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Abstract

This study addresses the stochastic modeling of media whose elasticity ten-
sor exhibits uncertainties on the material symmetry class to which it belongs.
More specifically, we focus on the construction of a probabilistic model which
allows realizations of random elasticity tensors to be simulated, under the
constraint that the mean distance (in a sense to be defined) to a given class of
material symmetry is specified. Following the eigensystem characterization
of the material symmetries, the proposed approach relies on the probabilis-
tic model derived in [6] which allows the variance of selected eigenvalues
of the elasticity tensor to be partially prescribed. A new methodology and
parameterization of the model are then defined. The proposed approach is
exemplified considering the mean to transverse isotropy. The efficiency of
the methodology is demonstrated by computing the mean distance of the
random elasticity tensor to this material symmetry class, the distance and
projection onto the space of transversely isotropic tensors being defined by
considering the Riemannian metric and the Euclidean projection, respec-
tively. It is shown that the methodology allows the above distance to be
(partially) reduced as the overall level of statistical fluctuations increases,
no matter the initial distance of the mean model used in the simulations.
A comparison between this approach and the nonparametric probabilistic
approach (with anisotropic fluctuations) proposed in [12] is finally provided.
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1. Introduction

This study focuses on the probabilistic modeling of random media whose
linear behavior is defined with respect to an elasticity tensor exhibiting
uncertainties on the material symmetry class to which it belongs. Such a
problematic typically arises:

(i) in the experimental identification of material properties at various
scales (and especially, for materials whose characterization is per-
formed at a scale close to the characteristic size of the heterogeneities,
such as some long-fiber reinforced composites, living tissues and con-
cretes), for which material symmetry properties may be either relaxed
or assumed.

(ii) in the computational stochastic modeling of structures, when the ran-
domness induced by fine-scale features may have to be taken into ac-
count at a coarse scale (in order to study robust design or prognosis,
for instance).

More specifically, we address the modeling of random elasticity tensors
whose mean distance (in a sense to be defined) to a given class of mate-
rial symmetry (for instance, the symmetry class that is usually assumed for
the random media under consideration) is specified. Clearly, such a mod-
eling can not be achieved, neither by using a parametric approach (which
would imply, by definition, a null distance to the symmetry class, no matter
the realization of the random elasticity tensor) nor by considering the non-
parametric approach for anisotropic media, introduced in [12] and for which
the anisotropic statistical fluctuations make the distance to a given material
symmetry class increase with the overall level of fluctuation.
Thus, we propose in this research both the construction of a probabilistic
model and the definition of a methodology allowing the numerical simula-
tion (and consequently, the inverse experimental identification) of random
elasticity tensors under material symmetry constraints.

2. Definition of distances in the set of elasticity tensors

In the following, we will consider the Kelvin matrix representation [C] ∈
M

+
6 (R) (where M

+
6 (R) is the set of all the 6× 6 symmetric positive-definite

real matrices) of the fourth-order tensor [[C]] (with components [[C]]ijkℓ)
belonging to the set of elasticity tensors (verifying the usual symmetry and
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positiveness properties). The question of defining the distance between elas-
ticity tensors has received considerable attention, especially within the con-
text of experimental identification (see [3] for an application in geophysics
for instance). Indeed, several metrics have been introduced in the literature
to quantify the distance between two elasticity tensors, the most widely
used metrics being the Euclidean, Log-Euclidean [1] and Riemannian ones
[7], denoted by dE , dLE and dR respectively, and defined for any elasticity
tensors [[C1]] and [[C2]] by:

dE([[C1]], [[C2]]) = ‖[[C2]] − [[C1]]‖, (1)

dLE([[C1]], [[C2]]) = ‖log ([[C2]]) − log ([[C1]]) ‖, (2)

dR([[C1]], [[C2]]) = ‖log
(
[[C1]]

−1/2[[C2]][[C1]]
−1/2

)
‖, (3)

in which < [[C]], [[D]] >= [[C]]ijkℓ[[D]]ijkℓ and ‖[[C]]‖ =< [[C]], [[C]] >1/2.
In particular, the convention retained ensures the preservation of the norm,
no matter the representation of the elasticity tensor. Let CSym be a class
of elasticity tensors with given symmetries (isotropy, transverse isotropy,
orthotropy, etc.). Let [[C]] be a fourth-order elasticity tensor having an
arbitrary symmetry, with components [[C]]ijkℓ with respect to a given frame
R = (0, e1, e2, e3). We then denote by [[CSym]] = PSym ([[C]]) the projection
of [[C]] onto CSym, calculated by using one of the distance d introduced
above, such that:

[[CSym]] = Arg min
[[C̃]]∈CSym

d([[C]], [[C̃]]). (4)

The matrix representation [CTI] of the projection [[CTI]] of [[C]] onto the
set of all the elasticity tensors exhibiting transverse isotropy with respect to
e3, defined with respect to the Euclidean distance dE , can be found in [8]
for instance.

3. Probabilistic model derivation

In this work, we consider the eigensystem coordinate-free characteriza-
tion of the material symmetries [2], according to which a material symmetry
class can be defined by both the multiplicities of the eigenvalues and con-
straints on the related eigenspaces. In this context, it should be pointed out
that (i) the use of the classical random ensembles from the Random Matrix
Theory generally implies all the stochastic eigenvalues to be of multiplicity
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one, and that (ii) the corresponding random eigenspaces cannot be explic-
itly constrained nor described. It then follows that the mean distance of the
random elasticity tensor to a given material symmetry class can be partially
controlled by imposing constraints on the variance of a few selected random
eigenvalues. The proposed approach thus relies on the probabilistic model
for symmetric positive-definite random matrices with prescribed variance on
several eigenvalues, derived in [6] and briefly recalled below.

Let [C] be the M
+
6 (R)-valued random matrix representation of the ran-

dom elasticity tensor under consideration. The construction of the model
relies on the use of the Maximum Entropy Principle (see [4] [5] [9]) which
consists in maximizing the measure of entropy S, defined as:

S = −

∫

M
+
6 (R)

p[C] ([C]) ln
(
p[C] ([C])

)
dC, (5)

with respect to the probability density function pC, where [C] 7→ p[C] ([C])

is the probability density function from M
+
6 (R) into R

+ defining the prob-
ability distribution P[C] = p[C] ([C]) dC of random matrix [C]. The volume

measure dC on M
S
6 (R) is written as dC = 215/2

∏
1≤i≤j≤6 d[C]ij [10]. The

optimization problem (5) is solved under the following set of constraints:

∫

M
+
6 (R)

p[C] ([C]) dC = 1, (6)

E {[C]} =

∫

M
+
6 (R)

[C] p[C] ([C]) dC = [C], (7)

∫

M
+
6 (R)

ln (det ([C])) p[C] ([C]) dC = β, |β| < +∞, (8)

E

{(
ϕ

iT [C] ϕ
i
)2

}
= s2

i λ
2
i , i ∈ I ⊆ [1, 6], (9)

where E {·} is the mathematical expectation, det ([C]) and [C]T are the
determinant and the transpose of [C],

{(
λi,ϕ

i
)}

i
are the eigenvalues and

eigenvectors of the mean matrix [C]. The family {si}i∈I is a set of m
parameters which are supposed to be either assumed or computed from
an experimental inverse identification. The set of constraints defined by
Eqs. (6-8) basically corresponds to the one previously considered and largely
studied in [10] [11], while the set of constraints (9) allows one to partially
prescribe the variances of m (m ≤ 6) selected random eigenvalues {λi}

m
i=1
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of [C] (see [6] for a discussion). Optimization problem (5) can be solved
introducing a set of Lagrange multipliers and having recourse to the calculus
of variations applied to the resulting Lagragian. It can then be shown that
the probability density function [C] 7→ p[C] ([C]) takes the form:

p[C] ([C]) = k1 (det ([C]))α−1

× exp

(
−tr

(
[M1]

T[C]
)
−

∑
i∈I τ ′

i

(
ϕ

iT [C] ϕ
i
)2

)
,

(10)

in which k1 is the normalization constant (depending on the Lagrange mul-
tiplier µ0 ∈ R corresponding to constraint (6)); [M1] ∈ M

S
6 (R), (α − 1) ∈ R

and {τ ′
i ∈ R}6

i=1 are the Lagrange multipliers associated with the constraints
(7-9). Further details about the derivation of the model, as well as a strat-
egy for generating realizations of random matrix [C], can be found in [6].
Finally, it can be shown that the model can be entirely parameterized by:

• the parameter α, controlling the overall level of statistical fluctuations
characterized by δC = {E{‖[C] − [C]‖2

F}/‖[C]‖2
F}

1/2;

• a set of m parameters τi, allowing the variances of the m selected
stochastic eigenvalues to be (partially) prescribed.

Here, we propose to characterize the capability of the approach to reduce
the (mean) distance to a relevant material symmetry class CSym by studying
the mapping (α, {τi}

m
i=1) 7→ E{d([C], [CSym])}, where d is any of the distance

previously defined. It should be pointed out that in accordance with the
philosophy of the Maximum Entropy Principle, fixing values of parameters
(α, {τi}

m
i=1) (in a given admissible space) is strictly equivalent to considering

given values of parameters {si}i∈I . Furthermore, since the Euclidean metric
yields a closed-form expression of the projection (which is more suitable
for the proposed probabilistic analysis), the use of distance dE is retained
hereafter.

4. Application

In this application, we consider the following mean model, corresponding
to a random perturbation of the elasticity tensor of a carbon-epoxy unidirec-
tional composite and being characterized by a small distance to transverse
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isotropy:

[C] =




10.1036 0.5391 2.9625 −0.0040 0.0071 −0.0165
0.5391 10.1061 2.9782 −0.0041 −0.0070 −0.0036
2.9625 2.9782 182.690 0.0197 0.0016 0.0145
−0.0040 −0.0041 0.0197 14.0339 0.0068 0.0008
0.0071 −0.0070 0.0016 0.0068 14.0121 −0.0103
−0.0165 −0.0036 0.0145 0.0008 −0.0103 9.5552




.

The mean distance to transverse isotropy is controlled by enforcing a small
variance on the random eigenvalues λ1, λ2, λ4 and λ5, that is to say, by set-
ting all the parameters controlling the variances to the same, large, value τ
(τ1 = τ2 = τ4 = τ5 = τ , τ3 = τ6 = 0). For a given value of parameter α, the
influence of parameter τ can be visualized on Fig. 1, where the probability
density functions (estimated using the kernel density estimation method) of
the five first stochastic eigenvalues are plotted for τ = 1 (black solid line)
and τ = 104 (red solid line).
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Figure 1: Plot of the probability density functions of the random eigenvalues λi, i = 1, ..., 5,
for τ = 1 (black solid line) and τ = 104 (red solid line).

It is clearly seen that setting a large value of τ allows to reduce the variance
of the constrained eigenvalues (while the variance of the third random eigen-
value remains unchanged). However, it is worth noting that no matter the
value of τ , all the eigenvalues are stochastic, so that (i) the mean distance
to a given symmetry class can be prescribed in a limited extent and (ii) the
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variances of the constrained eigenvalues tend to constant nonzero values as
τ tends to infinity. The capability of the proposed approach to reduce the
mean Riemannian distance to the considered symmetry class is illustrated
on Fig. 2, where the plot of τ 7→ E

{
dR

(
[C], [CTI]

)}
is reported in semi-log

scale for α = 60 (corresponding to δC = 0.15) and for τ ranging from 10−1

to 104. This result is also illustrated for different values of α in Fig. 3.
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Figure 2: Plot of τ 7→ E
{

dR

(

[C], [CTI]
)}

for α = 60.
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Figure 3: Plot of τ 7→ E
{

dR

(

[C], [CTI]
)}

for several values of parameter α.

Finally, the proposed approach and the nonparametric probabilistic model
for anisotropic media are compared. It is shown that the methodology pre-
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sented allows the reduction of the mean distance to transverse isotropy, no
matter the mean model or the level of statistical fluctuations δC used in the
simulations.

5. Conclusion

In this paper, we address the stochastic modeling for elasticity tensors
with uncertain material symmetries. The approach, based on the eigensys-
tem characterization of the symmetry classes, allows the mean distance of
the elasticity tensor to a given symmetry class to be partially controlled.
Making use of a probabilistic model recently derived in the literature, we
introduce and exemplify the methodology for the case of a prescribed dis-
tance to transverse isotropy, typically corresponding to unidirectional fibre-
reinforced composites. We also provide a comparison between the proposed
approach and the nonparametric probabilistic model for anisotropic media.
It is worth noticing that beyond its capability to represent different classes
of symmetries, the probabilistic model exhibits more parameters than any
other stochastic model previously developed within a nonparametric frame-
work and may thus be more suitable for the fundamental issue of inverse
experimental identification under material symmetry uncertainties. It can
also be used as a prior stochastic model for the development of computa-
tional approaches, where the underlying randomness arising from fine scale
features may have to be taken into account at a coarse scale, for instance.
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