-
tial data dependence. If the atomic algorithm, in addi-
tion, has zero algorithm latency, then the entire chain ξ
inherits the same properties: sequential data access and
zero algorithm latency. This is an interesting property,
since computing ξ suddenly becomes very efficient: in
stream, with only the (further irreducible) operator la-
tency of ξ. See the application example Fig. 4.

In this scope, the novelty of this paper is multiple. It
is the only algorithm that combines all necessary features
for efficient, parallel implementation of serial morpholog-
ical operators. It uses a strictly sequential access to data,
and can also run in place. The output is produced with
zero algorithm latency. The algorithm runs in linear time
w.r.t. the image size and constant time w.r.t. the SE size.

Its additional features include: very low memory re-
quirements. A natural support of floating point data (not
all previous algorithms can support floating point data).
The origin can be arbitrarily placed within the structur-
ing element, which is useful for even sized SE or specific
SE decompositions.

2. Preliminaries

2.1. Morphological Dilation and Erosion

Let δ, ε: L → L be a dilation and an erosion, per-
formed on functions f ∈ L, defined as f : D → V . Below

assume D = supp(f) = Z
n, n = 1, 2, . . . and V = Z or

R. δB, εB are parameterized by a structuring element B,
assumed rectangular and flat i.e. B ⊂ D and translation-
invariant.

Functional (operating on functions) erosion and dila-
tion by a flat SE defined by extension to functions of the
Minkowski set addition/subtraction definitions are given
by

[δB(f)](x) = [
∨

b∈B

fb](x) (1)

[εB(f)](x) = [
∧

b∈B̂

fb](x) (2)

where ̂ denotes the transposition of the structuring ele-
ment, equal to a set reflection B̂ = {x | −x ∈ B}, and fb
denotes the translation of the function f by some vector
b ∈ D. Hence, the definitions Eqs. (1, 2) can be imple-
mented by

[δB(f)](x) = max
b∈B

f(x− b) (3)

[εB(f)](x) = min
b∈B

f(x+ b) (4)

Dilations and erosions combine to form other operators.
We shall focus on combinations obtained by concatena-
tions that this algorithm implements optimally.

The basic products obtained by concatenation1 are
opening γB = δBεB and closing ϕB = εBδB. Hence
from, one forms the so called Alternating Filters obtained
as γϕ, ϕγ, γϕγ and ϕγϕ. The number of combinations
obtained from two filters is rather limited. Other fil-
ters can be obtained by combining two families of fil-
ters. This leads to morphological Alternate Sequential
Filters (ASF), originally proposed by [37], and studied
in [1] Chap. 10. In general, it is a family of operators
parameterized by some λ ∈ Z

+, obtained by alternating
concatenation of two families of increasing, resp. decreas-
ing filters {ξi} and {ψi}, such that ψn ≤ . . . ≤ ψ1 ≤ ξ1 ≤
. . . ≤ ξn.

The most known ASF are those based on openings
and closings, obtained by taking ψ = γ and ξ = ϕ :

ASFλ = γλϕλ . . . γ1ϕ1 (5)

starting with a closing, and

ASFλ = ϕλγλ . . . ϕ1γ1 (6)

starting with an opening.
This brief survey of theory allows to intuitively ap-

preciate the complexity and the challenge involved by
the usage of such long compound operators. If the al-
gorithm does not deal at the same time with the memory
management as well as with the latency, the overall per-
formances could be (and generally they are) significantly
lowered. We address this problem in Section 6 where we
show how to efficiently implement the concatenation of
dilations and erosions.

1to be read from right to left
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3. Principle of the Algorithm

According to the algorithm classification presented in
the Introduction, the proposed algorithm belongs to the
SE decomposition approach using an improved 1-D dila-
tion algorithm.

3.1. Separation of 2-D into 1-D

Recall that separable operators are run in all direc-
tions separately. This requires intermediate data storage
between individual runs. If the 1-D parts use sequential
data access, it allows to compose n-D dilations also using
sequential data access. This eliminates the necessity of
intermediate data storage.

The input image is read in the raster scan order, line
by line. Every line is dilated horizontally. The result of
the horizontal dilation is immediately read, pixel by pixel,
by the vertical dilation in the corresponding column. The
result of the vertical dilation part is written to the output.
The output image is also written in the raster scan order.

Fig. 1a illustrates the computation of the result at
position (k, l). Assume that the input data have already
been read until line i, column j. The ongoing compu-
tations (depicted by ×) are: the horizontal dilation part
(Fig. 1b) is running on line i, with the reading position
(i, j) in the input image, writing position (i, l), immedi-
ately read by the vertical dilation (Fig. 1c) with reading
position (i, l) and writing position (k, l), directly writ-
ten to the output. The lines 1 to i−1 have already been
horizontally dilated, and all columns have already been
vertically dilated up to the line k.

i

k

1 l j N

B(k,l)

M

1

reading position
writing position

(a) Rectangle

i

k

1 l j N

B(k,l)

M

1

writing position
reading position

(b) Horizontal part

i

k

1 l j N

B(k,l)

M

1

writing position
reading position

(c) Vertical part

Figure 1: Separation of computing: (a) rectangular element into
(b) the horizontal and (c) vertical part. ×× denote the data stored
in the queue of the corresponding line or column.

3.2. 1-D algorithm

3.2.1. Elimination of useless values

An efficient coding of the function profile can avoid
a number of comparisons during the computation of a
dilation or an erosion. One can drop all values that will
never take over in the result of the max or min, Eqs. (3, 4).

Consider a 1-D, connected structuring element B con-
taining its origin. Then, computing δBf(x) needs only

those values of f(xi) that can be seen from x when look-
ing over the topographic profile of f . The valleys shad-
owed by mountains contain unneeded values, see Fig. 2.
Notice that the masked values depend on f , and not on
B.

f

xi j

Figure 2: Computing the dilation δBf(x): Values in valleys shad-
owed by mountains when looking from x over the topographic relief
of f are useless.

Now, lets place ourselves in the context of streaming
algorithms. For simplicity assume a causal SE, i.e. con-
taining its origin at the right hand side. For causal SE,
one only needs to look leftwards, over the past samples.
The search of the useless values can be formalized by the
Prop. 1 showing that values useless at some time instant
x remain useless also for the “future”.

Proposition 1. [Useless values] In computing the dila-
tion δBf , with f : Z

+→R, by some causal, connected
structuring element B (a linear segment) containing its
origin, no f(i) such that f(i) ≤ f(j), and i < j, will
influence the dilation

δBf(x), for ∀x ≥ j (7)

Proof. From Eq. 3, any x such that i < j ≤ x, if
i ∈ B(x) then j ∈ B(x). If f(i) < f(j), then f(i) <
maxb∈B f(x− b), and f(i) has no impact on the dilation
result.

This means that all f(i) such that

f(i) ≤ f(j), with i < j, (8)

may be dropped from the computations.

This is a strong proposition that allows a consider-
able reduction of the computational redundancy. One
comparison f(i) ≤ f(j), done upon reading f(j), avoids
computing j−i useless comparisons for any later B(x)
that covers i and j.

Two important points are to be noticed.

1. ∀x ≥ j in Eq. 7 means that all values that become
useless at the position j remain useless in the future,
∀x ≥ j.

2. Using a bounded and causal B ⊂ Z, i.e. an interval
B(x) = [x − b, x], with b < ∞, means that for
computing δB(x), one can also discard all values
outside the SE span, i.e. f(xi), with xi < x− b.

Remark. This proposition does not hold for non causal
SE. The values useless at time x may become useful for
some k > x. This algorithm utilizes the commutation of
dilation with translation to convert an anti-causal SE to
a causal one.
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3.2.2. Anti-causal to causal SE conversion

Every SE B, B ⊂ D is equipped by an origin x ∈
D. Assuming a sequential access to the input data, the
dilation δBf(x) depends of points read before but also
after x. We say that B is non causal.

One can transform a non causal SE to a causal SE
by utilizing the property that dilation commutes with
translation (t ∈ D)

δB+tf(x) = δBf(x− t) (9)

The translation consists of writing the result at the
correct place in the output. The horizontal and the ver-
tical shifts are handled by the 1-D horizontal or vertical
dilation part, implemented by the Fnct. 1 page 9.

3.2.3. Function coding

Similarly as binary objects can be coded by using the
distance to their boundaries, functions need to be coded
by computing the distance to every change of the value.
Using the Prop. 1 and relative indexing, the samples f(x)
used in computation δBf(xi) are coded by pairs (dis-
tance, value) as given in Fig. 3.

2
1

3
4
5
6
7
8

(1,3)
(3,4)

(13,7)
(14,8)f(x)

(4,6)

x
x

j i

pairs (distance, value) used in x i

Figure 3: Function coding. The useless values are discarded.

The arrows indicate those values that enter in the
computation of δBf(xi). The values non indicated by
an arrow are smaller or equal to f(j) = 6 and have no
impact on the result δBf(x), for x ≥ j.

The Eq. 8 is used by the 1-D dilation algorithm to
exclude from the computation all useless values.

4. Algorithm Complexity and Latency

In this section we shall analyze the latency and the
complexity of the algorithm.

4.1. Latency

The overall algorithm latency is function of two fac-
tors: i) the latency of the 1-D dilation (Fnct. 1), and ii)
the latency of the 2-D decomposition (Algorithm 2).
• 1-D dilation : The Function 1 writes the output as soon
as the reading position rp reaches the last position cov-
ered by the structuring element (code lines 6 to 7). This
corresponds to the last output-to-input data dependency
position, i.e. the operator latency.

Remark: The while loop, clearing from the FIFO the
useless values, operates on past signal samples. Conse-
quently, it doesn’t enter in the latency count. The latency
of the Function 1 is therefore strictly equal to the opera-
tor latency.

• 2-D dilation : The 2-D dilation is decomposed in the
way that result of the horizontal 1-D dilation is directly
fed to the corresponding 1-D vertical dilations. Their
results are recombined into the output stream. Therefore,
the algorithm latency of the 2-D decomposition is zero.

4.2. Computation complexity

The 2D Dilation algorithm iterates over all coordi-
nates of the output image. The inner complexity of the
2D algorithm is O(N), where N is the number of pix-
els in the image. At every coordinate, the 2D Dilation
calls twice the 1D Dilation function: once for the vertical
dilation and once for the horizontal dilation part.

The 1D Dilation part (Fnct. 1) contains a sequence of
O(1) operations, and one while loop (lines 1-2), clearing
useless values from the FIFO. We shall see that this while
loop is executed at most once per pixel, making the com-
plexity of the 1D Dilation algorithm constant per pixel.

Every incoming pixel is stored in the FIFO once and
only once (line 5). Every pixel is cleared from the FIFO
once and only once, either i) when it becomes “too old”,
i.e. uncovered by the current SE span (lines 3-4) or ii)
when it gets masked by another, higher value (lines 1-2).

The deletion (lines 1-2) of every pixel can be delayed.
Delete pixels from FIFO later or sooner has no impact on
the algorithm complexity. However, it occurs that several
pixels are deleted at the same time. This implies using
the loop while (lines 1-2). The loop iterates at most once
per pixel. Other pixels that become ”too old” are deleted
at lines 3-4. Hence, both ways of deletion have the same
complexity O (1) per pixel.

This allows to make the following conclusions:
1) The FIFO size is upper-bounded by the SE width.

This determines the memory requirements (detailed in
the next section).

2) For every pixel, the number of the iterations of the
while loop is lower-bounded by zero and upper-bounded
by the SE width.

3) The average number of iterations of the while re-
mains in [0, 1] per pixel.

4) The worst-case complexity of the 1D Dilation per
pixel is bounded by O(W ).

Hence, we shall conclude that the overall complexity
of the 2-D dilation algorithm is O(N), i.e. linear w.r.t
the size of the image (N pixels) and constant w.r.t the
SE size.

Note: Although both ways of deletion have the same
complexity O(1), they do not have the same cost (in
terms of instruction count). The deletion by shadow-
ing is slower in C because of the overhead of the loop
while. The different timings obtained on various data
(constant, random or natural images) are due to this over-
head. For nonincreasing intervals (e.g. a constant image
- see Benchmarks) the loop (lines 3-4) never executes.
The probability of either deletion being data dependent
explains the slight variation of the execution time on the
image content.

5. Memory Requirements

In 1-D, the FIFO size is upper-bounded by the width
of the SE, which is the memory-worst case encountered
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whereever there are no useless data to eliminate. This
occurs at all monotonically decreasing intervals of the sig-
nal that are longer than the SE width. This is equivalent
to results obtained in [15], where for computing εBf(x),
only the values f(xi), with xi = B(x), are needed. Simi-
lar results hold for the dilation.

In 2-D, the memory requirements are given by the de-
composition of the rectangle as R = H⊕V (R=rectangle,
H/V=horizontal/vertical segment respectively). The raster-
scan data access makes that the computations window
(the SE) slides over the image from left to right and from
top downwards.

The vertical part of the 2-D dilation runs at all columns
simultaneously, one pixel per each column at a time. All
columns have the memory-worst case equivalent to the
height of the SE.

Consider an erosion (or a dilation) of an N×M im-
age (width by height) by a W×H rectangular (width by
height) SE. The memory requirements M are

M = 2(NH +W )

This means, N memory blocks of size 2H (vertical part)
and one memory block of size 2W (horizontal part). The
multiplicative factor 2 comes from the fact that the stored
data are indexed by their coordinates (see Fig. 3, and
Fnct. 1, line 5).

For example, an erosion of an 800×600 image by a
20×20 square will require 2×(800×20+20)=32,040 bytes.
Compared to this, storing an 800×600 image is costly,
requiring 480,000 bytes (with 1 byte/pixel coding). Nei-
ther the input nor the output image need to be stored in
memory.

The memory requirements graphically correspond to
storing the image data from the lines currently intersected
by the SE.

6. Application

In the following we give as example the implementa-
tion of an ASFλ given by Eq. (5). Rewrite the filter as
a concatenation of erosions and dilations

ASFλ = δBλ
εBλ

εBλ
δBλ

. . . δB1
εB1

εB1
δB1

(10)

and reduce it into its canonical form

ASFλ = δBλ
εBλ⊕Bλ

δBλ
. . . δB1

εB1⊕B1
δB1

This ASFλ can be implemented in a stream in one raster
scan of the input image. The writing position of the
preceding operator in the cascade becomes the reading
position of the following operator. The operator latency
of the entire ASF will be given by the one introduce by
the result of Minkowski sum of all SE in Eq. 10, that is⊕n

i=1Bi.
Figure 4 illustrates the propagation of real image data

through an ASF 4 after having read approximately one
third of the input image. The SE is a square of size
s+1 for the s-th stage. The individual operators, with
sequential data dependence, are running simultaneously.
There is no intermediate data storage between the stages;
the intermediate results are pipelined.

Input
Stage 1
output

Stage 2
output

Stage 3
output

Output

Figure 4: Propagation of data throughout ASF 4 after having read
approximately one third of input image (Manet’s painting “Le
fifre”)

Table 3: Execution time in ms for 2-D dilation of the ’moun-
tain.pgm’ image (800×600) by a 21×21 square for various data
coding types.

Data type / int float unsigned double
CPU type char

Intel Core2 Duo 17.49 18.05 25.77 20.32
2.4GHz (32 bits)
Dual Core
AMD Opteron 22.34 23.64 25.02 22.06
2.4GHz (64 bits)

7. Benchmarks

This section illustrates the execution time of this al-
gorithm, w.r.t. various criteria, measured on an Intel
Core 2 2GHz CPU, with 2GB 800MHz Dual Port RAM,
running Linux. The time reported below is the processor
time spent in the dilation/erosion algorithm as reported
by a profiler (obtained as a mean after several runs to
reduce inaccuracy).

The first experiment, see Fig. 5, illustrates the run-
ning time w.r.t. the content of the image. We have used a
constant and a white-noise image to illustrate the fastest
and the worst-case running time, and a natural image
to illustrate the “expected” running time on a natural
scene. The measured time follows a linear function of
the image size. Note also that the performance on the
natural image actually coincides with the worst case per-
formance obtained on the white noise. (The various sizes
of the natural image were obtained by tiling side to side
the original photography mountain.pgm from [38].)

We have evaluated the performance of the algorithm
against different data types, see Tab. 3. The best perfor-
mance has been obtained for the word width correspond-
ing to the used CPU architecture, i.e. the integer and
float for a 32 bit CPU, and the double for a 64 bit CPU.
The penalty obtained for the unsigned char (8 bits) is due
to inefficient memory access on both architectures.

We have compared our algorithm with Urbach-Wil-
kinson2 [16] and Van Droogenbroeck-Buckley3 [15], see
Fig. 6.

The best timing was obtained with [15], the worst
with [16], which allows - on the other hand - SE of ar-

2code courtesy of Erik Urbach
3code available at [38]
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Figure 5: Execution time of erosion, with respect to the content of
the image. Data read from memory.

0.48 1.92 4.32 7.68 12

10
−2

10
0

→ image size [Mpix]

  800x600  

  1600x1200

  2400x1800

  3200x2400

  4000x3000

→
 E

xe
cu

tio
n 

tim
e 

[s
] o van Droogenbroeck, Buckley

x Urbach, Wilkinson         
+ this paper                

Figure 6: Execution time of erosion, with respect to the size of
image. Structuring element 21×21. Data read from memory.
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Figure 7: Execution time of erosion with respect to the size of
structuring element. Image size 800×600.

bitrary shapes. The algorithm from this paper remains
competitive with the speed of the other algorithms, even
though the speed has been traded off for memory con-
sumption and latency.

Finally, the last experiment, see Fig. 7, illustrates that
the complexity of the algorithm is independent of the SE
size. The SE is a centered, 10k+1 × 10k+1 square, for
k = 0 . . . 9.

Note: The FIFO queues are implemented in C by
using pointer-addressed arrays.

8. Conclusions

This paper proposes a new algorithm for functional
dilation or erosion by a flat, rectangular structuring ele-
ment for 2-D data (easily extensible to n-D images, and
SE in form of n-D boxes).

The algorithm has zero algorithm latency and strictly
sequential access to data. The combination of these two
properties allows their inheritance to operators composed
by concatenation. The entire concatenation chain, de-
spite its internal sequential data dependence, can run si-
multaneously. The algorithm runs in linear time w.r.t.
the image size and constant time w.r.t. the SE size.

Regarding serial filters, if all the operators in the con-
catenation run simultaneously - then result can also be
obtained in constant time w.r.t. the length of the con-
catenation.

The algorithm has low memory requirements, which
eases its implementation on systems with space constraints,
such as embedded or mobile devices, intelligent cameras,
etc. The linear time and zero latency allow efficient im-
plementations on demanding industrial systems with se-
vere time constraints.

Even though the speed is not the principal concern
here, the algorithm remains competitive in term of exe-
cution time compared to the recent proposed fast imple-
mentations.

9. Future extensions

9.1. Other SE shapes

The algorithm, described above with rectangles, can
also be extended to other shapes decomposable into linear
segments (e.g. polygons as in [27]).

9.2. Spatially variant SE

This paper is the third step of a wider work towards
an efficient implementation of morphological operations
with spatially variant structuring elements that are useful
for adaptive filters. The first step has been the stream im-
plementation of dilation/erosion of sets [39]. It has the
same algorithmic properties: zero latency and optimal
memory, sequential access to data. The second step was
the extension to the functional morphology; preliminary
results have already been published: 1-D spatially vari-
ant morphology [40] and approximations of 2-D spatially
variant rectangles [41].

The present algorithm is a simplified version of [41]
limited from spatially variant to translation invariant SE.
This simplification has brought a 10× speed increase.

The goal is to obtain an algorithm for spatially-variant
functional dilations and erosions with structuring ele-
ments of unconstrained shapes.

9.3. Real-time HW accelerator

This algorithm can be easily implemented as a finite
state machine, interesting for HW implementation. The
sequential access allows to read the image from a cam-
era, process it, and write it out for further processing
or visualization. This allows processing large, or infinite
industrial images without storing them in the memory.
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Appendix

Notation convention and preliminaries

← shall denote the assignment and =, <, ≤, ... tests.
Curly braces denote a collection of values, e.g. A ←
{5, 8}. To obtain an element in a collection by its index
we use brackets, e.g. A[1] = 5. The empty set is de-
noted by {}. In a function call, parentheses denote the
collection of arguments; funct() is a function call without
arguments.

FIFO: The algorithm uses FIFO (First In First Out)
queues. The FIFO supports the following operations:
push - insert a new element, pop - retrieve the oldest el-
ement, and dequeue - retrieve the most recent element,
and queries: front read the oldest element, back - read
the newest element. The operations modify the content
of the FIFO whereas the queries do not. fifo←{} ini-
tializes the fifo to empty.

In this algorithms, the elements inserted/read into/from
the fifo are always couples {value, position}. Hence, e.g.
the query fifo.front()[1] yields the value of the oldest
element in the queue.

Input/output images are assumed 2D, read and writ-
ten in the raster scan order one pixel at a time by x
← in stream.read() and out stream.write(x). The read-
ing/writing position is always implicitly incremented by
1.

Algorithm Description

This section details the algorithm principles in link to
the algorithm pseudo-code, see page 9.

9.4. 2-D Dilation Algorithm

The 2-D Dilation, Algorithm 1, is to decompose the
2-D SE into columns and to assemble the partial 1-D
computations into a 2-D stream, cf. Fig. 1.

The horizontal and vertical dilation parts are com-
puted by the same function 1D Dilation. It encodes
the input data from the current line or column and stores
them in the FIFO. There is one FIFO for the horizontal
part dilation - h fifo. For the vertical part, there is an
1 . . .N array - v fifo - one FIFO per image column.

The input image is read at lines 10 to 12. Missing data
(to the right of the image) are completed by the padding
constant, line 14. The horizontal dilation is computed at
line 16.

If the horizontal dilation part outputs a valid (non
empty) value, line 19, it is sent to the vertical dilation
part, computed by the same function, line 20. The ver-
tical dilations also may require padding - typically below
the image - where the horizontal dilation is not called.
Instead, dFx is directly set to the padding value, line 18.

Provided the vertical dilation outputs a valid result,
line 21, it is directly written to the output image, line 22.

9.5. 1-D Dilation Function

Assume computing dF=δBF , where F, dF : [1,. . . ,N ]→
R. The structuring element B is a linear segment, SE1
+ SE2 + 1 pixels long, with SE1, SE2 the offsets of the
origin from the left- or the right-most end.

Calling conventions: The function 1D Dilation,
see Function 1, page 9, is a function computing one sam-
ple of dF, to be written at writing position wp.

Upon every call, rp must be incremented by one by
the calling function. Similarly, every time that 1D Dilation

outputs a valid sample, wp is to be incremented by one.
The current fifo queue needs to be passed by reference.
Principle: The function proceeds in three steps:

1. Dequeue all smaller or equal values, lines 1 to 2.
Removes from the FIFO all values that become use-
less.

2. Delete too old value, lines 3 to 4, removes from the
FIFO the value that gets uncovered by the current
SE B(wp).

3. Enqueue the current sample in the FIFO in the form
of a couple {value, position}.

4. Provided enough data have been read, line 6, return
the dilation result dF, line 7. At any moment, this
value is found at the oldest position of the FIFO.

Note: To obtain erosion instead of dilation:
1) Fnct. 1, line 1, replace ≤ by ≥.
2) Alg. 2, line 1, set the padding constant PAD to∞.

Algorithm pseudo-code

Function 1: dF ← 1D Dilation(rp, wp, F,
SE1, SE2, N, fifo)

Input: rp, wp - reading/writing position; F -
input signal value (read at rp); SE1, SE2 -
SE size towards left and right; N - length
of the signal; fifo - the FIFO

Result: dF - output signal value (to be written at
wp)

// Dequeue all queued smaller or equal values
while fifo.back()[1] ≤ F do1

fifo.dequeue()2

// Delete too old value
if (wp - fifo.front()[2] > SE1) then3

fifo.pop()4

// Enqueue the current sample
fifo.push({F, rp})5

if rp = min (N, wp + SE2) then6

return ( fifo.front()[1] ) ; // return a valid7

value

else8

return ({}) ; // return empty9
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Algorithm 2: 2D Dilation

Input: in stream - input image pixels stream
M,N - height, width of the image
SE1, SE2, SE3, SE4 - struct. element size

Result: out stream

const. PAD ← 0 ; // Set the Padding Constant1

vfifo ← array [1..N ] of FIFO ; // array of N empty2

FIFOs for the vertical dilation part

line rd ← 1 ; // read line counter3

line wr ← 1 ; // written line counter4

// iterate over all image lines
while line wr ≤ M do5

hfifo ← FIFO ; // FIFO for the horizontal part6

col rd ← 0 ; // read column counter7

col wr ← 1 ; // written column counter8

// iterate over all columns
while col wr ≤ N do9

// horizontal dilation on the line wr line
if line rd ≤ M then10

if col rd < N then11

F ← in stream.read()12

else13

F ← PAD ; // Padding constant14

col rd ← min(col rd +1, N)15

dFx ← 1D Dilation (col rd, col wr, F,16

SE1, SE3, N, hfifo)
else17

dFx ← PAD ; // Padding constant18

// vertical dilation of the col wr column
if dFx 6= {} then19

dFy ← 1D Dilation (min(line rd,M),20

line wr, dFx, SE2, SE4, M, vfifo[col wr
])
if dFy 6= {} then21

out stream.write(dFy)22

col wr ← col wr +123

line rd ← line rd+124

if dFy 6= {} then25

line wr ← line wr +126
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