Poroelastic behaviour of cortical bone under harmonic axial loading: A finite element study at the osteonal scale
Résumé
Bone fluid flow and its induced effects on the bone cells are important players in triggering and signalling bone formation and bone remodelling. This study aims to numerically investigate the behaviour of interstitial fluid flows in cortical bone under axial cyclic harmonic loads that mimics in vivo bone behaviour during daily activities like walking. Here, bone tissue is modelled as a fluid-saturated anisotropic poroelastic medium which consists of a periodic group of osteons. By using a frequency-domain finite element analysis, the fluid velocity field is quantified for various loading conditions and bone matrix parameters. (C) 2010 IPEM. Published by Elsevier Ltd. All rights reserved.