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come    

Probabilistic model of human cortical bones with uncertain mechanical properties: Modelling and identification with experimental measurements in ultrasonic range

Introduction

The biomechanical materials are among the most complex mechanical systems. Modeling such media is a challenge and the main difficulty is given rise to by the complexity level of their microstructures. This is the case for the human cortical bones which are considered in this paper. For such a system, the microstructure can be altered near its interface with the marrow (osteoporosis). A gradient of porosity is then observed in the thickness direction but, in this case, none usual theory of porous materials can be applied. For these reasons, these systems are often modeled using a simplified mechanical model which corresponds to a rough approximation of the real system. Nevertheless, the predictability of such a simplified model can be improved by taking into account the uncertainties introduced by these approximations. In this paper, a model for the human cortical bone is constructed. It consists of a fluid-solid semi-infinite multilayer system in which the solid layer (the cortical bone) is a non-homogeneous transverse isotropic elastic material and the two others semi-infinite layers (skin/muscles and marrow) are modeled by acoustical fluids. A gradient of the elasticity properties of the cortical bone is introduced in order to take into account the alterations of the cortical bone microstructure. Thus, inside the solid layer, the constitutive equation of the solid goes to the constitutive equation of the fluid (the marrow).

The uncertainties related to such a model are taken into account by modeling the elasticity tensor by a random field. The parameters of this probabilistic model are (1) the mean value of the effective thickness and the mean value of the elasticity tensor of the cortical bone and (2) the parameters controlling the level of uncertainties which depends on the spatial coordinates. The purpose is to present such a probabilistic model constructed within the framework of the theory of information. This probabilistic model should be adapted to the experimental identification of this parameters.

Simplified model

A simplified model of the biomechanical system made up of the coupling gel, the skin, the cortical bone and the marrow has been developed in [START_REF] Naili | Influence of viscoelastic and viscous absorption on ultrasonic wave propagation in cortical bone: Application to axial transmission[END_REF]; [START_REF] Desceliers | Determination of the random anisotropic elasticity layer using transient wave propagation in a fluid-solid multilayer: Model and experiments[END_REF]. This simplified model is composed of an elastic solid semi-infinite layer between two acoustic fluid semi-infinite layers (see fig. 1). Let 1) be respectively the boundaries of Ω 1 , Ω and Ω 2 in which Γ 1 , Σ 1 , Σ 2 and Γ 2 are the planes defined by

. Let ∂Ω 1 = Γ 1 ∪ Σ 1 , ∂Ω = Σ 1 ∪ Σ 2 and ∂Ω 2 = Σ 2 ∪ Γ 2 (see Fig.
Γ 1 = {x 1 ∈ , x 2 ∈ , x 3 = z 1 } Σ 1 = {x 1 ∈ , x 2 ∈ , x 3 = 0} Σ 2 = {x 1 ∈ , x 2 ∈ , x 3 = z} Γ 2 = {x 1 ∈ , x 2 ∈ , x 3 = z 2 } in which z 1 = h 1 , z = -h and z 2 = -(h + h 2 ).
Therefore, the domains Ω 1 , Ω and Ω 2 are unbounded along the transversal directions e 1 and e 2 whereas they are bounded along the vertical direction e 3 .

A line source modeling an acoustical impulse is applied in domain Ω 1 . This line source is defined with a source density

Q 1 such that ∂Q 1 ∂t (x, t) = ρ 1 F(t)δ 0 (x 1 -x S 1 )δ 0 (x 3 -x S 3 )
in which F(t) = F 1 sin(2π f c t)e -4(t f c -1) 2 where f c = 1 MHz is the central frequency and F 1 = 100 N; ρ 1 is the mass density of domain Ω 1 ; δ 0 is the Dirac function at the origin and x S 1 and x S 3 are the coordinates of a line source modeling the acoustical impulse. At time t = 0, the system is assumed to be at rest. Let ρ(x 3 ) and [C(x 3 )] be the mass density and the effective elasticity matrix of the solid layer at a point x 3 in Ω 1 . For a given effective elasticity matrix field [C(•)], the displacement field u in the solid layer Ω and the pressure fields p 1 and p 2 in the two fluids Ω 1 and Ω 2 respectively, are calculated using the fast and efficient hybrid solver presented in [START_REF] Desceliers | A time-domain method to solve transient elastic wave propagation in a multilayer medium with a hybrid spectral-finite element space approximation[END_REF].

Simplified model for a porous medium with gradient

It is well-known that bone medium are made of porous material. However, for the human cortical bones, the pore sizes are not small with respect to the thickness of the cortical layer. In addition, the pore size increases along the transverse direction x 3 . In case of osteoporosis, this gradient of porosity is such that, near interface Σ 2 , the cortical material is mostly made up of a fluid. No usual theory on porous medium Biot (1956Biot ( ,b, 1962) ) is suitable for modeling such properties. Hereafter, we then propose an approach that allows the modeling of the elasticity matrix [C(x 3 )] to be still constructed within the usual framework of the continuum mechanics. Then, for all x 3 in [a, 0], the material in the cortical layer is assumed to be locally a transverse isotropic medium and it is assumed to be a fluid for all 

[C S ] 11 = e 2 L (1 -ν T ) (e L -e L ν T -2e T ν 2 L )
(1) 

[C S ] 22 = e T (e L -e T ν 2 L ) (1 + ν T )(e L -e L ν T -2e T ν 2 L ) (2) [C S ] 12 = e T e L ν L (e L -e L ν T -2e T ν 2 L ) (3) 
[C S ] 23 = e T (e L ν T + e T ν 2 L ) (1 + ν T )(e L -e L ν T -2e T ν 2 L ) (4) [C S ] 44 = g T , [C S ] 55 = g L (5) with [C S ] 22 = [C S ] 33 , [C S ] 12 = [C S ] 13 = [C S ] 21 = [C S ] 31 , [C S ] 23 = [C S ]
+ ν T ). All components of [C F ] are zero except [C F ] 11 , [C F ] 12 , [C F ] 13 , [C F ] 21 , [C F ] 22 , [C F ] 23 , [C F ] 31 , [C F ] 32 ,[C F ] 33 that are all equal to ρ 2 c 2 2 . The proposal model of [C(x 3 )] and ρ(x 3 ) is the following [C(x 3 )] = (1 -f (x 3 )) [C S ] + f (x 3 ) [C F ] ρ(x 3 ) = (1 -f (x 3 )) ρ S + f (x 3 ) ρ 2 where f (x 3 ) = 1 if x 3 < b, f (x 3 ) = 0 if x 3 > a and f (x 3 ) = c 0 + c 1 x 3 + c 2 x 2 3 + c 3 x 3 3 if b ≤ x 3 ≤ a in which c 0 = a 2 (a - 3 b)/(a -b) 3 , c 1 = 6 a b/(a -b) 3 , c 2 = -3(a + b)/(a -b) 3 and c 3 = 2/(a -b) 3 .
This model has been constructed such that, for x 3 = a or x 3 = b,

∂[C(x 3 )]
∂x 3 = 0 and ∂ρ(x 3 ) ∂x 3 = 0

Probabilistic model of the thickness and elasticity matrix of the cortical layer

The modeling these biomechanical materials is tricky due to the lack of knowledge on the micro-structure which is random and complex. In the two previous sections, a simplified model has been presented. The predictability of this model can be improved by taking into account these uncertainties. In this section, the probabilistic model of the elasticity matrix field is constructed by substituting the elasticity matrix field x 3 → [C(x 3 )] by a matrix-valued random field

x 3 → [C(x 3 )].
The probabilistic model of random elasticity matrix field x 3 → [C(x 3 )] is constructed using the maximum entropy principle Jaynes (1957a,b) within the framework of the theory of the information [START_REF] Shannon | A mathematical theory of communication[END_REF] . We then consider the following available information (1) the random matrix [C(x 3 )] is a second-order random variable with values in the set of all the (6 × 6) real symmetric positive-definite matrices;

(2) the mean value of random matrix [C(x 3 )] is the mean elasticity matrix [C(x 3 )];

(3) the norm of the inverse matrix of [C(x 3 )] is a second-order random variable. It has been shown in [START_REF] Soize | Non-gaussian positivedefinite matrix-valued random fields for elliptic stochastic partial differential operators[END_REF][START_REF] Soize | Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size[END_REF] that the random matrix [C(x 3 )] can then be written as, for all b < x 3 < 0

[C(x 3 )] = [L(x 3 )] T [G(x 3 )][L(x 3 )]
and since, for x 3 < b the medium is not uncertain (it is a well-known fluid medium) then, for all

x 3 < b [C(x 3 )] = [C(x 3 )]
in which the (6 × 6) upper triangular matrix [L(x 3 )] corresponds to the Cholesky

factorization [C(x 3 )] = [L(x 3 )] T [L(x 3 )]
and where probability model of matrixvalued random field x 3 → [G(x 3 )] is defined as the non-linear mapping of 21 second-order centered homogeneous Gaussian random fields U j j (x 3 ) with 1 ≤ j ≤ j ≤ 6. The explicit expression of this non-linear mapping can be found in [2,3]. The stochastic germs U j j (x 3 ) are then defined by the autocorrelation functions

R U jj (τ) = E{U jj (x 3 + τ)U jj (x 3 )} such that R U jj (τ) = (2 /π τ) 2 sin 2 (π τ/2 )
where the spatial correlation length is a parameter of the probabilistic model. The random field x 3 → [G(x 3 )] also depends on an additional parameter 0 < δ < (7/11) 1/2 that is independent of x 3 . This parameter controls the statistical fluctuations of [G(x 3 )] and [C(x 3 )] since it can be shown that

E{ [G(x 3 )] 2 F } = 6(δ 2 + 1) δ C (x 3 ) = δ √ 7 1 + (tr [C(x 3 )]) 2 tr [C(x 3 ] 2 1/2 (1)
where

δ C (x 3 ) 2 = E{ [C(x 3 )] - [C(x 3 )] 2 F }/ [C(x 3 )] 2 F and • is the Frobenius norm. Finally, the spatial cor- relation length C of random field x 3 → [C(x 3 )] is such that C = +∞ 0 |r c (τ)| dτ where r c (τ) = tr E{([C(x 3 + τ)] -[C(x 3 ]) ×([C(x 3 )] -[C(x 3 ]])} ×(E{ [C(x 3 )] -[C(x 3 ] 2 F }) -1
Then, the displacement of the solid layer and the two pressure of the fluid layers are random fields denoted by U, P 1 and 

P 2 .

APPLICATION

In a previous paper [START_REF] Desceliers | Determination of the random anisotropic elasticity layer using transient wave propagation in a fluid-solid multilayer: Model and experiments[END_REF], the components of matrix [C S ] have been identified with an experimental database. The ultrasonic axial transmission technique has been used to construct this experimental database. The experimental configuration is described by Fig. 2. A device has been designed and is made up of n R = 11 receivers and 2 transmitters. A coupling gel is applied at the interface between the device and the skin of the patient. Each transmitter generates an acoustical impulse in the ultrasonic range that propagates in the coupling gel, the skin, the muscle, the cortical bone and the marrow. The axial transmission technique consists in recording these signals at the n R = 11 receivers receivers located in the device. The first arriving contribution of the signal (FAS) is considered. Following the signal processing method used with the experimental device, the velocity of FAS is determined from the time of flight of the first extremum of the contribution. This experimental database allows the components of matrix [C S ] to be identified (see [START_REF] Desceliers | Determination of the random anisotropic elasticity layer using transient wave propagation in a fluid-solid multilayer: Model and experiments[END_REF]) and we obtained ρ S = 1598.8 kg.m -3 , e L = 17.717 GPa, ν L = 0.3816, g L = 4.7950 GPa, e T = 9.8254 GPa, ν T = 0.4495 and δ C (0) = 0.1029. Using Eq. ( 1) yields δ = 0.0575. In this paper, we are interested by the propagation of the uncertainties to the first fluid domain Ω 1 for the cortical bone system in the context of the axial transmission technique. We then introduce the random variable Q that is such that

Q = T 0 n R ∑ k |P 2 (t, x k 1 )| 2 dt
where T is the duration of an experimental signal and x k 1 , with k = 1, . . . , n R are the positions of the receivers along direction e 1 . Let p Q (a, b, L; q) be the probability density function of random variable Q. In Fig. 3, the graph of x 3 → δ C (x 3 ) is shown with a = 0, b = z (thin solid line) and a = z/2, b = z (thick solid line) and a = 0, b = z/2 (dashed thin line). It can been seen that the value of the dispersion coefficient δ C (x 3 ) of the random matrix [C(x 3 )] decreases when the constitutive equations of the material go to the constitutive equations of a fluid. In Fig. 4, the graph of q → p Q (a, b, L; q) is shown in logscale with a = 0, b = z, L = h/10 (thick solid line), with a = z/2, b = z, L = h/10 (thin solid line), with a = 0, b = z, L = h/20 (thick dashed line), with a = z/2, b = z, L = h/20 (thin dashed line). It can be seen that the probability density function is sensitive with respect to the thickness a and to the correlation length L.

CONCLUSION

In this paper we have considered the transient dynamical response of a multilayered system submitted to an impulse in the ultrasonic range. The application concern a biomechanical system: the human cortical bone. This system is really tricky to be modeled due to the lack of knowledge on its micro-structure. For such a system, the micro-structure can be altered near its interface with the marrow (osteoporosis). A gradient of porosity is then observed in the thickness direction but, in this case, none usual theory of porous materials can be applied. This is the reason why we have proposed a simple model of the elasticity tensor for media with a gradient of the porosity in order to take into account the alterations of the cortical bone micro-structure. Thus, inside the solid layer, the constitutive equation of the solid goes to the constitutive equation of the fluid (the marrow). Then, in order to improve the predictabil-ity of this simplified model, we take into account the uncertainties by substituting the elasticity tensor with a random field for which the probabilistic model has been constructed using the maximum entropy principle. An application has been proposed to study the propagation of these uncertainties on the pressure field inside the first fluid domain (the skin). Results show that the total energy of the random pressure pressure field is very sensitive to the gradient and the spatial correlation length of the random elasticity tensor in the cortical layer. Consequently, experimental measurements in the context of the axial transmission technique can be used in order to identify the parameters of this probabilistic model.

  R(O, e 1 , e 2 , e 3 ) be the reference Cartesian frame where O is the origin of the space and (e 1 , e 2 , e 3 ) is an orthonormal basis for this space. The coordinates of the generic point x in 3 are (x 1 , x 2 , x 3 ). The thicknesses of the layers are denoted by h 1 , h and h 2 . The first acoustic fluid layer occupies the open unbounded domain Ω 1 , the second acoustic fluid layer occupies the open unbounded domain Ω 2 and the elastic solid layer occupies the open unbounded domain Ω

Fig. 1 .

 1 Fig. 1. Geometry of the multilayer system

  x 3 in [z, b] . Consequently, (1) for all x 3 in [0, a], we have [C(x 3 )] = [C S ] and ρ(x 3 ) = ρ S ; (2) for all x 3 in [z, b] we have [C F ] and ρ(x 3 ) = ρ 2 ; where [C S ] is the elasticity matrix of a transverse isotropic medium, [C F ] is the elasticity matrix of a fluid medium, ρ S is the mass density of the cortical layer without taking into account the porosity and ρ 2 is the mass density of the second fluid (the marrow). All components of [C S ] are zeros except the following

  32 and [C S ] 55 = [C S ] 66 and where e L and e T are the longitudinal and transversal Young modulus, g L and g T are the longitudinal and transversal shear modulus and ν L and ν T are the longitudinal and transversal Poison coefficients such that g T = e T /2(1

  Fig. 2. Experimental configuration
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 34 Fig. 3. Graph of x 3 → δ C (x 3 ) with a = 0, b = z (thin solid line) and a = z/2, b = z (thick solid line) and a = 0, b = z/2 (dashed thin line)
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