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ABSTRACT

This paper concerns the non usual case in structural dynamics for which a complex struc-

ture exhibits both the usual global elastic modes and numerous local elastic modes in the

low-frequency range. Despite the presence of these local elastic modes, we are interested in

constructing a stochastic reduced-order model using only the global modes and in taking into

account the local elastic modes with a probabilistic approach. The ”global elastic modes” and

the ”local elastic modes” are calculated separately using a new formulation solving two general-

ized eigenvalue problems. The union of these two families constitutes a basis of the admissible

space. Then, the reduced-order model is constructed by projection of the dynamical equation on

the global elastic modes. The apparent damping generated in this reduced-order model by the

power flow of the mechanical energy from the global modes to the local modes is constructed

by a statistical approach. The theory is presented and is validated through an application.

1. INTRODUCTION

This paper is devoted to the construction of stochastic reduced-order models in linear structural

dynamics for complex structures in the low-frequency range. In general, the low-frequency

range (for which the modal density is very small and for which the resonances are isolated) can

clearly be separated from the medium-frequency range (for which the modal density is larger

but not uniform in frequency). The low-frequency dynamical analysis of the structure can be

carried out using the first global elastic modes which are calculated with a computational model

and a reduced-order model is constructed with the modal analysis in order to calculate the

dynamical responses. Sometimes, a complex structure for which the low-frequency range must

be analyzed as explained above, can exhibit both the global elastic modes (which characterize

this low-frequency range) and numerous local elastic modes. This situation appears for complex

heterogeneous structures presenting stiff parts and flexible parts such as an automotive vehicle.

The problem which occurs is induced by the existence of an efficient sorting method which

could be used to select the elastic modes as global elastic modes or as local elastic modes.
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In addition, although the reduced-order model must be constructed with respect to the global

elastic modes, this reduced-order model must have the capability to predict the amplitudes of

the responses of the structure in this low-frequency range. Since there are local elastic modes

in the frequency band, a part of the mechanical energy is transferred from the global elastic

modes to the local elastic modes which store this energy and then which induces an apparent

damping at the resonances associated with the global elastic modes. This mechanism is exactly

the phenomenon described and modeled by the fuzzy structure theory introduced in [1].

The objective of this paper is double: (1) The first one is to develop a method to compute

separately the ”global elastic modes” and the ”local elastic modes” by solving two general-

ized eigenvalue problems. (2) The second one is to construct a reduced-order model with the

global elastic modes but in taking into account the effects of the local elastic modes, in order to

correctly predict the frequency response functions in the low-frequency range.

A spatial filtering of short wavelengths, achieved by regularization, has been proposed to

extract (from the measured frequency response functions) the left eigenvectors in the context of

the experimental modal analysis [3], [4]. This work is not adapted to the first objective of the

present paper for which a complete basis of the admissible space, made up of the two families

(global and local elastic modes), has to be constructed with an algorithm which is not intrusive.

Another approach consists in approximating the consistent mass matrix of the computational

model by a lumped mass matrix allowing some local elastic modes to be filtered [5, 6]. When

such a procedure of lumping mass is used, it is then assumed that the acceleration are approx-

imatively constant in the neighborhood of the node in which the point mass is concentrated.

Although properties of solutions obtained with lumped mass matrix have been studied (see for

instance [7–9]), such a filter would depend on the mesh and the bandpass filter could not be

selected. In addition, it would seem that no way exists to complete the construction of the basis

including the local elastic modes.

In this paper, we summarize the theory developed and detailed in [2].

2. REFERENCE REDUCED MATRIX MODEL

We are interested in predicting the frequency response functions of a three dimensional linear

damped structure, occupying a bounded domain Ω, in the frequency band of analysis B =
[ωmin, ωmax] with 0 < ωmin. The complex vector U(ω) of the m DOF of the computational

model constructed by the finite element method is solution of the following complex matrix

equation,

(−ω2[M] + iω[D] + [K])U(ω) = F(ω) , (1)

in which [M], [D] and [K] are respectively the (m × m) positive-definite symmetric real mass,

damping and stiffness matrices and where F(ω) is relative to the discretization of the external
forces. The eigenfrequencies and the elastic modes of the associated conservative dynamical

system consists in finding λ and ϕ in Rm such that

[K] ϕ = λ [M] ϕ . (2)

Using the modal method, the approximation Un(ω) at order n of U(ω) is written as

Un(ω) =
n∑

α=1

qα(ω) ϕα = [Φ] q , (3)

in which q = (q1, . . . , qn) is the complex vector of the n generalized coordinates and where

[Φ] = [ϕ1 . . . ϕn] is the (m × n) real matrix of the elastic modes associated with the n first

eigenvalues.
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3. DECOMPOSITION OF THE MASS MATRIX

In this section, we introduce a decomposition of the mass matrix which is adapted to the calcu-

lation of the global elastic modes in the low-frequency band of analysis in which there are also

a large number of local elastic modes. We first introduce a decomposition of the domain Ω and

a projection operator. The details of the methodology for the discrete and the continuous cases

are presented in [2].

3.1 Decomposition of domain Ω

Domain Ω is partitioned into nJ subdomains Ωǫ
j such that, for j and k in {1, . . . , nJ},

Ω =

nJ⋃

j=1

Ωǫ
j , Ωǫ

j ∩ Ωǫ
k = ∅ . (4)

The parameter ǫ is the characteristic length of the subdomains. The choice of ǫ is related to

the smallest ”wavelength” of the global elastic modes that we want to extract in presence of

numerous local modes.

3.2 Projection operator

Let u 7→ hr
ǫ(u) be the linear operator defined by

{hr
ǫ(u)}(x) =

nJ∑

j=1

1lΩǫ
j
(x)

1

mj

∫

Ωǫ
j

ρ(x) u(x) dx , (5)

in which x 7→ 1lΩǫ
j
(x) = 1 if x is in Ωǫ

j and = 0 otherwise. The local massmj is defined, for all

j in {1, . . . , nJ}, by mj =
∫
Ωǫ

j

ρ(x) dx, where x 7→ ρ(x) is the mass density. Let u 7→ hc
ǫ(u)

be the linear operator defined by

hc
ǫ(u) = u − hr

ǫ(u) . (6)

Function hr
ǫ(u) will also be denoted by ur and function hc

ǫ(u) by uc. We then have u =

hr
ǫ(u) + hc

ǫ(u) that is to say, u = ur + uc. Let [Hr
ǫ ] be the (m × m) matrix relative to the

finite element discretization of the projection operator hr
ǫ defined by Eq. (5). Therefore, the

finite element discretization U of u can be written as U = Ur + Uc, in which Ur = [Hr
ǫ ] U and

Uc = [Hc
ǫ ] U = U−Ur which shows that [H c

ǫ ] = [Im]− [Hr
ǫ ]. Then, the (m×m) reduced mass

matrix [Mr] is constructed such that [Mr] = [M][Hr
ǫ ] = [Hr

ǫ ]
T [M] = [Hr

ǫ ]
T [M][Hr

ǫ ] and where
the (m × m) complementary mass matrix [Mc] is constructed such that [Mc] = [M] − [Mr].

4. GLOBAL AND LOCAL ELASTIC MODES

Two methods are proposed to calculate the global and the local elastic modes that will be used

to reduce the matrix equation.

4.1 Direct method

In such a method, the global and the local elastic modes are directly calculated using the de-

composition of the mass matrix [M]. The global elastic modes φg in Rm are solution of the

generalized eigenvalue problem

[K]φg = λg[Mr]φg . (7)
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This generalized eigenvalue problem admits an increasing sequence of 3nJ positive eigenvalues

0 < λg
1 ≤ . . . ≤ λg

3nJ
, associated with the finite family of algebraically independent functions

{φg
1
, . . . , φg

3nJ
}. The family {φg

1
, . . . , φg

3nJ
} is defined as the family of the global elastic modes

although these functions are not, in general, some elements of the family of the elastic modes,

but represent some approximations of such elements. The local elastic modes φℓ in Rm are

solution of the generalized eigenvalue problem

[K]φℓ = λℓ[Mc]φℓ . (8)

This generalized eigenvalue problem admits an increasing sequence of positive eigenvalues

0 < λℓ
1
≤ . . . ≤ λℓ

m−3nJ
, associated with the infinite family of functions {φℓ

1
, . . . , φℓ

m−3nJ
}.

The family {φℓ
1, . . . , φ

ℓ
m−3nJ

} is defined as the family of the local elastic modes although these
functions are not, in general, some elements of the family of the elastic modes, but represent

some approximations of such elements. Matrices [Mr] and [Mc] are symmetric and positive but
are not positive definite (positive semi-definite matrices). The number of zero eigenvalues for

matrices [Mr] and [Mc] are respectively nJ and m − 3nJ .

4.2 Double projection method

This method is less intrusive with respect to the commercial software and less time-consuming

than the direct method. The solutions of the generalized eigenvalue problems defined by Eqs. (7)

and (8) are then written, for n sufficiently large, as

φg = [Φ] φ̃
g

, φℓ = [Φ] φ̃
ℓ
. (9)

The generalized global elastic modes are the solutions of the generalized eigenvalue problem

[K̃] φ̃
g

= λg [M̃ r] φ̃
g
, (10)

in which [M̃ r] = [Φr
ǫ ]

T [M] [Φr
ǫ ] and [K̃] = [Φ]T [K] [Φ], and where the (m × n) real matrix

[Φr
ǫ ] is such that [Φr

ǫ ] = [Hr
ǫ ] [Φ]. The generalized local elastic modes are the solutions of the

generalized eigenvalue problem

[K̃] φ̃
ℓ
= λℓ[M̃ c] φ̃

ℓ
, (11)

in which [M̃ c] = [Φc
ǫ]

T [M] [Φc
ǫ] and where the (m × n) real matrix [Φc

ǫ] is such that [Φc
ǫ] =

[Hc
ǫ ] [Φ] = [Φ] − [Φr

ǫ ].

5. MEAN REDUCED MATRIX MODEL

It is proven in [2] that the family {φg
1
, . . . , φg

3nJ
, φℓ

1
, . . . , φℓ

m−3nJ
} is a basis of Rm. The mean

reduced matrix model is obtained using the projection of U(ω) on the subspace of Cm spanned

by the family {φg
1, . . . , φ

g
ng

, φℓ
1
, . . . , φℓ

nℓ
} of real vectors associated with the ng first global

elastic modes such that ng ≤ 3nJ ≤ m and with the nℓ first local elastic modes such that

nℓ ≤ m. It should be noted that, if the double projection method is used, then we must have

ng ≤ n, nℓ ≤ n and nt ≤ n in which nt = ng +nℓ. Then, the approximationUng,nℓ
(ω) of U(ω)

at order (ng, nℓ) is written as

Ung,nℓ
(ω) =

ng∑

α=1

qg
α(ω) φg

α +

nℓ∑

β=1

qℓ
β(ω) φℓ

β . (12)
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Let q(ω) = (qg(ω) , qℓ(ω)) be the vector in Cnt of all the generalized coordinates such that

qg(ω) = (qg
1(ω), . . . , qg

ng
(ω)) and qℓ(ω) = (qℓ

1(ω), . . . , qℓ
nℓ

(ω)). Consequently, vector q(ω) is
solution of the following mean reduced matrix equation such that

(−ω2[M ] + iω[D] + [K]) q(ω) = F(ω) , (13)

where [M ], [D] and [K] are the (nt×nt)mean generalized mass, damping and stiffness matrices

defined by blocks as

[M ] =

[
Mgg Mgℓ

(Mgℓ)T M ℓℓ

]
, [D] =

[
Dgg Dgℓ

(Dgℓ)T Dℓℓ

]
, [K] =

[
Kgg Kgℓ

(Kgℓ)T Kℓℓ

]
. (14)

Let A (or A) be denoting M , D or K (or M, D or K). Therefore, the block matrices are defined

by

[A]gg
αβ = (φg

α)T [A]φg
β , [A]gℓ

αβ = (φg
α)T [A]φℓ

β , [A]ℓℓαβ = (φℓ
α)T [A]φℓ

β . (15)

The matrices [K]gg and [K]ℓℓ are diagonal. The generalized force is a vector in Cnt which is

written as F(ω) = (F g(ω) , Fℓ(ω)) in which

F
g
α(ω) = (φg

α)T
F(ω) , F

ℓ
α(ω) = (φℓ

α)T
F(ω) . (16)

Then, for all ω fixed in B, the generalized coordinates are calculated by inverting Eq. (13) and

the response Ung,nℓ
(ω) is calculated using Eq. (12).

6. PROBABILISTIC MODEL OF UNCERTAINTIES FOR THE LOCAL ELASTIC

MODES

In the low-frequency range, the first global elastic modes are not really sensitive to uncertainties

introduced in the computational model. Nevertheless, we have assumed that the structure under

consideration had also local elastic modes in the same low-frequency band. It is well known

that the modal density of such local modes increases rapidly with the frequency and that, in

addition, the local modes are sensitive both to the system parameters uncertainties and to the

model errors which induce model uncertainties. In order to improve the predictability of the

computational model, the nonparametric probabilistic approach (see [12]) is used to take into

account uncertainties for the local-elastic-modes contribution.

6.1 Random reduced matrix model

The nonparametric probabilistic approach consists in replacing the matrices of the reduced

mean matrix model by random matrices for which the probability distributions are constructed

by using the maximum entropy principle with the constraints defined by the available informa-

tion. Then, the random generalized mass, damping and stiffness matrices are written as

[M ]=

[
Mgg Mgℓ

(Mgℓ)T M ℓℓ

]
, [D]=

[
Dgg Dgℓ

(Dgℓ)T Dℓℓ

]
, [K]=

[
Kgg Kgℓ

(Kgℓ)T Kℓℓ

]
, (17)

in which the random matrices [M ℓℓ], [Dℓℓ] and [Kℓℓ] are with values in the set of all the

positive-definite symmetric (nℓ × nℓ) real matrices, for which their mean values are such that
E{[M ℓℓ]} = [M ℓℓ], E{[Dℓℓ]} = [Dℓℓ] and E{[Kℓℓ]} = [Kℓℓ], and finally, verify the following
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inequalities E{‖[M ℓ]−1‖
2

F} < +∞ , E{‖[Dℓℓ]−1‖
2

F} < +∞ and E{‖[Kℓℓ]−1‖
2

F} < +∞
which assure that there exists a second-order random solution to the stochastic reduced-order

equation. The probability distribution of each random matrix [M ℓℓ], [Dℓℓ] or [Kℓℓ] depend on
the mean value [M ℓℓ], [Dℓℓ] or [Kℓℓ] and on a dispersion parameter δM , δD or δK defined by

δ2

A =
E{‖[Aℓℓ] − [Aℓℓ]‖2

F}

‖[Aℓℓ]‖2

F

, (18)

in which A (or A) is M , D or K (or, M , D or K). The dispersion parameters allow the level

of uncertainties to be controlled.

6.2 Random frequency responses

The random response Ung,nl
(ω) is then written as

Ung,nℓ
(ω) =

ng∑

α=1

Qg
α(ω) φg

α +

nℓ∑

β=1

Qℓ
β(ω) φℓ

β , (19)

in which the random vector Q(ω) = (Qg(ω) , Qℓ(ω)) with valued in Cnt of all the generalized

coordinates is such that Qg(ω) = (Qg
1
(ω), . . . , Qg

ng
(ω)) and Qℓ(ω) = (Qℓ

1
(ω), . . . , Qℓ

nℓ
(ω)).

Consequently, vectorQ(ω) is solution of the following stochastic reduced matrix equation such
that

(−ω2[M ] + iω[D] + [K]) Q(ω) = F(ω) . (20)

This equation is solved using the Monte Carlo simulation method.

7. APPLICATION AND VALIDATION

7.1 Mean Finite Element Model

The dynamical system is made up of 12 flexible panels and of a stiff structure (see Fig. 1). Each

Figure 1. Geometry of the dynamical system.

panel is a rectangular, homogeneous, isotropic, thin plate with constant thickness 0.002 m,

width 4.0 m, length 4.0 m, mass density 7, 800 kg/m3, Poisson ratio 0.29. The Young modulus
of the 12 panels are respectively, 1.31×1012, 1.47×1012, 1.54×1012, 1.74×1012, 1.47×1012,

1.71 × 1012, 0.49 × 1012, 1.09 × 1012, 1.74 × 1012, 1.34 × 1012, 1.68 × 1012 and 0.61 ×
1012 N/m2. The rigid structure is composed of rectangular, homogeneous, isotropic, thin plates

with a constant thickness 0.017 m, width 2.0 m, mass density 9, 800 kg/m3, Poisson ratio 0.29,
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Young’s modulus 2.1×1012 N/m2. The coordinate system (Oxyx) is shown in Fig. 1. The four
nodes corresponding to the four corners (0, 0, 0), (26, 0, 0), (26, 0, 20) and (0, 0, 20) are fixed.
The frequency band of analysis is B = 2π×]0 , 11] rad/s. The finite element model is made
up of 64 Kirchhoff plate elements for each panel and 456 Kirchhoff plate elements for the rigid
structure. The structure has m = 13, 014 DOF.

7.2 Modal analysis, global and local elastic modes

In a first step, the elastic modes are calculated with the finite element model defined by Eq. (2).

There are 86 eigenfrequencies in the frequency band of analysis B and n = 120 eigenfre-

quencies in the band ]0 , 13.2] Hz. The first elastic mode φ1 and the second elastic mode φ2 are

displayed in Fig. 2 which shows thatφ1 is a local elastic mode whileφ2 is a global elastic mode

with an important local displacement. In a second step, the global and local elastic modes are
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Figure 2. First elastic (left) and second elastic mode (right).

constructed using the double projection method. The matrix [H r
ǫ ] relative to the discretization

of the operator hr
ǫ is constructed for ǫ = 3.0 m. In band ]0 , 13.2] Hz, there are ng = 8 global

elastic modes and nℓ = 112 local elastic modes. Fig. 3 displays the distribution of the number
of eigenfrequencies for the global elastic modes and for the local elastic modes. It can be seen

that there are numerous local modes intertwined with the global elastic modes. The two first

global elastic modes φ
g
1, φ

g
2 and the two first local elastic modes φl

1 and φl
2 are shown in Fig. 4.

7.3 Frequency responses calculated with the mean model

For all ω ∈ B, the structure is subjected to an external point load equal to 1 N applied to the

node whose coordinates are (10, 0, 7) located in the stiff part. The mean damping matrix is

constructed using a Rayleigh model corresponding to a damping rate ξ = 0.04 for the eigenfre-
quency f1 = 1.67 Hz and for the eigenfrequency f120 = 13.2 Hz. The response is calculated
at two observation points, the point Pobs1 located in the stiff part at the node whose coordinates

are (19, 0, 7) and the point Pobs2 located in the flexible part at the node whose coordinates are
(10, 0, 10) (see Fig. 1). The response is calculated for different projections associated with the
different bases: for the initial elastic modes with Eq. (3) (n = 120), for global elastic modes
with Eq. (12) (ng = 8 and nℓ = 0), for local elastic modes with Eq. (12) (ng = 0 and nℓ = 112)
and finally, for global and local elastic modes with Eq. (12) (ng = 8 and nℓ = 112). The
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Figure 3: Distribution of the number of eigenfrequencies for the global elastic modes (black
histogram) and for the local elastic modes (grey histogram) as a function of the frequency in
Hz).
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Figure 4. Two first global elastic modes (top) and two first local elastic modes (bottom).

modulus in log scale of the responses are displayed in Fig. 5. It can be seen that the responses

calculated using global and local elastic modes are exactly the same that the response calculated

using the initial elastic modes. For point Pobs1 in the stiff part, the contribution of the global

elastic modes is preponderant in the very low-frequency band but the contribution of the local

elastic modes becomes not negligible in the high part of the low-frequency band. For point
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Figure 5: Modulus in log scale of the frequency response for Pobs1 (left) and Pobs2 (right).
Comparisons between different projection bases: initial elastic modes (solid thick line), global
elastic modes only (mixed line), local elastic modes only (dashed line), global and local elastic
modes (solid thin line superimposed to the solid thick line).

Pobs2 in the flexible part, the contribution of the local elastic modes is important except for the

first resonance corresponding to the first global elastic mode (because the flexible plates follow

the stiff part in its displacement).

7.4 Random frequency responses calculated with the stochastic model

The nonparametric probabilistic approach is used for the contribution of the local elastic modes

as explained in Section 6.. The dispersion parameters are chosen as δM = 0.1, δD = 0.1
and δK = 0.1. The Monte Carlo simulation method is carried out with 200 simulations. The

confidence regions corresponding to a probability level Pc = 0.99 are presented in Fig. 6. As it

frequency
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s
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frequency

r
e
s
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n
s
e

Figure 6: Random frequency response functions for Pobs1 (left) and Pobs1 (right). Confidence
region (lower and upper lines), mean response (middle line), deterministic response calculated
with the initial elastic modes (solid thick line).

can be seen in these two figures, the sensitivity to uncertainties of local elastic modes is higher

than for the global elastic modes. For observation Pobs1 which is located in the stiff part of the

structure and then, which is mainly driven by the global elastic modes, the main resonances are

robust with respect to uncertainties. For observation Pobs2 which is located in the flexible part

of the structure and then, which is mainly driven by the local elastic modes, the responses are

not robust with respect to uncertainties.
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8. CONCLUSIONS

A general method has been developed and validated to construct a stochastic reduced-order

model in low-frequency dynamics in presence of numerous local elastic modes. The projection

basis is made up of two families of vector bases: the global elastic modes and the local elastic

modes which are separately computed. The effects of uncertainties on the local modes are taken

into account with the nonparametric probabilistic approach. The double projection method

proposed is not really intrusive and can easily be implemented in commercial software.
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