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ABSTRACT

The purpose of this work is to determine the effective conductivity of periodic composites accounting for
highly conducting imperfect interfaces between the matrix and inclusions phases and to study the
dependencies of the effective conductivity on the size and distribution of inhomogeneities in the matrix
phase in different cases: squared, hexagonal, cubic and random inclusion distributions. The local solution
of the periodic conduction problem is found in Fourier space by using the Green operators and closed-
form expressions of factors depending on the size and shape of the inclusions. The numerical results of
size-dependent effective thermal conductivity are finally compared with an analytical estimation
obtained from the generalized self-consistent model. The method elaborated and results provided by the
present work are directly applicable to other physically analogous transport phenomena, such as electric
conduction, dielectrics, magnetism, diffusion and flow in porous media and to the mathematically

identical phenomenon of anti-plane elasticity.
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1. Introduction

Recently, different works have been devoted to study the size-
dependent mechanical behavior in nanosystems incorporating
surface/interface energies. Indeed, when the inclusion size is
diminished to the nano-scale, due to the large surface-to-volume
ratio, the matrix—inclusion interface energy can no longer be
neglected. This fact has been emphasized and exploited in recent
investigations on nanomaterials and nano-structural elements (see,
e.g.[11,24]). In this context, in order to estimate the size-dependent
overall elastic properties of nanocomposites and nano-structural
elements accounting for the surface/interface energies, the classical
perfect interface is modified by adopting a coherent interface
model in which the displacement vector field is continuous across
an interface while the stress vector field is discontinuous across the
same interface ([2,29,31]). The thermal conduction counterpart of
the interface stress and energy model is the highly conducting (HC)
interface model, which is the subject of the present paper. More
precisely, according to this imperfect interface model, the
temperature is continuous across this interface but the normal heat
flux component is discontinuous across the same interface due to
the possibility of having a surface heat flux along the interface
whose surface energy conservation equation gives rise to the
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generalized Young—Laplace equation. These interface conditions
for the HC interface model are completely contrary to the ones of
the well-known Kapitza interface thermal resistance model which
has been recognized to be of a great theoretical and practical
importance in physics and materials science (see e.g. [17]). By
accounting for the thermal resistance appearing at the interface
between two bulk media, the Kapitza interface thermal resistance
model stipulates that the temperature suffers a jump across the
interface while the normal heat flux component is continuous
across the same interface and usually taken to be proportional to
the temperature jump. Thus, the HC interface model can be viewed
as dual with respect to the Kapitza interface thermal resistance
model. The physical background of both HC interface model and
thermal resistance interface model can be clarified by considering
the general imperfect interface model in which a very thin inter-
phase of uniform thickness is situated between two bulk phases. By
applying an asymptotic approach to this interphase to obtain
appropriate temperature and normal heat flux component jump
conditions for an interface of zero thickness replacing the inter-
phase, Sanchez-Palencia [30] and Pham Huy and Sanchez-Palencia
[28] showed that the general imperfect interface model reduces to
the HC interface model or the thermal resistance interface model
according as the interphase is highly conducting or slowly con-
ducting with respect to the surrounding phases. In other words, the
HC interface model and the thermal resistance interface model may
be considered as the two limiting cases of the general imperfect
interface model.



There are several possible methodologies in deriving the size-
dependent overall thermal properties of composites affected by the
significant size effects appearing in conducting composites con-
taining HC imperfect interfaces. These possible interests can be
classified into three categories.

The first category includes all analytical estimation methods
based either on the generalized Eshelby’s formalism, such as diluted,
self-consistent, generalized self-consistent, differential schemes and
those of Mori-Tanaka or on the ellipsoidal harmonic solution for the
Laplace equation. In ref. [18], the Eshelby’s results and formalism for
an circular or spherical inhomogeneity embedded in an elastic
infinite matrix are extended to the thermal conduction phenomenon
accounting for the HC imperfect interface between matrix and
inclusions. Quite different from the relevant results of elasticity, Le
Quang et al. [18] showed that the generalized Eshelby’s conduction
tensor fields and localization tensor fields inside circular and spher-
ical inhomogeneities remain uniform even in the presence of the HC
imperfect interface. Then, the analytical closed-form expressions for
thermal effective conductivity has been derived as functions of
interface properties and of the inhomogeneities size. Another
approach employing the ellipsoidal harmonic and analytical solution
for the Laplace equation to calculate the effective thermal conduc-
tivity has been presented in refs. [9,25]. However, these last two
works are limited to the case where the phases constituting the
composite are isotropic.

The second category contains all methods based on variational
principles to determine the bounds of size-dependent effective
thermal properties. In refs. [6,19—21], by using the generalized
Hashin-Shtrikman variational principles and by constructing
appropriate trial fields, the explicit upper and lower bounds are
obtained for the effective thermal conductivity of composite
materials consisting of two anisotropic phases. Recently, these
results have been generalized by Lipton and Talbot [22] aiming at
finding the upper and lower bounds for the effective thermal
conductivity of composite with a nonlinear imperfect interface.

The third category associated to the present study includes all the
numerical methods. Previous methods use mainly the finite element
method with surface elements or the level set method to describe
the HC imperfect interface (e.g. [35]), while the method used in the
present paper is based on the fast Fourier transform (FFT) of the
solution. The method based on FFT has been used frequently to
compute the effective properties of periodic composites in the
context of linear or nonlinear elasticity (e.g. [3,23,27]) and has been
generalized recently to the context of piezoelectricity by Brenner [5].
However, the results presented in refs. [3,5,23,27] were limited to the
case where the interfaces between matrix and inclusion phases are
perfect.

The present work is concerned with the thermal conduction
phenomenon which plays animportant area in the fields of materials
science and solid-state physics. The elaborated method and the
results obtained for heat conduction are directly applicable to other
transport phenomena like electric conduction, dielectrics, magne-
tism, diffusion and flow in porous media and to anti-plane elasticity
problem. This is due to the fact that the thermal conduction problem
is physically analogous to other problems involving transport
phenomena such as electric conduction, dielectrics, magnetism,
diffusion and flow in porous media and that there is a correspon-
dence between 2D conduction and anti-plane elasticity (see, e.g.
[26]). The present work has two objectives. First, it aims at extending
the alternate method based on Fourier series ([3,23,27]) in the
context of linear elasticity to the thermal conduction phenomenon
including the effect of the highly conducting imperfect interface. The
generalized method proposed uses the FFT and an iterative process
to solve the local solution of periodic conduction problem in the three
following cases: with squarely, hexagonally and randomly

distributed inclusions. Second, it has the purpose of employing the
solution of the localization problem to determine and study the
effects of the interface, size and distribution of inclusions on
the effective thermal properties of periodic composites.

The paper is organized as follows. Section 2 is dedicated to
specifying the constitutive laws of the constituent phases of
composites under investigation, the HC interface model and the
general form of the effective thermal behavior. In Section 3,
the solution of the localization periodic problem is presented in the
Fourier space in the context of conduction phenomenon with HC
imperfect interface. Then, the size-dependent effective conductiv-
ities are calculated from the local solution. In Section 4, the HC
interface and inhomogeneities size effects as well as the depen-
dence of the distribution of inhomogeneities in the matrix phase on
the effective conductivity of periodic composites are numerically
discussed and illustrated; in addition, the numerically obtained
results are compared with the results provided by using the esti-
mation with the help of the generalized self-consistent model
(GSCM) and matrix/interphase/inclusion configuration. In Section
5, a few conclusions are given.

2. Local constitutive laws

In this section, we specify the local constitutive laws of the two-
dimensional (2D) or three-dimensional (3D) periodic composite
studied in this work. Let Q be a representative volume element
(RVE) consisting of a host matrix medium in which M (>1) inclu-
sions are embedded. The matrix, referred to phase 2 and occupied
by @™, and inclusions, denoted as phase 1, are assumed to be
individually homogeneous and have the linear thermal behavior
described by Fourier's law

q(x) = K(x)e(x). (1)

Here #(x) being the intensity field is related to the temperature
field T(x) by

&(X) = —VT(x). (2)

The local thermal conductivity tensor K(x) is written as

M
Kx) = 3 x" 0K +
i-1

M
1- Zx‘”(X)JK‘Z'. 3)
i=1

where K'“, with & = 1 or 2, stands for the thermal conductivity
tensor of phase «, and x'"(x) s the characteristic function of the ith-
inclusion (M > i > 1), occupied by 99, such as y¥(x) = 1 forx e 0¥
and y(x) = 0 for x & Q. The heat field q(x) complies with the
energy conservation equation which is written as

v-qx) =0 (4)

in the case of the stationary thermal conduction without heat
source.

The interface between the matrix and the ith-inclusion, denoted
by I'®, is modeled by a coherent interface model. This model was
first proposed by refs. [7,12,31] in the context of elasticity, then
extended to thermal conduction phenomenon by ref. [8]. According
to this model for thermal conduction phenomenon, the
matrix—inclusion interface is considered as a conducting body I
with a vanishing thickness across which the temperature field T(x)
is continuous. Indeed, it follows from Hadamard’s relation (see, e.g.
[16]) that the tangential projection £(x) of the intensity field &(x) is
continuous even though the intensity field &x) is generally
discontinuous across I'”. By introducing the tangential projection
operator P defined as



P(x) = 19 X)®n(x), (5)

with d = 2 or 3 according to the cases 2D or 3D, respectively, I'/)
standing for the d-dimensional second-order identity tensor and
n(x) denoting the outward normal to I'”, the surface intensity field
£(x) on IV is then expressed as

£(x) = P(x)e(x). (6)

Within the matrix—inclusion interface, the surface heat flux
field q°(x) is related to the surface intensity field £(x) by the
following thermal linear isotropic behavior

(x) = kVes(x), (7)

where x e T and k{7 is the surface thermal conductivity of ¥,
Unlike the classical case where the interface is perfect, the normal
component of the heat flux field q(x) is in general discontinuous
across the coherent interface I') and its jump is related to the
surface heat flux field q°(x) by the following surface energy
conservation equation

(a®-a")n) = -v-q9x), xer®, (8)

where V,-q*(x) represents the surface divergence of the surface
heat flux field ¢°(x). In particular, Vs-¢(x) takes the form

o0 = i Do, 1 %%
Vs @ (x) = 0 " T rsing a9 )
in the spherical coordinate system (r, 6, ¢) or
oq;
. =0
Vs @ (X) = =5 (10)

in the polar coordinate system (r, ).

Next, in order to clarify the physical background and the validity
domain of the coherent interface model used to describe ), we
consider in Fig. 1 two configurations. In the three-phase one, the
representative volume element Q consists of the inclusion phase
0 embedded in to the matrix phase ™ via the interphase Q'
(see e.g. [1,4,14]). According to the three-phase model, the interface
located between Q' and Q) and the one between Q™ and Q%)
are assumed to be perfect, and the thickness h'¥ of &V is required

to be uniform and small in comparison with the inclusion size. In
the second configuration, the interphase is now replaced by an
interphase of zero thickness I'”), namely an imperfect interface. By
using an asymptotic expansion, the jump conditions that the
imperfect interface ' has to verify for the two configurations to be
physically equivalent were derived by refs. [28,30]. More precnsely
when the interphase with thermal conductivity tensor K( is
assumed to be highly conducting, or equivalently ||K§' || >> ||K“’||
and K| > |K?)|, then the conditions that the imperfect
interface I must satisfy are those of the coherent interface model
described above. The corresponding surface thermal conductivity
tensor K. of 'V can be expressed in terms of K" and h” as follows
(see [28,30]):

K = his, an
where

. . i) (l')
s — kU (K'n n). (12)

K‘c" (nen)

In the present work, K is assumed to be isotropic, i.e.
K = kP19 with k£ standing for the thermal conductivity of the
interphase and it is immediate from Eqgs. (11) and (12) that

K;ii _ kg“l’, kg) _ h‘“kf_.”, (13)

At the macroscopic scale, the composite under consideration is
assumed to be homogeneous. The corresponding effective thermal
behavior is written as

Q = KYE, (14)

where K is the effective thermal conductivity second-order tensor
and the macroscopic heat flux Q and intensity fields E over
a representative volume element are defined by

1 1
Q- @il (@vxdx, E= _@4 Tx)V(x)dx, (15)

where »(x) is the outward unit normal vector to 82 and |2| denotes
the volume or surface of Q according as the 3D or 2D case is
concerned.

Fig. 1. Two equivalent configurations: (a) three-phase matrix/interphase/inclusion periodic composite; (b) two-phase matrix/inclusion periodic composite with imperfect trans-

mission conditions.



As in the classical case with perfect interface, the macroscopic
intensity field E can be determined by the volume or surface
average of its local counterpart over a representative volume
element. However, due to the discontinuity of the normal heat flux
field component across the coherent interface, the macroscopic
heat flux field Q is not simply the volume or surface average of the
local counterpart over a representative volume element and it is
given by

M
Q = aq +oq? + ‘Z /(q‘z'-n—q“'-n)xdx. (16)

rlﬂ
or equivalently
) 1 &
Q = aq" +oq '_ﬁz /(Vs 5 )xdx, (17)
Jj=1
rlﬂ

where ¢, is the volume fraction of phase « and @ denotes the
volume or surface average in phase « of the heat flux field q(x).

3. Solution of the localization problem

First, let 2 be subjected to the following uniform intensity field
boundary condition

Xe0Q, (18)

where E is a constant intensity vector. Under the boundary condi-
tion Eq. (18), as for the classical case with perfect interfaces, owing
to the fact that the temperature field T(x) is continuous across the
coherent imperfect interfaces ', itis immediate from Eq.(15) that
the macroscopic intensity field is equal to E.

In order to calculate the local intensity and heat flux fields in 2,
we consider now a typical parallelepiped unit cell U which is
defined by

T(x) = —E-x,

U= {xeQ| —Im < Xm < m}, (19)

with m = 1,2 for the 2D case orm = 1, 2, 3 for the 3D case. Different
unit cells of some typical periodic composite are studied in detail in
this work (Fig. 2).

Next, by introducing a “reference medium” whose thermal
conductivity is denoted by K and by accounting for the disconti-
nuity of the heat flux field q(x) across interface I', the energy
conservation equation Eq. (4) becomes

N
v-ax) = v-[(K”+ AK)ex)| - 3" (a? ~ ™) néa x) = 0,
i-1
(20)
where N denotes the number of inclusions embedded in a unit cell
and 6, (x) is the Dirac delta function over the interface I')
between the matrix and the ith-inclusion and
AK(x) = K(x) — K°. (21)

In addition, an inclusion is called embedded in the unit cell U if
the position of its center is inside U.

To perform the homogenization process, the intensity field &x)
is split into the uniform and periodic perturbation parts, E and £*(x),
such that &x) = E + £'(x). The temperature field related to the
periodic intensity filed £'(x) is denoted by T*(x). Moreover, when
the ith-inclusion is 2D circular or 3D spherical of radius R;, it is
shown in Appendix A that the following identity holds on the
interface I'” between the matrix and ith-inclusion

(d-1)
R

Vs (Pv) = — v-n -+ Vs-v, (22)

for any continuously differentiable vector v. By combining Eqs.

(6)—(8) with Eq. (20) and by accounting for Eq. (22), Eq. (20) can be
rewritten in the equivalent form

N
)] +V-1(X) + Zk;”vys(x)(i,{.. (x)
i1

v [KOVT‘(x

N (i)
DK ox)-n(x)dpa () = 0 @3)

where the “polarization field” #(x) is defined as
1(x) = AK(x)[E+s*(x)]. (24)

The temperature, intensity and polarization fields can be written as
follows

Ne _« Ne
T'x) = Y T (B, t(x) = > t(B)e™,
3 §
Ne
£(X) = Zt(E')é’g"‘, (25)

7
where ¢ = =T, and T (£), (£') and 7(E) stand for the discrete
Fourier transforms of T*(x), &(x) and t(x), respectively; £ and &’ are
the discrete wave vectors arranged along a discrete network having
a period w/iy following the direction m; N is the number of
discrete wave vectors. Substituting Eq. (25) into Eq. (23) yields

N,

;‘(smk,%js,-)f (

Ni ~ Ne
E)elg'x + Z l;"mrm(g)ets-x + Z fm(E )hm
€ €

Ne
- me(E’)Pm =0, (26)
g

where

N
hm = 3 k80 (x)¥s: (e‘f"‘fm)‘
i=1

N_ (0 ,
= (d- I)ZI;;—ié,.(.,(x)nme‘E"‘, (27)
i=1

with fi; standing for the basis unit vector following the direction m
in a Cartesian coordinate system {xy, X2, x3}. Correspondingly, the
Fourier transform components of the distributions hy,, and p,, are
given by:

P |U\ka /

i=1 I

V- (e‘E""f,,.) e~ Exdx, (28)

(i)
m(E.E) :dTZk /n (x)e(58)xqx, (29)

i=1
Here, the surface divergence on I of an arbitrary differentiable
vector v is defined as
Vs-v = Tr(VP) (30)

where Tr(e) denotes the trace of the tensor e and P is defined by
Eq. (5). By setting x = x+ X¥ with x e T'” and X being the
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Fig. 2. (a) Representative volume element (RVE) and typical unit cell U of a periodic composite with squarely distributed inclusions; (b) RVE and typical unit cell U of a periodic
composite with hexagonally distributed inclusions; (c) RVE and typical unit cell U of a periodic composite with 10 randomly distributed inclusions.

position vector of the center of ith-inclusion, the computation of
hm(E,€) and p,,(E, &) when the ith-inclusion is circular or spherical
of radius R; leads to

- ’ 13 i 5® e
him (5,€) =m2ks Hpy (8- €2,

i=1
-~ 1N
PmEE) = ﬂT“Zké”P‘m'(sfs’). (31)
i=1

where l:l::,), is the component of the 2 x 2 or 3 x 3 matrix I:l“J &E-8)
according respectively to the 2D circular or 3D spherical inclusion

case; f’:,’ is the component of the 2D or 3D vector ﬁ('J(E — ). The
expressions for H,,; and P, are detailed in Appendix C. Thus, we
have

where the symbol * denotes the convolution product and the
Fourier component €, is defined as



em(E) = & em(E). (32)

(26) can be expressed in terms of Fourier
~* E ~ 1

7O =@ o xoa,zk“( e) (&
(d-1) i) [50,
R et P e e

E(E)=¢ (B) = —ET ()

Therefore, Eq.
transforms as

Additionally, owing to the fact that E(E)—

with

_ JE fork =0,

= {0 for £+ 0; (34)
it follows from Eq. (34) that
o N (i),
e® = E@+ T @@+ O K [ }
U] =
Jdl%i])/io Zku[ (i) ](&) (35)

Here, the Fourier transforms of Green operators, i‘o and ;10. are
respectively given by
=0 E®E -0 13
') = ———%= 4 € =—p
€K% £-K

_ With the help of Eq. (24), the corresponding Fourier transforms
7(§) of the polarization field #(x) is calculated by

(36)

(®) = (K? - K%)e@®) + (K —K‘Z’)i[ “'*s](s (37)
i=1

where the Fourier transform i(”(E — &) of x'¥(x), called also shape
coefficient, is given by

< (e X i
X“](E— g) = eT / e (8 xdx. (38)
Q(l)
Notice that im(E—g'() depends on both size and shape of
inclusion. In particular, y (€ — £') can be expressed explicitly as:

(i) when the ith-inclusion is elliptic with two principal radii a,

and az
(i) 4 0
20 %"-«s—z JX" for z#0;
(E-¢) = 500) , >
Wﬂ(E*E)-X"’ for z = 0;

where J; is the Bessel function of first kind and first order; s is the
surface area of the ith-inclusion and z = [(5; — #1Ya? +
(5 — #5)%a5%)" with Z and #; (or #; and #'3) being the components
of £ (or &) in the direction of the axes of the ellipse.

(ii) when the ith-inclusion is ellipsoidal with three principal radii

ay, az and as
3VW[sin(z) —zc0s(2)] _,(z—g).x" for 70:
~(i) , 3 5
xE-E) =1 o Uz (40)
\U|€-l<E-E )X0 forz=0;

where V) is the volume of the ith-inclusion and z = [(f; —
#1)%a4% + (52 — #2)%a2% + (53 — £'3)%a5%]"? with £y, & and £3 (74,
Z5and #'3) bemg the components of £ (£') in the direction of the
axes of the ellipsoidal inclusion.
Introducing Eq. (37) into Eq. (35) leads to

€(§) =E(§) + fo(g){ (K(zu _ KO);(E) + (K“' _ K‘Z‘)

x i[ *s] <s>} ‘Ulﬁ"(s)ik;" G

i=1
(i)
|U| E)Zk [

The corresponding heat flux field is then determined from the
intensity field &x) by

] (1)

N
a(x) = K0 + (KO - K®) 3 x O xe(x)
i=1

N
<D kx5 £5(X)6 o (X). (42)
i=1

In the transform Fourier space, the heat flux field is given by

a6 K70+ (k) S 7]

i=1
g ka[ gL ‘|U|Z" e @

where (ﬂ is defined by Eq. (32); Q % and( . are H‘ue second and
third-order tensors whose components Q ,,; and Ly,; are specified
in Appendices D and E.

The Eq. (41) for £(§) is solved by using an iterative method in
which the numerical algorithm is presented as follows:

e Initialization

@ ¢ @& = E@,
(b) a'e) = K& @+ (k- K‘Z‘)ENj[‘” ¢|@
i=1
|U| ka[ ] ®
Z k" [L“]*e] )

e Iterationi+ 1
(a) Assuming that ;'(E) and a'(E) are known,

(b) Convergence test,

© " ©-E- 5 (E)Zk‘”[ e

+TO(5){ (K‘2> —K°);|(§)+ (K(II_KKZ))

$ 0} el e

i=1 i=1



. : N
@ &'”(E):K‘Z'?”(EH(K”’—K‘Z )> [ @

i=1

ofa" e

|2:| k“‘[ .

Additionally, the convergence of the iterative computation is
reached or equivalently the iterative procedure is stopped when

~i+1 ~i
la & -a@)
~i+1
la &)
where v is a prescribed value which set at 0.001 in our calculations.
The macroscopic heat flux defined as Eq. (16) or (17) can be
determined from the Fourier transform of the local heat flux field
by setting the wave vector equal to zero in Eq. (43), i.e.,

N riy ~
0)+ (K" k@) Z[x( '*s] 0)

i=1
1 N G|~
okt

d—
+{ " Do [Q ] 0)
i=1
Thus, by setting successively the macroscopic intensity
component E = 1 with j = 1, 2, ..., d and by using the effective
behavior described by Eq. (14), the effective thermal conductivity
tensor components are then given by K;ﬂ = Q.

<, (44)

Q - K7e(

*?] (0). (45)

4. Numerical examples
4.1. Fiber—matrix composites

To numerically illustrate the features of the results obtained
above, we consider the first example of a fiber composite submitted

to a heat flow normal to the direction of the fibers. The fibers are
assumed cylindrical with circular sections having the same radius,
i.e. Rj = R, and introduced periodically into the host matrix phase.
For this 2D problem, three typical microstructures with squared,
hexagonal and random distributions of the inhomogeneities are
studied in detail. In addition, the inhomogeneity phase is assumed
to be less conducting than the matrix one. The thermal conduc-
tivities of the matrix and inhomogeneities are chosen as:

ky = 0.1Wm'K™', ky = TWm 'K (46)

Next, to define the thermal parameters of the interface r
between the ith-inhomogeneity and matrix phases, we start with
the interphase layer in which the intermediate medium between
the i th-inhomogeneity and matrix phase are assumed to be very
thin and very highly conducting. The correspondmg thlckness h
and conductivity k! are chosen as k!’ = 50 W m~! K~ and
h® = 20 nm.

Then, from the asymptotic approach (see e.g. [1,4,14,28,30]), it
can be shown that this thin and highly conducting layer can be
appropriately modeled as an imperfect coherent interface with the
surface thermal conductivity given by
k' = hOkD = 10-wWm1K-1. (47)

Additionally, the thermal conductivity tensor of the reference
medium is given by K = K1Y with k° = k) = 50 W m~ K1,

Next, in order to analyze the dependence of the effective
thermal conductivity of the composite on the size and distribution
of the inhomogeneities, the radius R of the inhomogeneities inside
the host matrix media is varied from 1 to 50 um while the inho-
mogeneities fraction ¢; is kept constant with ¢; = 0.3 for three cases
with squared, hexagonal and random distributions of the inho-
mogeneities. The case of random inclusions is studied with 5
different simulations, each containing 100 inclusions within each
period and the results presented thereafter correspond to the mean
value, to the minimum values and maximal values obtained from
the 5 simulations.
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Fig. 3. Dependencies of the ratio k“/kc” on the circular inclusion radius R (um) and on the distribution of inclusions with inclusion fraction ¢,=0.3 and Ny=64*64.
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The values of ratio kgff/kg’} are plotted in Fig. 3 in terms of the

inhomogeneity radius R with ¢, = 0.3, respectively, where kg. is the
component of the effective thermal conductivity tensor according
to the coherent interface model and kgf denotes the component of
the effective thermal conductivity tensor without accounting for
the surface effects, i.e. for a continuous normal flux (surface C). The
obtained numerical values for kfﬂ/kgf are then compared with the
ones derived by applying the generalized self-consistent model. To

get more details for the latter model, the reader can refer to

Appendix B. For each result, only the effect of the interface is
studied. For this reason, each result is divided by the value of kf{][
related to the same kind of modeling.

It can be seen from Fig. 3 that:

(i) the effective conductivity behavior of both cases with and

without accounting for the surface effects of periodic composite
with squarely and hexagonally distributed inclusions are
isotropic, i.e. kﬂ = k;g = k4" and k‘]']{( = k;gf = KT A very
small difference between the results related to both directions
can be observed for the periodic composite with randomly
distributed inclusions after 5 realizations, but the behavior is
also practically isotropic in this case.

(i) k7 depends on the inhomogeneity radius R, which corre-

sponds to the size effect observed in the literature, while kiﬂ is
independentof R, meaning that the effective behavior without
surface energy does not display a size effect. The effective
conductivity of the composite with HC interfaces can reach
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Fig. 5. The ratio k"/kf’ versus the inclusion fraction ¢; with circular inclusion radius R = 1 pm and Ny = 64 x 64.
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Fig. 6. The ratio k’l/kﬁ” versus the inclusion fraction ¢; with circular inclusion radius R = 10 pm and Ny = 64 x 64.

nearly 2 times the value without interface effect, for a radius
being around 1 pm.

(iii) the difference between kT and kﬁ” decreases when R
increases, which means that for a same concentration, the
surface energy increases when the heterogeneity size
decreases.

(iv) the surface effect becomes small (a few percent) when R is
larger than 50 pm;

(v) the values kel /kc"” obtained by employing the coherent

interface model are consistent with the estimation given by
using the generalized self-consistent model.

21

To check the consistence of the coherent interface model
described above, we compare in Fig. 4 the values for k¢ /kﬁﬂ related
to the squared lattice periodic composite with the ones derived by
using a periodic three-phase model with a squared lattice, it means
a model with perfect interfaces, but containing an interphase
between inclusions and matrix which is equivalent with the
imperfect interface. The numerical values show an excellent
agreement between both configurations.

Finally, the ratios kﬁ /kg; in terms of the fraction of inclusions ¢;
are depicted in Figs. 5 and é with two inclusion radii R = 1 pm and
R = 10 um. As expected, the surface effect increases for higher

———SC lattice

S urface C

= = *K11-periodic cell with randomized inclusions
O K22-periodic cell with randomized inclusions
A K33-periodic cell with randomized inclusions

O GSCM Estimation

® FCC lattice

0.9 T T T T
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Fig. 7. Dependencies of the ratio k’ﬂ/kﬁ’ on the spherical inclusion radius R (um) and on the distribution of inclusions with inclusion fraction ¢; = 0.3 and N;, = 64 x 64 x 64.
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Fig. 8. The ratio k’”/k?’ versus the spherical inclusion radius R (um) with inclusion volume fraction ¢; = 0.3 and Ni = 64 x 64 x 64.

values of ¢; and can reach more than two times the value without
interface effect for higher concentrations of inclusions. Given
a value of the inclusion fraction, the surface effect becomes more
important when the inclusion radius diminishes. From these
figures, it can also be seen that the size effect is similar for the case
of hexagonal and squared lattices. The cases of random distribu-
tions produce a size effect which is similar to the one of the GSCM
estimation.

4.2. Particle—matrix composites

The second example consists of a 3D host matrix in which
spherical inclusions are embedded. As in the case 2D, all spherical

inclusions are assumed to have the same radius, R; = R, and the
thermal parameters of matrix and inclusions phases as well as the
interfaces between the matrix and inclusions phases are the same
as those of the example of fiber—matrix composite. Similarly to the
case 2D, for periodic composite with randomly distributed inclu-
sions, the number of realizations is equal to 5. However, the
number of spherical inclusions for a unit cell is now equal to 10,
which produces a discrepancy similar to the one obtained in the
case of the fiber—matrix composite.

The effect of the inclusion size on the effective thermal conduc-
tivity is shown in Figs. 7 and 8 for the periodic composite with simple
cubic (SC), face centered cubic (FCC) and randomly distributed
inclusions. The radius R of the spherical inhomogeneities increases

2.4 4o
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Fig. 9. The ratio k'”/lé’ versus the inclusion fraction ¢; with spherical inclusion radius R = 1 pm and Ni = 64 x 64 x 64.
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Fig. 10. The ratio k'ﬂ'/k?’ versus the inclusion fraction ¢; with spherical inclusion radius R = 10 pm and Ny = 64 x 64 x 64.

from 1 to 50 pm while the inhomogeneity volume fraction ¢ is given
constant and equal to 0.3. The results are similar to those obtained in
the case of the fiber—matrix composite. However, in the case of the
particle—matrix composite, the size effect is clearly more significant
than in the previous case. Inversely, the effect of the distribution of
particles on the effective properties is very small compared to anal-
ogous cases in the case of the fiber—matrix composite.

These numerical values for the size-dependent effective thermal
conductivity are then compared to the ones obtained by applying
the three-phase model and generalized self-consistent model.
Taking the inclusion radius to be equal toR = 1 pm and R = 10 um,
the ratio kij /k;j is plotted versus the inclusion fraction volume ¢;

in Figs. 9 and 10. As for the case of inclusion—matrix composites,
the case of small inclusions shows that the size effect is similar for
both periodic cases while the cases of random distributions
produce results similar to the one obtained from the GSCM model.

4.3. Convergence study

All results presented can be affected by the choice of two
numerical parameters: the value of the reference medium used for
the computation of the Green’s function and the quantity of wave
numbers used within the Fourier transform. Without surface effect,
the mean value between the properties of the matrix and of the
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Fig. 11. Study of convergence in wave numbers with circular inclusion fraction ¢; = 0.3.
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Fig. 13. Generalized self-consistent model applied to thermal conduction problem.

inclusions is convenient. Taking into account the HC surface effect
needs to increase significantly the conductivity of the reference
medium, as shows the value previously given. The effect of the
quantity of wave number Nj on the effective thermal conductivity
for squared lattice periodic composite accounting to the coherent
interface model is illustrated in Fig. 11 for the case 2D and Fig. 12 for
the case 3D. It can be seen from Figs. 11 and 12 that the obtained
numerical values for k¢ /k& decrease continuously when the wave
number N increases. Additionally, Figs. 11 and 12 show also that
a number of wave vectors of 64 in each direction is convenient to
reach the convergence for both 2D and 3D cases.

5. Conclusions

The effective conductivity of periodic composites with highly
conducting imperfect interfaces has been studied by using a solu-
tion in Fourier space and the known Fourier transform of the
Green's tensor for conductivity. The plane problem of periodic

fiber—matrix composites with squared lattice, hexagonal lattice
and periods containing random distributions so as the 3D problem
of particle—matrix composites with cubic SC or FCC lattices and
random distributions were studied. The results show that the effect
of imperfect HC interfaces can increase significantly the effective
conductivity of the medium when the heterogeneity size becomes
small, displaying a significant size effect. The size effect is found to
be comparable for periodic cases, the case of random distributions
leading to size effects similar to those of the Generalized Self
Consistent Model. The dual case of Kapitza interfaces related to
highly resistive interfaces is currently under study.

Appendices
A. Derivation of equation (22)

First, by using the definition (30) of the surface divergence, we
have



Vs-(Pv) = Tr[V(Pv)P], (A1)

for any differentiable vector v. Using the suffix notation, the last

term of (1) can be rewritten in the equivalent form

Tr[V(PV)P] = (Pivi) Pmi = vikPik mPmi + Vi mPmiPik
= (i — NiNg) Pmi + viemPy,

—0k (M i + MM ) P+ Vi mP2y

= —(v-n)Tr[PVYn| — (VnPn)-v+Tr [VVPZ].

(A2)

Next, due to the fact that the orthogonal complementary
projection operator P defined by Eq. (5) have following properties

P2 =P, P-n=0, (A3)
then Eq. (A2) becomes
Tr(V(Pv)P] = —(v-n)Tr[PVn] + Tr[Vv-P|. (A4)

Moreover, when the ith-inclusion is 3D spherical or 2D circular
of radius R;, it is easy to show that
vn = lp, (AS)
R;
Substituting Eq. (A5) into Eq. (A4) and accounting for the fact
that Tr(P?) = Tr(P) = d — 1, Eq. (A4) is reduced to
(d;_ Dy.n + Tr[VvP|. (A6)

1

Tr[V(Pv)P] = —
Finally, by combining Eq.(A6) with Eq.(1) together with Eq. (30),
we derive the equality (22), i.e.,

(d-1)
R;

Vs-(Pv) = — v-n+ Vs-v. (A7)

B. Generalized self-consistent model

The model presented in this appendix can be considered as an
extension to the thermal conduction problemwith interface effects of
the classical GSCM for elasticity which was initiated by Van der Poel
[34], improved and completed by Smith [32,33] and Christensen and
Lo [10].

Relative to this model, we first consider an infinite three-
dimensional medium M consisting of the effective homogeneous
and isotropic medium whose thermal behavior is characterized by
Eq.(14)inwhich the effective thermal conductivity tensor is denoted
by K = kSM3), As before, let M now be subjected to the uniform
boundary conditions T(x) = —E-x with any x e M and the constant
intensity vector E chosen such as E® = (0, 0, ¢°)T with ¢° being
a constant intensity field (Fig. 13). In the system of spherical coor-
dinates (r, 4, ¢) corresponding to the spherical orthogonal basis (f;, fs,
f3), this uniform boundary condition takes the equivalent form

TO(x) = —e%cosl, xedM. (B1)

Because the material constituting medium M is homogeneous
and isotropic, this boundary condition produces the following
temperature, intensity and heat flux fields in M

TO(x) = e%cosll, €°(x) = e%(costf, — sinff), (B2)
q°(x) = kGSCMeO(coshf, — sindfy).

Let us introduce the following virtual work Up(e?) of M (see
eg. [13])

Ug (eo) = /qo(x)~e°(x)dx = vol(M)keS™M (60)2. (B3)
M

Next, we cut a sphere out of the foregoing infinite effective
medium and substitute back a composite sphere 2 while imposing
the same boundary condition on dM as before. The interface
between the composite sphere and the outside medium is assumed
to be perfect. The core of this composite sphere is made of the
inclusion phase and surrounded by a concentric shell consisting of
the matrix phase. The core and outer coating consist of two
isotropic materials whose thermal conductivities are kq and k. The
radii of the core and coating, symbolized by ry and r are chosen so
as to be compatible with the prescribed phase volume fraction

r%
G = 1 —C = r—3 (B4)
2

The 3D spherical interface I between the matrix and inclusion is
modeled by the HC surface model as described in Section 2.

Under the boundary condition Eq. (B1), the expressions of the
temperature field, non-zero intensity and heat flux field compo-
nents are given by (see, e.g. [15])

T — _(air+b_2")cos0. (B5)
r

e — (a.' _ zr_g‘) costl, e} = - (a,— + f—;) sinfl, (B6)

g = k;(ﬂi _2r_l;‘)cos(), qf = —k; (0i+%) sind. (B7)

with i = 1referring to the core, i = 2 to the outer coating and i = e to
the external effective medium. In these expressions, a; and b; are
constants to be determined from the boundary and interface
conditions together with a condition avoiding the displacement
singularity in the core of the composite sphere. More precisely, the
requirement of the temperature in the core at r = 0 to be finite
implies that by = 0. The value of a,, determined by using the
boundary condition (B1) with r— w, is given by a, = €’.

At the interface between the core and the coating, the temper-
ature and tangential part of the intensity fields are continuous, so
that

by
a; = ay + —=, B8
1 2 T? ( )

X

M _ 2 by .
=e =¢€ = —(az +§> sinf, (B9)

_ o) _ 52 _
e, =6y =¢; =0.

The surface condition (8) at the interface between the core and
the coating can be specified by accounting for Eqs. (7), (9), (B9) and
(B7) and reduced to the following one:

2b = b
kz(az—r—;> —kiay = st(ﬂz +r—§>.
1 1

with ks = ks/rq.

At the same time, the interface at r = r, between the coating
matrix and outside effective medium is perfectly bonded. Thus, the
continuity conditions of the temperature field T and normal
component heat flux field g, across the interface at r = ry are
expressed as

(B10)

by

b,
0 e
+—= = ay +—= B11
rg 2 r% ( )

e



Ko <e° - @) = ko <a - @) (B12)
I I
2 2
As in the GSCM of Christensen and Lo [10] in the context of
elasticity, the effective thermal conductivity is required to be such
that the virtual work U(e) after introducing the sphere composite
is equal to the initial one Ug(e®) which is given by Eq. (B3). On the
other hand, we can show that the actual virtual work U(eo) can be
expressed in the terms of Uo(e? as follows

U= U+ /(qu“" ~q®7°) ndx (B13)
‘r
Thus, the self-consistency condition Uy = U is reduced to
/(qu(e. _q(e>70).ndx —0. (B14)
b

Substituting Egs. (B1), (B2), (B5) and (B7) with i = e into Eq.
(B14), we obtain the simple equation

e = 0. (B15)

Finally, substituting b, = 0 into Egs. (B8), (B10)—(B12), we obtain
a system of four homogeneous linear equations for the four
unknowns aj, da, b, and €°. A non-trivial solution to this system
exists if and only if the determinant of the relevant 4 x 4 matrix is
equal to zero. This necessary and sufficient condition yields the
expression for the effective thermal conductivity as follows:

3kycy (kl —ky+ 2Es)

KSSM ke, 4 o
3ky + ¢ (kl —ky + 2k5)

(B16)

Firstly, we remark that the effective thermal conductivity
obtained by Eq. (B16) depends not only on the phase thermal
properties and volume fractions but also on the interface thermal
conductivity and on the size of the inhomogeneities through ks.

In the 2D case, the corresponding effective thermal conductivity
is given by

-~ 2kyc; (kl —ky + Es)
2k2 + Cz(k] - k2 + ,’Es)

— ket (B17)

The details of the derivation are omitted here.

Finally, it is convenient to express (B16) and (B17) for k5™ by
the following compact one:

dkyc, [k, —ky +(d - 1)Es]

KM _ g, 4 1
dk2+c2[kl —ky +(d — 1>ks]

(B18)

where d (=3 or 2) is the dimension of the problem.

C (;ghe expressions for the components Ff:,i,}(s —&') of matrix
H (&) and components P, (E — &) of vector PV (£ — ')
in Eq. (31)

(i) when the composite with circular ith-inclusion of radius R; is
under consideration

~(i) {ZmR,-f@— 2 (z)[eE-E) X" for z0;

1n=
(rRie(5-E) X0 for z = 0;

7 { ZlﬂRi(jl(_Z) - CZJZ(Z)) e (EE)XY for 720

2= v Q

wRe (€)X forz = 0;
0~ ‘ (58 X0 )
Hyy — Hy, — {ng.GJz(Z)e :8: 200;
f’(li' = {—Ztvrcjl (2)e" C-¥)X" for z0;

0 for z = 0;
f,‘zi' _ {—ZLns],(z)e“(E‘E')'xm for z#0;

0 for z = 0;

where ¢ = cos fp and s = sin fp with fp standing for the angle
between the discrete vector £ — &' and the unit vector f,

(ii) when the composite with spherical ith-inclusion of radius R; is
concerned

20 2052 — 22(20 — $) — 725 4 §2 2 2:26(72 ;
" 4mR? [ — zcs3 — cc3(zc —s) zzsa+ $3s + 223353 + c357s(z 2)] i(e-g)xo for z#0;
1=
%WR,?e“(E‘E)'x(" for = 0;
4mR? [2zcs2s3 — c2s3(zc — 5) — 225 — 252525 + 2252525 + €3 (s — z¢ ) x
) Ry [2z¢ss5 — iS5 ) P 152 1525 +65( )}C—L(E—E)‘X“ for 20
2 = o
ng,-ze“(E‘E )X for z = 0;
20 yes2 4 (2 _ 72 2 26(52 .
i 4R | — zest + (3 zz)as+ 2zcct + c3s(z 2)}9_‘(5_5)*(1 for z#0:
33 = e
%nR,—ze“(E‘E )-x? for z = 0;



(i) ~ (i)
21 33—

Hy =H
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= 23 N ! z ’
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: z
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where ¢ = cos(z), s = sin(z), sy = sin fg; ¢; = cos fp; s2 = sin g and
¢ = cos g with fp and ¢g being the elevation and azimuthal angles E. The exp:essrons for the components L,,,,](E &) of matrix
IL (&

of the discrete vector § — £'. ) in Eq. (43)

D. The expressions for the components Qmj(E &) of matrix (i) when the composite with circular inclusions of radius R; is

Q (E—&)in Eq. (43) under consideration

(i) when the composite with circular ith-inclusion of radius R; is
under consideration —~ 0
(1';1 = —’-(2'1]2 = _L(Z';l =-2mR%c [5213 @) _]_222)] et(8-€) X"
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(ii) when the composite with spherical inclusions of radius Ri is
concerned
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