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Abstract
We are interested in constructing an uncertain model of a nominal motor CSS of pressurized water reactor
using a generalized probabilistic approach of uncertainties and in identifying this model using experimental
measurements of the first eigenfrequencies. This generalized probabilistic approach of uncertainties allows
both model-parameter uncertainties and model uncertainties to be taken into account and identified separately
in the context of the experimental modal anaysis. Finally, the identified uncertain model allows statistics on
quantities of interest to be estimated.

1 Introduction

The problem presented here concerns the development and theidentification of a unique uncertain com-
putational dynamical model of a nominal motor CSS of pressurized water reactor, having the capability to
predict the responses of motors belonging to a given set of motors for which experimental measurements are
available. We are interested in the prediction in a statistical sense of the first eigenfrequencies of the nominal
motor using a computational dynamical models for which there are two types of uncertainties. The first
one is related to the uncertainties of the computational model parameters (model-parameter uncertainties).
The second one is due to the modeling errors which induce model uncertainties and which are due to the
approximation introduced by the modeling process. Recently, a new generalized approach of uncertainties
has been proposed (see [2]) to construct a prior probabilistic model of uncertainties. This method allows
both model-parameter uncertainties and model uncertainties to be taken into account. In this method, un-
like the classical output-prediction-error method (see [1]), the model errors are taken into account using the
nonparametric probabilistic approach. The prior probabilistic models of the two types of uncertainties are
constructed and identified in a separate way. We apply this method to construct a stochastic computational
dynamical model of the motor CSS. Then, the identification ofthis model is performed using a set of exper-
imental measurements corresponding to the motors belonging to the given set (and associated with several
sites). Section 2 is devoted to the description of the motor CSS and to the experimental measurements. Sec-
tions 3 and 4 respectively present the mean computational model and the stochastic computational model.
Section 5 is devoted to the identification of the dispersion parameters of the stochastic computational model.
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In the last Section, statistics on the three first eigenfrequencies are constructed using the identified stochastic
computational model.

2 CSS motors and experimental measurements

CSS motors are components of Emergency Core Cooling Systemsof Pressurized Water Reactors. We are
interested in the low-frequency dynamical behaviour of such structures and more especially in the range of
variation of the three first eigenfrequencies. The rotationfrequency of this motor is fixed. In this paper,
for reasons of confidentiality, all experimental and numerical frequencies have been divided by this rotation
frequency and are therefore dimensionless. Therefore, thedimensionless rotation frequency is equal to
1. The first dimensionless eigenfrequencies have to be out of the range[0.92, 1.08] in order to avoid a
reasonance induced by the rotation of the motor. It should benoted that the results presented in this paper
concern a nake motor without any added mass or added stiffness which would allow the first eigenfrequencies
to be out this range with sufficient probability (Some CSS motors are already equipped of such added mass
and added stiffness). The motor is represented on Fig. 1. Themotor is fixed on a rectangular base plate which
is fixed to the rectangular metallic plate. The Metallic plate is fixed on the concrete slab. The gimbal housing
is fixed on the base plate. The motor is very rigid while the gimbal housing is flexible. An experimental
modal analysis is carried out for 11 motors. The idenfied firstdimensionless eigenfrequency for the 11 motors
are0.77, 0.96, 0.85, 0.95, 0.97, 0.85, 0.75, 0.91, 0.78, 0.77 and0.81 . The idenfied second dimensionless
eigenfrequency for the 11 motors are0.84, 1.04, 0.88, 0.98, 0.98, 0.9, 0.92, 0.92, 0.86, 0.79 and0.85. The
third dimensionless is identified for only 11 motors. The idenfied third dimensionless eigenfrequencies are
1.01, 1.0, 1.13, 0.85 and1.02. These eigenfrequencies will be used for the identificationof the dispersion
parameters.

Figure 1: CSS motor

3 Mean computational model

The mesh of the finite element model of the mean computationalmodel is represented on Fig. 2. The concrete
slab, the base plate and the metallic plate are modeled by volume finite elements. The gimbal housing is
modeled by a Timoshenko beam for which the area of the sectionis A = 5.4 × 10−3 m2 and the flexion
inertia coefficients areIy = Iz = 3.4 × 10−6 m4. The motor is modeled by a rigid body for which the total



mass, the position of the center of and the tensor of inertia reduced at the center of mass are defined. The
junction between the motor and the base plate is modeled by a rotation spring for which the rotation stiffness
with respect to the two direction of flexion of the structure are both equal tokr = 8.4 × 107 Nm/rad. The
caracteristics of the materials are summarized in Tab. 1. The four lateral sides of the concrete slab are fixed.
The finite element model hasm = 40866 DOFs. Then the eigenfrequenciesf1, . . . , fm are calculated by

Figure 2: FE model

Mass density Young modulus Poisson modulus
Concrete slab 2.6× 103 kg/m3 1.33 × 1010 N/mm2 0.15

Base plate 7.8× 103 kg/m3 2.1× 1011 N/mm2 0.3

Metallic plate 7.1× 103 kg/m3 2.4× 1011 N/mm2 0.31

Gimbal housing 7.8× 103 kg/m3 2.1× 1011 N/mm2 0.3

Table 1: Caracteristics of the materials.

finding the solutionsω = 2πf andϕ of the generalized eigenvalue problem

[K]ϕ = ω2 [M ]ϕ , (1)

in which [M ] and[K] are respectively the positive-definite symmetric real massand stiffness matrices. Let
[φ] = [ϕ1, ..., ϕn] be the matrix then first eigenmodes. Then the generalized mass and stiffness matrices
are defined by[M̃ ] = [φ]T [M ][φ] and [K̃] = [φ]T [K][φ]. The two first eigenfrequencies for the mean
computational model are equal to the mean value of the two first eigenfrequencies which have been identifed
experimentally, that isf1 = 0.86 andf2 = 0.91 (dimensionless values). The three first eigenmodes are
shown on Fig. 3.

4 Stochastic computational model

The mean computational model presented in Section 3 ownes two type of uncertainties : model-parameter
uncertainties and model uncertainties induced by modelingerrors. The model-parameter uncertainites are
induced by the variability of eight parametersx1, . . . , x8 of the mean computational model : the mass density,
the Young modulus and the Poisson modulus of the concrete slab, the mass density, the Young modulus
and the Poisson modulus of the metallic plate, the flexion inertia coefficient of the gimbal housing and the
rotation stiffness of the spring. These two types of uncertainties are taken into account using the generalized
probabilistic approach of uncertainties introduced in [2]and which allows an independent modeling of both
model-parameter uncertainties and modeling errors to be performed.



Figure 3: First, second and third eigenmodes

4.1 Construction of the probability model of the uncertain p arameters

Each of the eight uncertain parametersxi is replaced by a random variableXi for which the probability
density function is constructed using the maximum entropy principle under the available information defined
by (1) the random variableXi is strictly positive (2) the mean value of the random variable is equal to the
value of the nominal valuexi of the mean computational model (3) the inverse of the randomvariableXi

is a second-order random variable (so that the random eigenvalues are also second order-random variables).
Then, the probability density functionp
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(xi) of the random variableXi is defined by
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whereΓ(α) =
∫ +∞

0 tα−1e−t dt is the Gamma function and where 1l]0,+∞[ (x) is the indicator function.
The parameterδxi

= σ
Xi
/xi whereσ
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is the standard deviation of the random variableXi, such that

0 ≤ δxi
< 1/

√
2. Therefore, the probability density function of the randomvariableXi is completely

defined by the mean valuexi which is given by the nominal model and by the dispersion parameterδxi
which

has to be identified using the experimental measurements of the eigenfrequencies. LetX = (X1, . . . ,X8).
Then, the random eigenfrequenciesF1, . . . , Fm are calculated by finding the solutionsΩ = 2πF andϕ(X)
of the random generalized eigenvalue problem

[K(X)]ϕ(X) = Ω(X)2 [M(X)]ϕ(X) . (3)

Then the random generalized mass and stiffness matrices aredefined by[M̃(X)] = [φ(X)]T [M(X)][φ(X)]
and[K̃(X)] = [φ(X)]T [K(X)][φ(X)].

4.2 Construction of the probability model of model uncertai nties

The construction of the probability model of model uncertainties is based on the nonparametric probabilistic
approach of uncertainties (see [2], [3], [4]). Therefore, dependent random matrices[M̃ (X)] and[K̃(X) are



replaced by the dependent random matrices[M̃(X)] and [K̃(X)]. For each realisationxi of the random
variableX , the probabilty density function of the random matrices[M̃(xi)] and [K̃(xi)] are constructed
using the maximum entropy principle under the available information defined by (1) the random matrices
[M̃ (xi)] and[K̃(xi)] are positive definite (2) the mean value of the random matrices [M̃ (xi)] and[K̃(xi)]
are respectively equal to[M̃(xi)] and[K̃(xi)] (3) the frobenius norm of the random matrices[M̃(xi)]

−1 and
[K̃(xi)]

−1 are second-order random variables (so that the random eigenvalues are also second order-random
variables). The probability density functions of these random matrices depend on the dispersion parameters
δM andδK which have to be identified using the experimental values of the eigenfrequencies. Then, the
random eigenfrequenciesF1, . . . , Fm are calculated by finding the solutionsΩ = 2πF andη of the random
reduced generalized eigenvalue problem

[K̃(X)]η = Ω2 [M̃(X)]η . (4)

5 Estimation of the dispersion parameters

This section is devoted to the experimental identification of the dispersion parameters of the stochastic com-
putational model constructed in the previous section.

5.1 Estimation of the dispersion parameter of the probabili ty model of the uncer-
tain parameters

In this step, the dispersion parametersδx1
, . . . , δx8

of the eight random variablesX1, . . . ,X8 have to be
identified using an observation which is weakly sensitive tomodel uncertainties. In general, the fundamental
eigenfrequency is correctly represented by the Finite Element model of a considered structure. Therefore, the
identification of the dispersion parameter of the probability model of the uncertain parameters is performed
using only the experimental observation of the first eigenfrequency. The optimal value of the dispersion
parameters is estimated using the maximum likelihood method. Such an estimation for eight dispersion pa-
rameters is difficult for two reasons: (1) The dimension of the admissible space of the dispersion parameters
is relatively high (2) There are only 11 expermimental observations of the first eigenfrequency. We then have
to make additional assumptions to reduce the number of dispersion parameters which have to be identified:
(1) the dispersion parameters of the random mass density, ofthe random Young modulus and of the random
Poisson modulus of the concrete slab are identical and denoted byδ sl, (2) the dispersion parameters of the
random mass density, of the random Young modulus and of the random Poisson modulus of the metallic plate
are identical and denoted byδ pl and (3) the dispersion parameters of the random flexion inertia coeficient of
the gimbal housing and of the random rotation stiffness of the spring are identical and denoted byδ fl . We
then have to identify three dispersion parametersδ sl, δ pl andδ fl . Let δX = (δ sl, δ pl, δ fl) andCX denote the
admissible space ofδX . The optimal value ofδX denoted byδoptX is solution of the following optimization
problem

δ
opt
X = arg max

δX∈CX

11
∑

i=1

log(p
F1
(f exp, i

1 ; δX)) , (5)

in which p
F1
(f1) is the probability density function of the random first eigenfrequencyF1 calculated using

the stochastic computational model (withδM = δK = 0) and wheref exp, 1
1 , . . . , f exp, 11

1 are the 11 experi-
mental values of the first eigenfrequency. This optimization problem is solved using the trial method. The
optimal value isδoptX = (0.28, 0.2, 0.32). The probability density function of the first and the third eigenfre-
quencies estimated using the stochastic computational model with δX = δ

opt
X andδ

MK
= (0, 0) are plotted

on Fig. 4.
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Figure 4: Probability density function of the first (left figure) and the third (right figure) dimensionless
eigenfrequencies.

5.2 Estimation of the dispersion parameters of the probabil ity model of model un-
certainties

In this step, the dispersion parametersδM and δK have to be identified using only the experimental ob-
servation of the third eigenfrequency (which is sensitive to both model parameter uncertainties and model
uncertainties). Letδ

MK
= (δM , δK) andC

MK
be the admissible space ofδ

MK
. The optimal value ofδ

MK

denoted byδ
MK

is estimated using the maximum likelihood method. Then,δopt
MK

is solution of the following
optimization problem
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in whichp
F1,F2,F3

(f1, f2, f3) is the joint probability density function of the three first eigenfrequenciesF1,F2

andF3 calculated using the stochastic computational model withδX = δ
opt
X and wheref exp, 1

1 , f exp, 1
2 , f exp, 1

3 ,

. . . , f exp, 5
1 , f exp, 5

2 , f exp, 5
3 are the 5 experimental values of the first, second and third eigenfrequencies mea-

sured on five motors. The estimation of the likelihood is performed using the Monte Carlo simultation
method (see [5]) withns = 350 simulations. The graph of function(δM , δK) 7→

∑5
i=1 log(p̂

F1,F2,F3
(f exp, i

1 ,

f exp, i
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, ns) is the estimated probability density function
of the three first eigenfrequencies, is plotted on Fig. 5. Themaximum is reached forδopt

MK
= (0.42, 0).

Figure 6 shows the convergence functionns 7→
∑5

i=1 log(p̂
F3
(f exp, i

3 ; δopt
MK

, ns)). The probability density
function of the first and the third eigenfrequencies estimated using the stochastic computational model with
δX = δ

opt
X andδ

MK
= δopt

MK
are plotted on Fig. 7.

6 Statistics for the three first eigenfrequencies

In this section, we estimate statistics for the three first eigenfrequencies using the stochastic computational
model constructed in Section 4 for which the dispersion parameters have been identified in Section 5. We
are interested to the probability for each eigenfrequency to belong to the range[0.92, 1.08]. The statistics
are estimated using the Monte carlo simuation method for twocases: (1) without taking into account model
uncertainties, i.e.δX = δ

opt
X andδ

MK
= (0, 0) and (2) taking into account model uncertainties, i.e.δX =

δ
opt
X andδ

MK
= δopt

MK
. The results for this two cases are respectively reported onTable 2 and Table 3.

We can remark that model uncertainties increase the variability of the first eigenfrequencies and modify the
probability of being in the range[0.92, 1.08]. These model uncertainties can be reduced by improving the
mean computational model.
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, ns)).

Mean Coefficient of variation Probability∈ [0.92, 1.08]

first eigenfrequency 0.85 7.4 % 0.38

second eigenfrequency 0.91 6.8 % 0.71

third eigenfrequency 1.13 9.8 % 0.35

Table 2: Statistics for the three first dimensionless eigenfrequencies withδX = δ
opt
X andδ

MK
= (0, 0).

7 Conclusions

We have constructed and experimentally identified an uncertain model of uncertainties using experimen-
tal measurement of eigenfrequencies. We have used a generalized probabilistic approach of uncertainties
to construct a prior probability model which takes into account model-parameter uncertainties and model
uncertainties. The dispersion parameters have been identified using the maximum likelihood method with
observations which are adapted to identify separately the dispersion parameters relative to model-parameters
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Figure 7: Probability density function of the first (left figure) and the third (right figure) dimensionless
eigenfrequencies.

Mean Coefficient of variation Probability∈ [0.92, 1.08]

first eigenfrequency 0.83 8.6 % 0.23

second eigenfrequency 0.92 8.4 % 0.69

third eigenfrequency 1.10 10.1 % 0.42

Table 3: Statistics for the three first dimensionless eigenfrequencies withδX = δ
opt
X andδ

MK
= δopt

MK
.

uncertainties and the dispersion parameters relative to model uncertainties. Finally, statistics on the three
first eigenfrequencies have been constructed using the identified stochastic model.
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