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ABSTRACT

A new generalized probabilistic approach of uncertainties is proposed for computational model
in structural linear dynamics and can be extended without difficulty to computational linear vi-
broacoustics and to computational nonlinear structural dynamics. This method allows the prior
probability model of each type of uncertainties (model-parameter uncertainties and modeling er-
rors) to be separately constructed and identified. The modeling errors are not taken into account
with the usual output-prediction-error method but with the nonparametric probabilistic approach
of modeling errors recently introduced and based on the use of the random matrix theory. The
theory, an identification procedure and a numerical validation are presented.

1 SETTING THE PROBLEM AND FUNDAMENTAL METHODOLOGIES

This paper is devoted to the presentation of a new generalized probabilistic approach which allows
an independent modeling of both model-parameter uncertainties and modeling errors to be per-
formed for computational dynamical models in structural dynamics, structural acoustics, vibration
or vibroacoustics, for linear or nonlinear problems. This means that we consider a computational
dynamical model of aeal systenas a selected class of mathematical models with an input and an
output and depending onrmaodel parameteand on adesign parameterOnce the class of com-
putational models has been selected, two types of uncertainties can be identified. The first type is
related to thenodel-parameter uncertaintieghich mean that the model parameter is not exactly
known and is uncertain. The second type is duentaleling errorswhich are introduced by the
mechanical-mathematical process allowing the computational dynamical model to be constructed.
The modeling errors introduamodel uncertaintietn the response predictions constructed with

any model belonging to the selected class. This second type of uncertainties will bencadled
uncertainties It should be noted that the robust design optimization consists in finding the opti-
mal value of the design parameter which maximizes a cost function related to the model output
predicted with the computational dynamical model for which uncertainties are modeled.

Various methods exist for assessing uncertainties in a model. These methods are either
probabilistic or deterministic (see for instance [1]). The construction of the probabilistic model of
uncertainties is a fundamental problem which must carefully carried out in order to improve the
quality of the predictions of the computational model but also to solve robust design optimization
in the best conditions (see for instance [2], [3], [4]).

1.1 Prior and posterior probabilistic models of uncertainties

A model chosen in the selected class will be calledrttean model For given nominal values
of the model parameter, the mean model is often calleshtimeinal model The uncertainties are
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then related to the mean model. For the construction of the probabilistic model of uncertainties,
two main cases have to be considered. For the first one, no experiment of the real system is
assumed to be available in order to update the model and to identify the prior probabilistic model
of uncertainties. In this case, the prior probabilistic model must have the capability to take into
account model uncertainties because there are no possibilities to improve the prior probabilistic
model using experiments. In opposite, for the second one, some experiments are assumed to be
available to update the mean model [5], [6], to identify the prior probabilistic model of uncertainties
[7], [6], [8], [9] and to construct a posterior probabilistic model (see for instance [10], [7], [11]).
Today, the first case is a frequent situation encountered for the design and the optimization of
complex mechanical systems and has to be carefully analyzed. This means that no experiment
is available and that there is neither possibility to update the mean model with experiments nor
to identify the prior probability model of uncertainties using mathematical statistics such as the
maximum likelihood method [12],[7] or the Bayesian method [13], [14], [15]. In these two cases,
the prior probabilistic approach of uncertainties which has to be developed must have the capability
to represent modeling errors for the family of models spanned when the design parameter runs
through all its admissible set.

1.2 Model-parameter uncertainties

Concerning model-parameter uncertainties, the main method is based on the usquhedtiet-

ric probabilistic approachwhich has extensively been developed in the last three decades, which
is still in development and which allows the uncertain model parameters of the mean model to be
taken into account through the introduction of a prior probability model of these model parameters
(see for instance [16], [17], [18], [19], [20], [21]). Such an approach consists in modeling un-
certain model parameters by a vector-valued random variable (this random vector can correspond
to the finite approximation of a random field). The prior stochastic modeling of model-parameter
uncertainties then consists (1) either in constructing an adapted representation based on a poly-
nomial chaos decomposition (see for instance [16], [22], [23], [24], [25], [26], [18], [27], [8],
[28]) (2) or in directly constructing the probability distribution of the random quantity using the
available information and the Maximum Entropy Principle introduced by Jaynes [29] in the con-
text of Information Theory developed by Shannon [30] (see for instance [31], [11] and for recent
developments concerning the construction of probability distributions in high dimension using the
maximum entropy principle and stochastic analysis [32]).

1.3 Modeling errorsinducing model uncertainties

Concerning model uncertainties induced by modeling errors, it is well understood that prior and

posterior probabilistic models of the uncertain model parameter are not sufficient and do not have
the capability to take into account model uncertainties as explained in the context of computational
mechanics (see for instance [10], [33], [34], [35]). Two main methods can be used to take into

account model uncertainties (modeling errors).

1.3.1 Output-prediction-error probabilistic approach

The first one consists in introducing a probabilistic model ofdbgput prediction erromhich is

the difference between the real system output and the model output (note that such a probabilistic
approach of model uncertainties is implemented at the output level of the mean model and not
implemented at the operator level of the model). When experiments are available, the observed
prediction error is then the difference between the measured real system output and the model
output. A posterior probabilistic model can be constructed using, for instance, the Bayesian ap-
proach (see for instance [10], [13], [14], [15]). With such a method, it is usually assumed that
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the measurement noise is negligible compared with the prediction error. The advantage of such an
approach is its simplicity and its efficiency when simultaneously, a lot of experiments are available
and the design parameters are fixed. However, such an approach is not really adapted if the design
parameters are not fixed but have to run through an admissible set of values in the context of robust
design optimization. Another reason is necessity that modeling errors be taken into account at the
operator level of the mean model, for instance to take into account the mass and stiffness operators
in order to analyze the generalized eigenvalue problem related to a dynamical system. In this case,
the output-prediction-error method is not really adapted to take into account modeling errors.

1.3.2 Nonparametric probabilistic approach

The second one is based on ti@parametric probabilistic approaasf model uncertainties (mod-

eling errors) which has recently been proposed in [33] as another possible way to the use of the
output-prediction-error method in order to take into account modeling errors. The nonparametric
probabilistic approach consists in directly constructing the stochastic modeling of the operators of
the mean computational model instead of introducing a probabilistic model of the prediction errors.
The random matrix theory (see for instance [36] and [37]) is used to construct the prior probability
distribution of the random matrices modeling the uncertain operators of the mean model are con-
structed using again the Maximum Entropy Principle for which the constraints are defined by the
available information [33], [38], [39], [34], [35]. Since paper [33] were published, many works
have been performed in order to validate the nonparametric probabilistic approach of model un-
certainties with experimental results (see for instance [40], [35], [41], [42], [43], [9], [44],[45])
and to extend the theory, in particular, with the development of random impedance operators [46],
[47], with the introduction of a new set of positive-definite random matrices yielding a more flex-
ible description of the dispersion levels [48], with the analysis of the medium-frequency range
for vibration analysis [49] and for complex vibroacoustic systems [43], [44], with the analysis of
nonlinear dynamical systems for local nonlinear elements [50], [51] and for distributed nonlinear
elements or nonlinear geometrical effects [52].

1.4 Generalized probabilistic approach of uncertainties

It should be noted that the major difference between the two approaches decribed in Sections 1.3.1
and 1.3.2 is due to the fact that the statistical fluctuations of responses generated by the output-
prediction-error method are independent of the state variable of the dynamical system while the
statistical fluctuations of responses generated by the nonparametric probabilistic approach depend
on it. Approach defined in Sections 1.3.2 has been proposed to avoid the difficulty induced in the
approach described in Sections 1.3.1. As it has been proven in [33], [34] and [35], the nonpara-
metric probabilistic approach has the capability to simultaneously take into account both model-
parameter uncertainties and modeling errors. With such an approach, for each random matrix of the
stochastic reduced computational model such as the generalized mass matrix for instance, the level
of uncertainties induced by both model-parameter uncertainties and modeling errors are controlled
by only one dispersion parameter. Consequently, with such an approach, the level of uncertainties
for the model parameter cannot be separated from the level of uncertainties induced by modeling
errors. In addition, in the nonparametric probabilistic approach and by construction, the mean
value of each random matrix is chosen as the matrix of the reduced mean computational model as-
sociated with the nominal value. Clearly, this point could be improved in choosing the mean value
of each random matrix as the mean matrix of the stochastic computational model induced only by
the parametric probabilistic approach of model-parameter uncertainties. Such a method should re-
quired again to separate the probabilistic model of model-parameter uncertainties and of modeling
errors. This is the reason why, we proposgeaeralized probabilistic approach of uncertainties
allowing both the model-parameter uncertainties and modeling errors to be simultaneously taken
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into account but in a separate way. This nhew method allows the prior probability model of each
type of uncertainties (model-parameter uncertainties and modeling errors) to be separately con-
structed and to be separately identified with experiments if experiments are available. In addition,
this method will allow the biais of the mean values of the stochastic responses to be decreased.

1.5 Objectives of the paper

We present the theory, an identification procedure of the dispersion parameters controlling the level
of each type of uncertainties when experimental data are available and a numerical validation. In
order to simply explain this new approach, we have chosen to present the developments for the
most simple context corresponding to structural linear dynamics. The extension to other cases is
straightforward in particular (1) for computational vibroacoustics in low- and medium-frequency
ranges with modeling errors in the structure, in the acoustic cavity, for the vibroacoustic coupling
operator and for insulation schemes (see [43], [44]) and (2) for computational nonlinear structural
dynamics with local or distributed nonlinear elements [50], [51] or with nonlinear geometrical
effects in the general context of three-dimensional nonlinear electrodynamics [52].

2 FORMULATION OF A PRIOR GENERALIZED PROBABILISTIC APPROACH OF
UNCERTAINTIES

2.1 Reduced mean computational model

We consider the reduced mean computational model of a linear dynamical system

y(t) = [o(x)]q(t)

[M()] §(t) + [D(®)] (1) + [K ()] q(t) = f(5;2) (1)
in whichy(t) = (y1(t), ..., ym(t)) is the displacement vector at timigdisplacements and/or
rotations), wherey(t) = (¢:(t),...,¢.(t)) € R™ is the vector of the generalized coordinates, in

which the matrix of the normal modés(x)], the reduced mass matiiX/ (x)], damping matrix
[D(x)], stiffness matriX K ()] and generalized external force vecit; =) depend on an uncer-
tain vector-valued parameter= (z, ..., z,,) belonging to an admissible subsgf, of R".

2.2 Construction of the prior generalized probabilistic approach of uncertainties.

Let (©,7,P) and (©',7',P') be two probability spaces. The first one will be devoted to the
probabilistic model of model-parameter uncertainties using the parametric probabilistic approach
and the second one to the probabilistic model of model uncertainties (modeling errors) using the
nonparametric probabilistic approach. L¥t = {# — X (0)} be a random variable defined on
(©,7,P) and let[G] = {0 — [G(¢')]} be another random variable defined (@1, 7', P’). The
two random variableX' and |G| are then independent and their mathematical expectations are
such that

E{X} = /@ X(0)dp®) , E{G]} = @,[G(ﬁ’)] apP'(0') . )
If Q = h(X,|[G]) is a random variable defined by a given deterministic transformatia
independent random variablés and|G|, then the mathematical expectation@fis

Q) = | [ mX0). 60 aP)aPe) ©
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(1) The first step of the generalized probabilistic approach of uncertainties consists in con-
structing the probabilistic model of model-parameter uncertainties for which paramisterod-
eled by a random variablX defined on probability spade®, 7, P). Consequently, the normal
modes matrix and the reduced matrices in Eq. (1) become random matsicés] and[M (X)),
[D(X)], [K(X)] and, for all fixedt, the generalized external forgg¢; =) becomes a random
vector f(¢; X). The mean values of the random reduced matrices are denotgd |byD] and
[K]. We then have

E{MX)]y =[M] , E{DX)]} =[D] , E{KX)]}=[K] . (4)

It should be noted that the mean matri¢gs, [D] and|[K] are different from the matricdd/(x)],
[D(z)] and[K (x)] of the nominal mean computational model corresponding to x.

(2) The second step of the generalized probabilistic approach of uncertainties consists in
constructing the probabilistic model of model uncertainties (modeling errors) in using the nonpara-
metric probabilistic approach [33]. Therefore, for alfixed inC,,, the matricesi (x)], [D(x)]
and[K (x)] are replaced by independent random matrices

[M(z)] = {0 — [M(0'; )]}, [D(x)] = {¢' — [D(0;z)]}, [K(z)] = {0 — [K (9’;w)]}(5)
defined on probability spad®’, 7', P') and belonging to the set of random matrices introduced
in [33] and [35], or in [48]. In order to simplify the presentation, we will limit the developments to
the case for which these random matrices belong to the sétoSEndom matrices introduced in
[35]. The extension to the use of the set introduced in [48] is straightforward. The mathematical
expectation of these random matrices must be such that

E{{M(x)]} = [M(z)] , E{[D(z)]} =[D(x)] , E{[K(®)}=[K(=)] . (6

(3) The last step of the construction of the generalized probabilistic approach of uncertainties then
consists in replacing in Eq. () by X and in replacing the dependent random matridésX )],
[D(X)] and[K (X)] by the dependent random matrices

[M(X)] = {(6,6") — [M(0'; X(0))]}
[D(X)] = {(0,6") — [D(¢"; X (6))]}
[K(X)] = {(6,0') — [K(6; X(0))]} (7)

defined on the probability spa¢® x ©',7 @ 7', P ® P’). It can easily be deduced that
E{M(X)]} =[M] , E{DX)]}}=[D] , E{KX)}=I[K] . (8)
2.3 Stochastic reduced computation model generated by the prior generalized probabilistic
approach of uncertainties.

The generalized probabilistic approach of uncertainties consists in replacing the mean computa-
tional model by the following stochastic reduced computational model,

Y (1) =[o(X)] Q@) (9)

[M(X)]Q(t) + [D(X)] Q(t) + [K(X)]Q(t) = f(t: X) (10)

in which for all fixedt, Y (¢) = {(0,0") — Y (6,0';t)} is anR™-valued random vector ar@(t) =
{(6,0") — Q(0,0';t)} is anR"-valued random vector defined 08 x ©', 7 @ 7', P®P’). Thus,
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for any realizationX (¢) of random variableX with ¢ in ©, and for any realizatiofM (¢’; x)],
[D(0'; x)], [K(0'; x)] of independent random matrice¥! (x)|, [D(x)], [K (x)] for ¢ in © and
x in Cyay, the realizationy” (6, 6'; t) of the random variabl&” (¢) and the realizatio (6, ¢'; t) of
the random variabl€(t) verify the deterministic problem

Y (0,605t) = [o(X(0)] Q(0,01) (11)
[M(¢'; X (0)] Q(6,6'5) + [D(0'; X (6))] Q(6,6': 1) + [K(¢'; X (0))] Q(6,6'5t) = f(t; X(é(’)l)é)

2.4 Construction of the prior probability model of model-parameter uncertainties.

The uncertain model parameter(whose nominal value ig) is modeled by a random variable

X = (Xy,...,X,,), defined on probability spad®, 7, P), with values inR"». The unknown
probability distribution ofX is assumed to be defined by a probability density functignfrom

R™ into R* = [0, +o0o[ with respect to the Lebesgue measdse = dz; ...dz,,. Under the
assumption that no experimental data are available to constgydhe prior model can be con-
structed using the maximum entropy principle [29] introduced in the context of Information Theory
[30]. For such a construction, the available information has to be defined. Sibe®ngs tC,,,,

the support opx is C,or and the normalization condition must be verified. Since the nominal value
of z isz in Cper C R"», an additional available information consists in writing that the mean value
E{X} of X is equal tox. In general, an additional available information can be deduced from
the analysis of the mathematical properties of the solution of the stochastic reduced computational
model under construction. Such a construction leads us to know the probability density function
x — px(x;dx) which depends on a vector-valued paramétgrbelonging to an admissible
subseCx of R* with > 1.

2.5 Construction of the prior probability model of model uncertainties (modeling errors).

Let A be the letterM/, D or K relatively to the generalized mass, damping or stiffness matrix. In
the nonparametric probabilistic approach of both model-parameter uncertainties and model uncer-
tainties (modeling errors) introduced in [33], the probability model of the statistical fluctuations
of the random matriXA| has been constructed around the deterministic nominal Val(e)]

of the matrix in the nominal computational model. For the generalized approach of uncertain-
ties which is proposed below, since the model-parameter uncertainties are taken into account by
the parametric probabilistic approach in introducing the random mptiX )|, only the model
uncertainties (modeling errors) must be taken into account by the nonparametric probabilistic ap-
proach of uncertainties. This means that the probability model of the statistical fluctuations of
the random matriXA| due to the model uncertainties must be constructed around the random
matrix [A(X)] and not around the deterministic nominal valugx)]. Such a construction of

the probability model of modeling errors is performed below. Following the methodology of
the construction of the nonparametric probabilistic approach (see [33], [38], [35]), feriall

Coan the construction of the probability model of random matut(x)] defined on probability
space(©’,7’,P’), is based on the available information deduced from the fundamental prop-
erties of the dynamical system and from additional properties required in order that a second-
order stochastic solution exists for Eq. (10) (see [38], [35]). Fotxaih C,,, random matrix
[A(x)] belongs toM(R) a.s., its mean value is defined by Eq. (6) and verifies the inequality
E{||[A(z)] %} < 400 in which|[A]|% = t{[A]7[A]}. Since the deterministic matr{x|(x)]

isin M} (R), there is an upper triangular matfik (x)] in the setVl,,(R) of all the squarén x n)

real matrices, such that(x)] = [La(x)]"[La(x)]. For allz in Cp, the random matrixA(x)]
defined on probability spad®’, 7', P’) belongs to the set SEdefined in [35] and is then written
as[A(x)] = [La(x)]" [Ga] [La(x)] in which the random matri¥G 4] is the random germ which
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is defined on probability spa¢®’, 7', P’), which belongs to the set SGlefined in [35] and con-
sequently, is a random matrix with values\ifj’ (R). In addition, the random matricé& ], [Gp|

and |G k| are statistically independent. Consequently, the prior probability distributions of ran-
dom matricesM ()], [D(x)] and[K (x)| depend on the free vector-valued dispersion parameter
dc = (6um, dp, 0x) Which is relative to random matricé& |, |G p] and|[G k|, which belongs to

an admissible subsét of R* and which is independent af. Then the random matricéaZ (X )],
[D(X)] and[K (X)] introduced in Eq. (10) are written &84 (X )] = [L(X)]"[G a][La (X)),
[D(X)]=[Lp(X)"[Gp][Lp(X)] and[K (X)] =Lk (X)]" [Gk][Lx (X)].

3 ESTIMATION OF THE DISPERSION PARAMETERS OF THE PRIOR PROBABIL -
ITY MODELSOF THE GENERALIZED PROBABILISTIC APPROACH OF UNCER-
TAINTIES

The formulation introduces (1) a prior probability model of the model-parameter uncertainties
depending on the dispersion parameigr belonging to an admissible subggt of R* and (2)

a prior probability model depending on the dispersion parami&ter (05, 0p, k) belonging

to an admissible subsé€l; of R3. If no experimental data are available, then the dispersions
parameter® x andde must be considered as parameters to perform a sensitivity analysis of the
stochastic solution. Such a prior generalized probabilistic approach of uncertainties then allows the
robustness of the solution to be analyzed in function of the level of model-parameter uncertainties
controlled byd x and of the level of model uncertainties (modeling errors) controlled dyFor

the particular case for which a few experimental data exist, we propose a methodology to estimate
the dispersion parameters of the prior probability models of uncertainties.

3.1 Estimation of the dispersion parameter of the prior probability model of the uncertain
model parameter

The first step of the method proposed consists in estimating the dispersion par@meteatyx C

R* of the prior probability model of the uncertain model parameter in considering there is no
modeling error and consequently in using the stochastic computational modei aith 0 (no
modeling errors). The estimation 8f must then be performed with observations of the systems
which are weakly sensitive to modeling errors and for which experimental data are available. There
are several possibilities in the choice of such observations satisfying these criteria. Nevertheless,
in order to limit the developments, we will propose only one of the possibilities which is in the
framework of experimental modal analysis. Note that for a complex dynamical system, the first
eigenfrequencies and the associated elastic modes can be experimentally measured. In addition,
if the corresponding computational model is sufficiently large, the first eigenfrequencies predicted
with the computational model depend on the model-parameter uncertainties but must not depend
on modeling errors (it should be noted that if the fundamental eigenfrequency of the mean com-
putational model cannot reasonably be predicted due to the presence of significant model errors,
this means that the mean computational model cannot be considered as a correct model and should

be be rebuilt). Let us assumed that the firgxperimental eigenfrequencie¥’, . . ., u{ff are mea-
sured. Let\™ = (27/*")? be the corresponding experimental eigenvalues.Aset. ., A; be the
corresponding eigenvalues of this stochastic computational modepal.eta. (A1, ..., A\z; dx)

be the joint probability density function of the random variablgs. .., A;. The optimal value
6 %' of the dispersion parameté&x can be estimated by maximizing the Neperian logarithm of the
likelihood function (maximum likelihood method [12],[7]),

dx = arg max {In(pa, A, (AT, ..., A550x))} (13)
5XeCX

in which py, Aﬁ(/\fff, ce A}ff; dx) is estimated using the stochastic computational model with

.....

d¢ = 0 and which is solved by the Monte Carlo numerical method.
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3.2 Estimation of the dispersion parameters of the prior probability model of model uncer-

tainties
The second step of the method proposed consists in estimating the dispersion padameter
Ca C R? of the prior probability model of the model uncertainties (modeling errors) in pres-
ence of the model-parameter uncertainties estimated in the first step using the stochastic com-
putational model with) x = 5“,’5‘. For such an estimation, it is assumed that one experimental
frequency response function is available for one or for a few observation points. We then consider
the stochastic reduced computational model defined by Egs. (11) and (12) rewritten in the fre-
quency domaiw. It is assumed that,,; observations are introduced and are suchlrhaﬁf(w) =
(Y7 (@), ..., |Y;jlobs (w)|) are observed imy,., frequenciesuy, . ..,w,,,  in the frequency band

of analysisB. We then introduce the random observed vedtes (Y °**(wy), ..., Y (w, frea))

with values inR* with s = ngs X np.ep. Lety™ be the deterministic vector iR* made up of

the experimental data and correspondin@®tevalued random vectoY of the stochastic compu-
tational model. The estimation ét; can be performed by using the maximum likelihood method.
Sinces can be very high, this method requires a big computational effort. We then use the method
presented in [9]. Fod x = & and for each fixed value dig, letmy () be theR*-valued mean
vector and lefCy(d¢g)] be the(s x s) covariance matrix of the random vectdy estimated by us-

ing the stochastic computational model and the Monte Carlo method\; (&) > \2(dg) > . ..

be the positive eigenvalues and #t(d¢), z?(d¢), . . . belong toR® be the associated orthonor-

mal eigenvectors of the eigenvalue probléfiy(d¢)] z(dg) = Mdg)z(dg). Let Y* be the
approximation ofY defined byY* = my(d¢g) + Zj':l VAi(8g) Z; 27 (d¢) in which 1/ is an
integer such that < i/ < s, whereZ = (Z,,...,Z,,) is aR* -valued random variable such that

Z; = {\(6g)}Y? <Y — my(dc),x’(dg) > where the bracket denotes the Euclidean inner
product. It is known that the componentsZfare second-order centered random variables which
are uncorrelated. The orderof the statistical reduction is calculated in order to get an approxima-
tion with a given accuracy, independent of’ andd . The statistical reduction will be efficient if

p < s. Letz®(da) = (2(dg), - - ., 27/(dg) be the vector iR" corresponding t& for the ex-
perimental data such thalf'(6c) = {\;(dc)} /? <y™—my(dc) , x’/(6c) >. The estimation of

d¢ is performed using the maximum likelihood method for the random ve€ter (Z4, ..., Z,)
whose components are centered and uncorrelated (but dependent) random variables. The Neperian
logarithm of the likelihood function is then defined Bydg) = 5':1{1n(pzj(z;9f(5g) N Te)

in which, for all j in {1,... 4/}, the probability density function — p (z;d%, dc) depends

on the known paramete?r;’g’t and on the unknown paramei&g which must be estimated. This
likelihood function is estimated with the stochastic reduced model and the Monte Carlo method.
The optimal valuel &' of §¢ is then given as the solution of the following optimization problem,

g =arg max L(dg) - (14)

dg€Ca

4 APPLICATION

We present an example of this generalized probabilistic approach of uncertainties. The designed
system is a slender cylindrical elastic medium with lentihn and has a rectangular section

with height1.1 m and width1.6 m. The elastic medium is made of a composite material. The
displacement field is zero on the part of the two end sections. The frequency band of analysis is
B =]0,1200] Hz. A point load is applied close to the middle of the slender cylinder with a flat
spectrum om3. We are interested in the transversal displacement of the neutral line at an observa-
tion point belonging to the neutral line and close to the end section. A reference solution of the real
system has been constructed in developing a 3D elastic model of the real system. The mean model
is made up of a damped homogeneous Euler elastic beam with [Ehgttand simply supported.
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From the Euler beam theory, the first eigenvalue (square of the first eigenfrequency) can be written
A1 = a; z. The model-parameter uncertainties leads us to modgl a random variabl&l. The

prior probability model of random variabl€ is constructed using the maximum entropy principle

and yields a Gamma probability distribution for which the mean value is given and for which the
dispersion is controlled by the coefficient of variatidp. The identification of parametér is
performed using the maximum likelihood method for the lowest random eigen¥alaad yields

dx = 0.093. We consider the stochastic reduced model constructed (1) with the parametric proba-
bilistic approach of uncertain paramet€rfor which 6 x = 0.093 and (2) with the nonparametric
probabilistic approach of modeling errors for the mass and stiffness operators. Consequently, the
dispersion parameters describing the statistical fluctuations induced by modeling ervqyssaud

dx and are estimated as explained in the previous section and yiglds 0.9 anddx, = 0.15.

Figure 1 (left and right) displays the comparisons between the response of the mean model, the ref-
erence response of the real system and the confidence region of the random response (1) calculated
with the parametric probabilistic approach with = 0.093 (left figure) and (2) calculated with

the generalized probabilistic approach, that is to say, with the parametric probabilistic approach of
model-parameter uncertainties ¢ = 0.093 and with the nonparametric probabilistic approach

of modeling errors fob,; = 0.9 anddx = 0.15. These figures show that the coupling of the two
probabilistic approaches for model-parameter uncertainties and modeling errors allow the quality
of the prediction to be considerably improved. The method proposed allows the role played by
each type of uncertainties to be separately quantified.

Random FRF for uncertain parameter Random FRF for uncertain parameter and model uncertainties

Disp in log scale at observation point P5
Disp in log scale at observation point P5

13 . . . . . , . . . . . ,
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Frequency (Hz) Frequency (Hz)

Figure 1: Confidence region of the responsé.a8 (between upper and lower thick solid lines),
reference response (mid solid line), response of the mean model (thin solid line) at observation
point. Left figure: parametric probabilistic approach. Right figure: generalized probabilistic ap-
proach.

5 CONCLUSION

A new generalized probabilistic approach to take into account model-parameter uncertainties and
modeling errors in computational model for structural linear dynamics is proposed. This approach
can easily be extended to computational linear vibroacoustics and to computational nonlinear struc-
tural dynamics. This method allows a prior probability model of model-parameter uncertainties
and a prior probability model of modeling errors to be separately constructed. When a few ex-
perimental data are available, a procedure for the identification of the dispersion parameters of the
prior probability models of uncertainties is proposed. As explained in [53], a chaos decomposition
with random coefficients can also be used to represent the prior probabilistic model of random
responses in separating the propagation of model-parameter uncertainties and the propagation of
modeling errors in the computational model. Such a construction gives future perspectives to im-
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prove the prior probability model of uncertainties in constructing a posterior probability model as
soon as experimental data are available.

REFERENCES

[1]

[2]

[3]

[4]

[5]
[6]
[7]
[8]

[9]

[10]

[11]

[12]
[13]
[14]

[15]

[16]

G.I. Schueller. On the treatment of uncertainties in structural mechanics and an@lysis.
puter and Structures85(5-6):235-243, 2007.

N.D. Lagaros and M. Papadrakakis. Robust seismic design optimization of steel structures.
Structural and Multidisciplinary Optimizatiqr33(6):457—-469, 2007.

E. Capiez-Lernout and C. Soize. Robust design optimization in computational mechanics.
Journal of Applied Mechanics - Transactions of the ASM&2):021001-1 — 021001-11,
2008.

G.l. Schueller and H.A. Jensen. Computational methods in optimization considering uncer-
tainties - an overviewComputer Methods in Applied Mechanics and Engineerl®@(1):2—
13, 2008.

C. Soize, E. Capiez-Lernout, and R. Ohayon. Robust updating of uncertain computational
models using experimental modal analy#$AA Journal 46(11):2955-2965, 2008.

E. Walter and L. Pronzatoldentification of Parametric Models from Experimental Data
Springer-Verlag, Berlin, 1997.

J.C. Spall.Introduction to Stochastic Search and Optimizatidohn Wiley, 2003.

S. Das, R. Ghanem, and J.C. Spall. Asymptotic sampling distribution for polynomial chaos
representation from data: a maximum entropy and fisher information appr8&&hil Jour-
nal on Scientific Computin@®0(5):2207-2234, 2007.

C. Soize, E. Capiez-Lernout, J.-F. Durand, C. Fernandez, and L. Gagliardini. Probabilis-
tic model identification of uncertainties in computational models for dynamical systems
and experimental validationComputer Methods in Applied Mechanics and Engineering
198(1):150-163, 2008.

J.L. Beck and L.S. Katafygiotis. Updating models and their uncertainties. i: Bayesian statis-
tical framework.Journal of Engineering Mechanic$24(4):455-461, 1998.

J. Kaipio and E. SomersaloStatistical and Computational Inverse ProblemSpringer-
Verlag, New York, 2005.

R.J. Serfling Approximation Theorems of Mathematical Statistizshn Wiley & Sons, 1980.
J.M. Bernardo and A.F.M. SmittBayesian TheoryJohn Wiley & Sons, Chichester, 2000.

P. CongdonBayesian Statistical Modellingsecond Edition, John Wiley & Sons, Chichester,
2007.

B.P. Carlin and T.A. LouisBayesian Methods for Data Analysithird Edition, CRC Press,
Boca Raton, 2009.

R. Ghanem and P.D. Spano&tochastic finite elements: a spectral approachpringer-
Verlag, New York, 1991.

30-10



[17] R. Mace, W. Worden, and G. Manson. Uncertainty in structural dynanfipecial issue of
the Journal of Sound and VibratipA88(3):431-790, 2005.

[18] G.I. Schueller. Computational methods in stochastic mechanics and reliability anSiysts.
cial issue of Computer Methods in Applied Mechanics and Engineetidy12-16):1251—
1795, 2005.

[19] I. Babuska, R. Tempone, and G.E. Zouraris. Solving elliptic boundary value problems with
uncertain coefficients by the finite element method: the stochastic formulaiomputer
Methods in Applied Mechanics and Engineerih§4(12-16):1251-1294, 2005.

[20] C. Soize. Non gaussian positive-definite matrix-valued random fields for elliptic stochastic
partial differential operators Computer Methods in Applied Mechanics and Engineering
195(1-3):26-64, 2006.

[21] A. Nouy, A. Clement, F. Schoefs, amtlal. An extented stochastic finite element method for
solving stochastic partial differential equations on random domalwnputer Methods in
Applied Mechanics and Engineerint97(51-52):4663—-4682, 2008.

[22] R. Ghanem and D. Ghosh. Efficient characterization of the random eigenvalue problem in a
polynomial chaos decompositioimternational Journal for Numerical Methods in Engineer-
ing, 72(4):486-504, 2007.

[23] R. Ghanem and J. Red-Horse. Propagation of probabilistic uncertainty in complex physical
systems using a stochastic finite element approBblgsica ) 133(1-4):137-144, 1999.

[24] O.P. LeMaitre, O.M. Knio, H.N. Najm, anet al. Uncertainty propagation using wiener-haar
expansionsJournal of Computational Physic$97(1):28-57, 2004.

[25] C. Soize and R. Ghanem. Physical systems with random uncertainties : Chaos representation
with arbitrary probability measureSIAM Journal On Scientific Computing6(2):395-410,
2004.

[26] R. Ghanem, S. Masri, M. Pellissetti, and R. Wolfe. Identification and prediction of stochastic
dynamical systems in a polynomial chaos basgi@emputer Methods in Applied Mechanics
and Engineering194(12-16):1641-1654, 2005.

[27] C. Desceliers, R. Ghanem, and C. Soize. Maximum likelihood estimation of stochastic chaos
representations from experimental datmternational Journal for Numerical Methods in
Engineering 66(6):978-1001, 2006.

[28] D. Ghosh and C. Farhat. Strain and stress computation in stochastic finite element methods.
International Journal for Numerical Methods in Engineerjin@(8):1219-1239, 2008.

[29] E.T. Jaynes. Information theory and statistical mechaflbgsical Review108(2):171-190,
1957.

[30] C.E. Shannon. A mathematical theory of communicatiBall System Technology Journal
27(14):379-423; 623659, 1948.

[31] J.N. Kapur and H.K. Kesavaintropy Optimization Principles with Application&cademic
Press, San Diego, 1992.

[32] C. Soize. Construction of probability distributions in high dimension using the maximum
entropy principle. applications to stochastic processes, random fields and random matrices.
International Journal for Numerical Methods in Engineerj@(10):1583-1611, 2008.

30-11



[33] C. Soize. A nonparametric model of random uncertainties on reduced matrix model in struc-
tural dynamicsProbabilistic Engineering Mechanic45(3):277-294, 2000.

[34] C. Soize. A comprehensive overview of a non-parametric probabilistic approach of model
uncertainties for predictive models in structural dynamitsurnal of Sound and Vibratign
288(3):623-652, 2005.

[35] C. Soize. Random matrix theory for modeling uncertainties in computational mechanics.
Computer Methods in Applied Mechanics and Engineerli®g(12-16):1333-1366, 2005.

[36] T.W. Anderson.Introduction to Multivariate Statistical Analysislohn Wiley & Sons, New
York, 1958.

[37] M.L. Mehta. Random Matrices, Revised and Enlarged Second Editibcademic Press,
New York, 1991.

[38] C. Soize. Maximum entropy approach for modeling random uncertainties in transient elasto-
dynamics.Journal of the Acoustical Society of Amerid®9(5):1979-1996, 2001.

[39] C. Soize. Random matrix theory and non-parametric model of random uncertaiotiesal
of Sound and Vibratior263(4):893-916, 2003.

[40] H. Chebli and C. Soize. Experimental validation of a nonparametric probabilistic model of
non homogeneous uncertainties for dynamical systamstnal of the Acoustical Society of
Americg 115(2):697-705, 2004.

[41] C. Chen, D. Duhamel, and C. Soize. Probabilistic approach for model and data uncertain-
ties and its experimental identification in structural dynamics: Case of composite sandwich
panels.Journal of Sound and Vibratiqi294(1-2):64—-81, 2006.

[42] J. Duchereau and C. Soize. Transient dynamics in structures with nonhomogeneous uncer-
tainties induced by complex jointddechanical Systems and Signal Process(¥(4):854—
867, 2006.

[43] J.-F. Durand, C. Soize, and L. Gagliardini. Structural-acoustic modeling of automotive ve-
hicles in presence of uncertainties and experimental identification and validadiomal of
the Acoustical Society of Americh24(3):1513-1525, 2008.

[44] C. Fernandez, C. Soize, and L. Gagliardini. Fuzzy structure theory modeling of sound-
insulation layers in complex vibroacoustic uncertain sytems - theory and experimental vali-
dation. Journal of the Acoustical Society of Amerid25(1):138-153, 2009.

[45] A. Batou and C. Soize. ldentification of stochastic loads applied to a non-linear dynamical
system using an uncertain computational model and experimental respGosgsutational
Mechanics43(4):559-571, 2009.

[46] R. Cottereau, D. Clouteau, and C. Soize. Construction of a probabilistic model for impedance
matrices. Computer Methods in Applied Mechanics and Engineerit@6(17-20):2252—
2268, 2007.

[47] R. Cottereau, D. Clouteau, and C. Soize. Probabilistic impedance of foundation, impact of
the seismic design on uncertain soilearthquake Engineering and Structural Dynamics
37(6):899-918, 2008.

30-12



[48] M. P. Mignolet and C. Soize. Nonparametric stochastic modeling of linear systems with
prescribed variance of several natural frequenciBsobabilistic Engineering Mechanics
23(2-3):267-278, 2008.

[49] C. Soize. Uncertain dynamical systems in the medium-frequency ralmgenal of Engi-
neering Mechanicsl29(9):1017-1027, 2003.

[50] C. Desceliers, C. Soize, and S. Cambier. Non-parametric - parametric model for random un-
certainties in nonlinear structural dynamics - application to earthquake engineEgartty-
quake Engineering and Structural Dynamig8(3):315-327, 2004.

[51] R. Sampaio and C. Soize. On measures of non-linearity effects for uncertain dynamical
systems - application to a vibro-impact syste@ournal of Sound and VibratiorB03(3-
5):659-674, 2007.

[52] M. P. Mignoletand C. Soize. Stochastic reduced order models for uncertain nonlinear dynam-
ical systemsComputer Methods in Applied Mechanics and Engineerd®y(45-48):3951—
3963, 2008.

[53] C. Soize. Generalized probabilistic approach of uncertainties in computational dynamics
using random matrices and polynomial chaos decompositionternational Journal for
Numerical Methods in Engineerin@010. Published on line 5 August 2009, on line DOI
10.1002/nme.2712.

30-13



