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Abstract
The biomechanical materials are among the most complex mechanical systems. Most often, their micro-

structure are complex and random. This is the case for the human cortical bones which are considered in this

paper. For such a system, the micro-structure can be altered near its interface with the marrow (osteoporosis).

A gradient of porosity is then observed in the thickness direction but, in this case, none of the usual theories

of porous materials can be applied. For this reason, we present a simplified model with gradient for the

elasticity tensor. The predictability of this model is improved by taking into account uncertainties. The

elasticity tensor is then modelled by a random field. This random model is well adapted for the modelling of

the random experimental measurements in ultrasonic range for the human cortical bone.

1 Introduction

The biomechanical materials are among the most complex mechanical systems. Modelling such media is a

challenge and the main difficulty is given rise to by the complexity level of their micro-structures. This is the

case for the human cortical bones which are considered in this paper. For such a system, the micro-structure

can be altered near its interface with the marrow (osteoporosis). A gradient of porosity is then observed in

the thickness direction but, in this case, none of the usual theories of porous materials can be applied. For

these reasons, these systems are often modelled using a simplified mechanical model which corresponds to

a rough approximation of the real system. Nevertheless, the predictability of such a simplified model can

be improved by taking into account the uncertainties introduced by these approximations. In this paper, a

model for the human cortical bone is constructed. It consists of a fluid-solid semi-infinite multilayer system

in which the solid layer (the cortical bone) is a non-homogeneous transverse isotropic elastic material and

the two others semi-infinite layers (skin/muscles and marrow) are modelled by acoustical fluids. A gradient



of the elasticity properties of the cortical bone is introduced in order to take into account the alterations of

the cortical bone micro-structure. Thus, inside the solid layer, the constitutive equation of the solid goes to

the constitutive equation of the fluid (the marrow).

The uncertainties related to such a model are taken into account by modelling the elasticity tensor by a

random field. The parameters of this probabilistic model are (1) the mean value of the effective thickness

and the mean value of the elasticity tensor of the cortical bone and (2) the parameters controlling the level of

uncertainties which depends on the spatial coordinates. The purpose is to present such a probabilistic model

constructed within the framework of the theory of information. This probabilistic model should be adapted

for the experimental identification using measurements in ultrasonic range.

2 Simplified model

the properties of the human cortical bone are studied by using in vivo measurements obtained with the axial

transmission technique: an acoustic pulse is applied on the skin layer in the ultrasonic range and the velocity

of the first arriving signal is measured. A simplified model of the human cortical bone with the skin, the

coupling gel with a probe that applied the acoustic pulse and the marrow has been developed in [8, 5].

This simplifed model is composed of an elastic solid semi-infinite layer between two acoustic fluid semi-

infinite layers (see fig. 1). Let R(O, e1, e2, e3) be the reference Cartesian frame where O is the origin of the

Figure 1: Geometry of the multilayer system

space and (e1, e2, e3) is an orthonormal basis for this space. The coordinates of the generic point x in  3 are

(x1, x2, x3). The thicknesses of the layers are denoted by h1, h and h2. The first acoustic fluid layer occupies

the open unbounded domain Ω1 , the second acoustic fluid layer occupies the open unbounded domain Ω2

and the elastic solid layer occupies the open unbounded domain Ω. Let ∂Ω1 = Γ1 ∪Σ1, ∂Ω = Σ1 ∪Σ2 and

∂Ω2 = Σ2 ∪ Γ2 (see Fig. 1) be respectively the boundaries of Ω1, Ω and Ω2 in which Γ1,Σ1,Σ2 and Γ2 are

the planes defined by

Γ1 = {x1 ∈  , x2 ∈  , x3 = z1}
Σ1 = {x1 ∈  , x2 ∈  , x3 = 0}
Σ2 = {x1 ∈  , x2 ∈  , x3 = z}
Γ2 = {x1 ∈  , x2 ∈  , x3 = z2}

in which z1 = h1, z = −h and z2 = −(h + h2). Therefore, the domains Ω1, Ω and Ω2 are unbounded along

the transversal directions e1 and e2 whereas they are bounded along the vertical direction e3. A line source



modelling an acoustical impulse is applied in domain Ω1. This line source is defined with a source density

Q1 such that

∂Q1

∂t
(x, t) = ρ1 F (t)δ0(x1 − xS

1 )δ0(x3 − xS
3 ) ,

in which F (t) = F1 sin(2πfct)e
−4(t fc−1)2 where fc = 1MHz is the central frequency and F1 = 100N; ρ1

is the mass density of domain Ω1; δ0 is the Dirac function at the origin and xS
1 and xS

3 are the coordinates of

a line source modelling the acoustical impulse. At time t = 0, the system is assumed to be at rest. Let ρ(x3)
and [C(x3)] be the mass density and the effective elasticity matrix of the solid layer at a point x3 in Ω1. For

a given effective elasticity matrix field x3 7→ [C(x3)], the displacement field u in the solid layer Ω and the

pressure fields p1 and p2 in the two fluids Ω1 and Ω2 respectively, are calculated using the fast and efficient

hybrid solver presented in [4].

3 Simplified model for a porous medium with gradient

It is well-known that bone medium are made of porous material. However, for the human cortical bones, the

pore sizes are not small with respect to the thickness of the cortical layer. In addition, the pore size increases

along the transverse direction x3. In case of osteoporosis, this gradient of porosity is such that, near interface

Σ2, the cortical material is mostly made up of a fluid. No usual theory on porous medium [1, 2, 3] is suitable

for modelling such properties. Hereafter, we then propose an approach that allows the modelling of the

elasticity matrix [C(x3)] to be still constructed within the usual framework of the continuum mechanics. For

all x3 in [a, 0], the material in the cortical layer is assumed to be locally an homogeneous transverse isotropic
medium and for all x3 in [z, b] it is assumed to be a fluid. Consequently, (1) for all x3 in [0, a], we have
[C(x3)] = [CS] and ρ(x3) = ρS ; (2) for all x3 in [z, b] we have [CF ] and ρ(x3) = ρ2; where [CS ] is the
elasticity matrix of a transverse isotropic medium, [CF ] is the elasticity matrix of a fluid medium, ρS is the

mass density of the cortical layer without taking into account the porosity and ρ2 is the mass density of the

second fluid (the marrow). All components of [CS ] are zeros except the following

[CS]11 =
e2
L(1 − νT )

(eL − eLνT − 2eT ν2
L)

, [CS ]22 =
eT (eL − eT ν2

L)

(1 + νT )(eL − eLνT − 2eT ν2
L)

,

[CS]12 =
eT eLνL

(eL − eLνT − 2eT ν2
L)

, [CS ]23 =
eT (eLνT + eT ν2

L)

(1 + νT )(eL − eLνT − 2eT ν2
L)

,

[CS]44 = gT , [CS ]55 = gL ,

with [CS ]22 = [CS]33, [CS]12 = [CS]13 = [CS ]21 = [CS]31, [CS]23 = [CS ]32 and [CS]55 = [CS]66
and where eL and eT are the longitudinal and transversal Young moduli, gL and gT are the longitudinal and

transversal shear moduli and νL and νT are the longitudinal and transversal Poison coefficients such that

gT = eT /2(1 + νT ). All components of [CF ] are zero except [CF ]11, [CF ]12, [CF ]13, [CF ]21, [CF ]22,
[CF ]23, [C

F ]31, [CF ]32,[C
F ]33 that are all equal to ρ2 c2

2. The proposal model of [C(x3)] and ρ(x3) is the
following

[C(x3)] = (1 − f(x3)) [CS ] + f(x3) [CF ] ,

ρ(x3) = (1 − f(x3)) ρS + f(x3) ρ2 ,

where f(x3) = 1 if x3 < b, f(x3) = 0 if x3 > a and f(x3) = c0 + c1 x3 + c2 x2
3 + c3 x3

3 if b ≤ x3 ≤ a in

which c0 = a2 (a− 3 b)/(a− b)3, c1 = 6 a b/(a− b)3, c2 = −3(a + b)/(a− b)3 and c3 = 2/(a− b)3. This
model has been constructed such that, for x3 = a or x3 = b,

∂[C(x3)]

∂x3
= 0 and

∂ρ(x3)

∂x3
= 0 ,



4 Probabilistic model of the thickness and elasticity matrix of the

cortical layer

The modelling of these biomechanical materials is tricky due to the lack of knowledge on the micro-structure

which is random and complex. In the two previous sections, a simplified model has been presented. The

predictability of this model can be improved by taking into account these uncertainties. In this section, the

probabilistic model is constructed by substituting the elasticity matrix field x3 7→ [C(x3)] by a matrix-valued
random field x3 7→ [C(x3)]. The probabilistic model of random elasticity matrix field x3 7→ [C(x3)] is
constructed using the maximum entropy principle [6, 7] within the framework of the theory of the information

[9] . We then consider the following available information : (1) the random matrix [C(x3)] is a second-order
random variable with values in the set of all the (6 × 6) real symmetric positive-definite matrices; (2) the
mean value of random matrix [C(x3)] is the mean elasticity matrix [C(x3)]; (3) the norm of the inverse

matrix of [C(x3)] is a second-order random variable. It has been shown in [10, 11] that the random matrix

[C(x3)] is then written as, for all b < x3 < 0

[C(x3)] = [L(x3)]
T [G(x3)][L(x3)] ,

and since, for x3 < b the medium is not uncertain (no uncertainties on the fluid mediums) then, for all x3 < b

[C(x3)] = [C(x3)] ,

in which the (6 × 6) upper triangular matrix [L(x3)] corresponds to the Cholesky factorization [C(x3)] =
[L(x3)]

T [L(x3)] and where the probability model of matrix-valued random field x3 7→ [G(x3)] is defined
as the non-linear mapping of 21 second-order centered homogeneous Gaussian random fields Uj j′(x3) with
1 ≤ j ≤ j′ ≤ 6. The explicit expression of this non-linear mapping can be found in [2, 3]. The stochastic
germs Uj j′(x3) are then defined by the autocorrelation functions RUjj′

(τ) = E{Ujj′(x3 +τ)Ujj′(x3)} such
that

RUjj′
(τ) = (2 ℓ/π τ)2 sin2(π τ/2 ℓ) ,

where the spatial correlation length ℓ is a parameter of the probabilistic model. The random field x3 7→
[G(x3)] also depends on an additional parameter 0 < δ < (7/11)1/2 that is independent of x3. This

parameter controls the statistical fluctuations of [G(x3)] and [C(x3)] since it can be shown that

E{‖[G(x3)]‖2
F } = 6(δ2 + 1) ,

δC(x3) =
δ√
7

(

1 +
(tr [C(x3)])

2

tr [C(x3]2

)1/2

, (1)

where δC(x3)
2 = E{‖[C(x3)] − [C(x3)]‖2

F }/‖[C(x3)]‖2
F and ‖ · ‖ is the Frobenius norm. It should be

noted that the dispersion coefficient of matrix [C(x3)] is a not δ but δC(x3) that is dependent of the spatial
coordinate x3. Finally, the spatial correlation length ℓC of random field x3 7→ [C(x3)] is such that

ℓC =

∫ +∞

0
|rc(τ)| dτ ,

where

rc(τ) =
tr E{([C(x3 + τ)] − [C(x3])([C(x3)] − [C(x3]])}

E{‖[C(x3)] − [C(x3]‖2
F }

,

Then, the displacement field of the solid layer and the two pressure fileds of the fluid layers are random fields

denoted by U, P1 and P2.



5 Application

In a previous paper [5], the components of matrix [CS ] has been identified with an experimental database

using measurement of the first arriving signal with the axial transmission technique. The experimental con-

figuration is described by Fig. 2. A device has been designed and is made up of nR = 11 receivers and 2
transmitters. A coupling gel is applied at the interface between the device and the skin of the patient. Each

transmitter generates an acoustical impulse in the ultrasonic range that propagates in the coupling gel, the

skin, the muscle, the cortical bone and the marrow. The axial transmission technique consists in recording

Probe

transmitter receiver

Cortical layer of a long bone

soft tissue
coupling gel Transmitter

Transmitter

Receivers

Bone

Figure 2: Experimental configuration

these signals at the nR = 11 receivers located in the device. The first arriving contribution of the signal (FAS)
is considered. Following the signal processing method used with the experimental device, the velocity of FAS

is determined from the time of flight of the first extremum of the contribution. This experimental database

allows the components of matrix [CS] to be indentified (see [5]) and we obtained ρS = 1598.8 kg.m−3,

eL = 17.717 GPa, νL = 0.3816, gL = 4.7950 GPa, eT = 9.8254 GPa, νT = 0.4495 and δC(0) = 0.1029.
Using Eq. (1) yields δ = 0.0575. In this paper, we are interested by the propagation of the uncertainties

in the first fluid layer Ω1 for the cortical bone system in the context of the axial transmission technique. We

then introduce the random variable Q defined by

Q =

∫ T

0

nR
∑

k=1

|P2(t, x
k
1)|2 dt ,

where T is the duration of an experimental signal and xk
1, with k = 1, . . . , nR are the positions of the

receivers along direction e1. Let q 7→ pQ(a, b, ℓ; q) be the probability density function of random variable

Q. In Fig. 3, the graph of x3 7→ δC(x3) is shown with a = 0, b = −z (thin solid line) and a = z/2, b = −z
(thick solid line) and a = 0, b = z/2 (dashed thin line). It can been seen that the value of the dispersion

coefficient δC(x3) of the random matrix [C(x3)] decreases when the constitutive equations of the material go
to the constitutive equations of the fluid in Ω2 that is not uncertain. In Fig. 4, the graph of q 7→ pQ(a, b, ℓ; q)
is shown in logscale with a = 0, b = z, ℓ = h/10 (thick solid line), with a = z/2, b = z, ℓ = h/10 (thin

solid line), with a = 0, b = z, ℓ = h/20 (thick dashed line), with a = z/2, b = z, ℓ = h/20 (thin dashed

line). It can be seen that the probability density function is sensitive with respect to the thickness a and the

spatial correlation length ℓ.

6 Conclusions

In this paper we have considered the transient dynamical response of a multilayer system submitted to an

impulse in the ultrasonic range. The application concerns a biomechanical system: the human cortical bone.

This system is really tricky to be modelled due to the lack of knowledge on its micro-structure. For such

a system, the micro-structure can be altered near its interface with the marrow (osteoporosis). A gradient

of porosity is then observed in the thickness direction but, in this case, none of the usual theories of porous
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Figure 3: Graph of x3 7→ δC(x3) with a = 0, b = −z (thin solid line) and a = z/2, b = −z (thick solid line)
and a = 0, b = z/2 (dashed thin line)
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Figure 4: Graph of q 7→ pQ(a, b, ℓ; q) in logscale with a = 0, b = z, ℓ = h/10 (thick solid line), with

a = z/2, b = z, ℓ = h/10 (thin solid line), with a = z/2, b = z, ℓ = h/20 (thin dashed line), with a = z/2,
b = z, ℓ = h (thick dashed line).

materials can be applied. This is the reason why we have proposed a simple model of the elasticity tensor

for media with a gradient of the porosity in order to take into account the alterations of the cortical bone

micro-structure. Thus, inside the solid layer, the constitutive equation of the solid goes to the constitutive

equation of the fluid (the marrow). Then, in order to improve the predictability of this simplified model, we

have taken into account the uncertainties by substituting the elasticity tensor with a random field for which

the probabilistic model has been constructed using the maximum entropy principle. An application has been

proposed to study the propagation of these uncertainties on the pressure field inside the first fluid domain

(the skin). Results show that the total energy of the random pressure pressure field is very sensitive to the

gradient and the spatial correlation length of the random elasticity tensor in the cortical layer. Consequently,



experimental measurements in the context of the axial transmission technique can be used in order to identify

the parameters of this probabilistic model.
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