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Abstract

We are interested in constructing an uncertain model of aimarmotor CSS of pressurized water reactor
using a generalized probabilistic approach of unceresraind in identifying this model using experimental
measurements of the first eigenfrequencies. This genedafirobabilistic approach of uncertainties allows
both model-parameter uncertainties and model uncewaittdibe taken into account and identified separately
in the context of the experimental modal anaysis. Findtlg,itlentified uncertain model allows statistics on
guantities of interest to be estimated.

1 Introduction

The problem presented here concerns the development andeth#ication of a unique uncertain com-
putational dynamical model of a nominal motor CSS of prégedrwater reactor, having the capability to
predict the responses of motors belonging to a given set tdndifor which experimental measurements are
available. We are interested in the prediction in a statisgense of the first eigenfrequencies of the nominal
motor using a computational dynamical models for which ehare two types of uncertainties. The first
one is related to the uncertainties of the computationalahpdrameters (model-parameter uncertainties).
The second one is due to the modeling errors which induce huertainties and which are due to the
approximation introduced by the modeling process. Regeathew generalized approach of uncertainties
has been proposed (see [2]) to construct a prior probabilisbdel of uncertainties. This method allows
both model-parameter uncertainties and model uncemasinti be taken into account. In this method, un-
like the classical output-prediction-error method (sdg fhe model errors are taken into account using the
nonparametric probabilistic approach. The prior prolstiil models of the two types of uncertainties are
constructed and identified in a separate way. We apply thteadeo construct a stochastic computational
dynamical model of the motor CSS. Then, the identificatiothisf model is performed using a set of exper-
imental measurements corresponding to the motors belgrgithe given set (and associated with several
sites). Section 2 is devoted to the description of the mo®® @nd to the experimental measurements. Sec-
tions 3 and 4 respectively present the mean computationdehand the stochastic computational model.
Section 5 is devoted to the identification of the dispersiarameters of the stochastic computational model.
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In the last Section, statistics on the three first eigenfeeqies are constructed using the identified stochastic
computational model.

2 CSS motors and experimental measurements

CSS motors are components of Emergency Core Cooling SysiERiessurized Water Reactors. We are
interested in the low-frequency dynamical behaviour ohssicuctures and more especially in the range of
variation of the three first eigenfrequencies. The rotafrequency of this motor is fixed. In this paper,
for reasons of confidentiality, all experimental and nucedrfrequencies have been divided by this rotation
frequency and are therefore dimensionless. Thereforedithensionless rotation frequency is equal to
1. The first dimensionless eigenfrequencies have to be outteofange[0.92,1.08] in order to avoid a
reasonance induced by the rotation of the motor. It shoulddbed that the results presented in this paper
concern a nake motor without any added mass or added ssifivish would allow the first eigenfrequencies
to be out this range with sufficient probability (Some CSSaormoare already equipped of such added mass
and added stiffness). The motor is represented on Fig. lLmbher is fixed on a rectangular base plate which
is fixed to the rectangular metallic plate. The Metallic platfixed on the concrete slab. The gimbal housing
is fixed on the base plate. The motor is very rigid while thelgairhousing is flexible. An experimental
modal analysis is carried out for 11 motors. The idenfieddirsiensionless eigenfrequency for the 11 motors
are0.77, 0.96, 0.85, 0.95, 0.97, 0.85, 0.75, 0.91, 0.78, 0.77 and0.81 . The idenfied second dimensionless
eigenfrequency for the 11 motors &84, 1.04, 0.88, 0.98, 0.98, 0.9, 0.92, 0.92, 0.86, 0.79 and0.85. The
third dimensionless is identified for only 11 motors. Theniiled third dimensionless eigenfrequencies are
1.01, 1.0, 1.13, 0.85 and1.02. These eigenfrequencies will be used for the identificatibthe dispersion
parameters.

Motor

Junction

- (motor / plate)
Base plate
/ Metallic plate
- Concrete slab
= _

/ Gimbal housing

Figure 1: CSS motor

3 Mean computational model

The mesh of the finite element model of the mean computatioodkl is represented on Fig. 2. The concrete
slab, the base plate and the metallic plate are modeled lbyneofinite elements. The gimbal housing is
modeled by a Timoshenko beam for which the area of the seigtidn= 5.4 x 1072 m? and the flexion

inertia coefficients aré, = I, = 3.4 x 107% m*. The motor is modeled by a rigid body for which the total



mass, the position of the center of and the tensor of ineztiaced at the center of mass are defined. The
junction between the motor and the base plate is modeled diatian spring for which the rotation stiffness
with respect to the two direction of flexion of the structure both equal td;, = 8.4 x 10" Nm/rad. The
caracteristics of the materials are summarized in Tab. &.fétr lateral sides of the concrete slab are fixed.
The finite element model has = 40866 DOFs. Then the eigenfrequencigs . . ., f,, are calculated by

Figure 2: FE model

Mass density Young modulus | Poisson modulus

Concrete slab | 2.6 x 103 kg/m? | 1.33 x 101° N/mm? 0.15

Base plate | 7.8 x 10% kg/m? | 2.1 x 10t N/mm? 0.3

Metallic plate | 7.1 x 103 kg/m?3 | 2.4 x 10" N/mm? 0.31

Gimbal housing| 7.8 x 103 kg/m3 | 2.1 x 10" N/mm? 0.3

Table 1: Caracteristics of the materials.
finding the solutionsy = 27 f and¢ of the generalized eigenvalue problem
(K] =w? [M]p, 1)

in which [M] and[K] are respectively the positive-definite symmetric real nzasbstiffness matrices. Let

[0] = [p1,..., pn] be the matrix the: first eigenmodes. Then the generalized mass and stiffnesxesa
are defined byM] = [¢]T[M][¢] and [K] = [¢|T[K][¢]. The two first eigenfrequencies for the mean
computational model are equal to the mean value of the twiasiggenfrequencies which have been identifed
experimentally, that ig; = 0.86 and fo = 0.91 (dimensionless values). The three first eigenmodes are
shown on Fig. 3.

4 Stochastic computational model

The mean computational model presented in Section 3 owre$ytye of uncertainties : model-parameter
uncertainties and model uncertainties induced by modelmgrs. The model-parameter uncertainites are
induced by the variability of eight parameters ... . , zg of the mean computational model : the mass density,
the Young modulus and the Poisson modulus of the concrebe tla mass density, the Young modulus
and the Poisson modulus of the metallic plate, the flexiortimeoefficient of the gimbal housing and the
rotation stiffness of the spring. These two types of undaitss are taken into account using the generalized
probabilistic approach of uncertainties introduced ind@# which allows an independent modeling of both
model-parameter uncertainties and modeling errors to terpeed.
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Figure 3: First, second and third eigenmodes

4.1 Construction of the probability model of the uncertain p arameters

Each of the eight uncertain parametessis replaced by a random variableé; for which the probability
density function is constructed using the maximum entrapyciple under the available information defined
by (1) the random variabl&; is strictly positive (2) the mean value of the random vasaiklequal to the
value of the nominal valug, of the mean computational model (3) the inverse of the randanable X;

is a second-order random variable (so that the random eifj@®s/are also second order-random variables).
Then, the probability density functiqui (z;) of the random variabl&; is defined by

1 S
1 1 632%’ 1 X 632%’ T;
pmioe) = Yot (37 )" 1y (5) " o0 (o5m) @

4 4

whereT'(a) = f0+°° t*~le~tdt is the Gamma function and whereyl [ (z) is the indicator function.
The parameted,, = o, /z; whereo is the standard deviation of the random varialilg such that
0 < &, < 1/v/2. Therefore, the probability density function of the randwariable X; is completely
defined by the mean valug which is given by the nominal model and by the dispersionpatars,, which
has to be identified using the experimental measurementedaigenfrequencies. L& = (Xq,..., Xs).
Then, the random eigenfrequenciés .. ., F;, are calculated by finding the solutiofis= 27 F andp(X)
of the random generalized eigenvalue problem

[K(X)] (X)) = Q(X)? [M(X)] o(X). 3)
Then the random generalized mass and stiffness matricelstaned by M (X)] = [o(X)]T[M(X)][¢(X)]
and[ K (X)] = [¢(X)]" [K(X)][¢(X)).

4.2 Construction of the probability model of model uncertai nties

The construction of the probability model of model uncetias is based on the nonparametric probabilistic
approach of uncertainties (see [2], [3], [4]). Thereforepehdent random matric€s/ (X)] and[K (X)) are



replaced by the dependent random matrides( X )] and[K (X)]. For each realisation; of the random
variable X, the probabilty density function of the random matri¢a4 (x;)] and [K (x;)] are constructed
using the maximum entropy principle under the availablermiation defined by (1) the random matrices
[M (x;)] and[K (x;)] are positive definite (2) the mean value of the random mafié(x;)] and[K (z;)]

are respectively equal {8/ (x;)] and[K (x;)] (3) the frobenius norm of the random matri¢ad (z;)]~! and

[K (x;)]~" are second-order random variables (so that the randomveiges are also second order-random
variables). The probability density functions of thesed@n matrices depend on the dispersion parameters
oy anddx which have to be identified using the experimental valuedefeigenfrequencies. Then, the
random eigenfrequencids, . .., F,,, are calculated by finding the solutiofis= 27 F' andn of the random

reduced generalized eigenvalue problem

[K(X)]n =9 [M(X)]n. (4)

5 Estimation of the dispersion parameters

This section is devoted to the experimental identificatibtine dispersion parameters of the stochastic com-
putational model constructed in the previous section.

5.1 Estimation of the dispersion parameter of the probabili ty model of the uncer-
tain parameters

In this step, the dispersion parametéys, ..., J,, of the eight random variableX, ..., X3 have to be
identified using an observation which is weakly sensitiventwlel uncertainties. In general, the fundamental
eigenfrequency is correctly represented by the Finite Ergrmodel of a considered structure. Therefore, the
identification of the dispersion parameter of the probgbitiodel of the uncertain parameters is performed
using only the experimental observation of the first eigapfiency. The optimal value of the dispersion
parameters is estimated using the maximum likelihood nietBoich an estimation for eight dispersion pa-
rameters is difficult for two reasons: (1) The dimension efaldmissible space of the dispersion parameters
is relatively high (2) There are only 11 expermimental olzatons of the first eigenfrequency. We then have
to make additional assumptions to reduce the number of digpeparameters which have to be identified:
(1) the dispersion parameters of the random mass densitye sthndom Young modulus and of the random
Poisson modulus of the concrete slab are identical and éenmts 5, (2) the dispersion parameters of the
random mass density, of the random Young modulus and of titmra Poisson modulus of the metallic plate
are identical and denoted by, and (3) the dispersion parameters of the random flexionigneoeficient of
the gimbal housing and of the random rotation stiffness efdpring are identical and denoted &y. We
then have to identify three dispersion parametersi, andds. Letdx = (ds1,dp1,911) andCx denote the
admissible space dfy. The optimal value 08 x denoted by$§§’t is solution of the following optimization
problem

11

opt __ exp, i,
6% = arg max Zl log(p,,, (fy"™6x)) (5)
in which Pr, (f1) is the probability density function of the random first eiffequencyF; calculated using
the stochastic computational model (withy = 65 = 0) and wheref& ! .| & ! are the 11 experi-

mental values of the first eigenfrequency. This optimizafiooblem is solved using the trial method. The
optimal value isﬁ?ft = (0.28,0.2,0.32). The probability density function of the first and the thiidenfre-
guencies estimated using the stochastic computationatimadth 6 y = 5g?t andé,,. = (0,0) are plotted
on Fig. 4.
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Figure 4. Probability density function of the first (left fig) and the third (right figure) dimensionless
eigenfrequencies.

5.2 Estimation of the dispersion parameters of the probabil ity model of model un-
certainties

In this step, the dispersion parametéfg and 0 have to be identified using only the experimental ob-
servation of the third eigenfrequency (which is sensitivdoth model parameter uncertainties and model
uncertainties). Led,, = (dy,dx) andC,,, be the admissible space &f,. . The optimal value o,
denoted by, . is estimated using the maximum likelihood method. THEH, is solution of the following
optimization problem

5
8 =arg max > 109(pe, oy (7 ST 60,0) (6)
1

mx Eoux i—

in WhiChppl,F2,F3 (f1, f2, f3) is the joint probability density function of the three firggenfrequencied, F>»

andF; calculated using the stochastic computational model §igth= 6% and wheref P!, o1 g 1

o JEPD ] pe S D5 gre the 5 experimental values of the first, second and thijehéiequencies mea-
sured on five motors. The estimation of the likelihood is perfed using the Monte Carlo simultation
meth.od (sge [5]) with, = 350 simulations. The graph of functidias, dx ) — >0, 109(h, oy, (F10

5 PSP (6, 0K))) ,wherep,. . . (f1, f2, f3; 6% n,) is the estimated probability density function

of the three first eigenfrequencies, is plotted on Fig. 5. Waximum is reached fo&fﬁ( = (0.42,0).

Figure 6 shows the convergence function— Z?Zl Iog(pFB( ?fxp’i; 631;;,718)). The probability density
function of the first and the third eigenfrequencies estidatsing the stochastic computational model with

dx = 0% andd . = §°"" are plotted on Fig. 7.

6 Statistics for the three first eigenfrequencies

In this section, we estimate statistics for the three firgerirequencies using the stochastic computational
model constructed in Section 4 for which the dispersion patars have been identified in Section 5. We
are interested to the probability for each eigenfrequendyetong to the rang.92,1.08]. The statistics

are estimated using the Monte carlo simuation method forcages: (1) without taking into account model
uncertainties, i.edx = 6%” andé,, = (0,0) and (2) taking into account model uncertainties, dg. =

6%” andd,, = d%'. The results for this two cases are respectively reportediatite 2 and Table 3.

We can remark that model uncertainties increase the vhtyadi the first eigenfrequencies and modify the
probability of being in the rangf.92,1.08]. These model uncertainties can be reduced by improving the

mean computational model.
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Mean | Coefficient of variation| Probabilitye [0.92,1.08]
first eigenfrequency | 0.85 7.4 % 0.38
second eigenfrequency 0.91 6.8 % 0.71
third eigenfrequency | 1.13 9.8 % 0.35

Table 2: Statistics for the three first dimensionless eigepfencies witld y = 6§?t andd,, = (0,0).

7 Conclusions

We have constructed and experimentally identified an uaicernodel of uncertainties using experimen-
tal measurement of eigenfrequencies. We have used a geadrplobabilistic approach of uncertainties
to construct a prior probability model which takes into agomodel-parameter uncertainties and model
uncertainties. The dispersion parameters have beenfiddntising the maximum likelihood method with
observations which are adapted to identify separately igpedsion parameters relative to model-parameters
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Figure 7. Probability density function of the first (left fig) and the third (right figure) dimensionless
eigenfrequencies.

Mean | Coefficient of variation| Probability e [0.92, 1.08]
first eigenfrequency | 0.83 8.6 % 0.23
second eigenfrequengy 0.92 8.4 % 0.69
third eigenfrequency | 1.10 10.1 % 0.42

. . . . . . . . . t t
Table 3: Statistics for the three first dimensionless eigenfencies with x = %" andd, . = 6.

uncertainties and the dispersion parameters relative thiemamncertainties. Finally, statistics on the three
first eigenfrequencies have been constructed using théfiddrstochastic model.
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