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Abstract. In this paper a probabilistic model is proposed for the bit-rock interaction model of a drill-string system. A new

strategy to take into account uncertainties in a local constitutive nonlinear equation using the nonparametric probabilistic

approach is developed. The deterministic model considers the main forces that are applied to the column such as bit-rock

interaction, fluid-structure interaction and impact forces. The nonlinear Timoshenko beam theory is applied and the

system is discretized by means of the Finite Element Method.
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1. INTRODUCTION

We are interested in the analysis of flexible dynamical systems taken into account uncertainties [Sampaio and Ritto, 2008].

In the present work we analyze a drill-string system with uncertainties in the bit-rock interaction model.

The drill-string is composed by thin tubes called drill-pipes that together measure some kilometers and some thicker

tubes called drill-collars that together have some hundred meters. The region composed by the thicker tubes is called

Bottom-Hole-Assembly (BHA). Figure 1 shows the general scheme of the system analyzed. The forces taken into account

are the motor torque (as a constant rotational speed at the top Ωx), the supporting force fhook, the torque tbit and force fbit

at the bit, the weight of the column, the fluid forces, the impact and rubbing between the column and the borehole, the

forces due to the stabilizer, and also the elastic and kinetic forces due to the deformation and to the motion of the structure.

Figure 1. General scheme of the drill-string system.

There are some ways to model the nonlinear dynamics of a drill-string, e.g. [Tucker and Wang, 2003], [Khulief, 2007],

[Christoforou and Yigit, 1997], [Sampaio et al., 2007], [Ritto et al., 2009a]. These models are able to quantify some ef-

fects that occur in a drilling operation (such as the stick-slip oscillations) but they cannot predict correctly the dynam-

ical response of a real system. This is explained since, first, the above models are too simple compared to the real
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system and, second, uncertainties are not taken into account. Each author uses a different approach to the problem:

[Christoforou and Yigit, 1997] use a one-mode approximation to analyze the problem, [Khulief, 2007, Sampaio et al., 2007]

use the Euler-Bernoulli beam model with the Finite Element Method, while [Tucker and Wang, 2003] use the Cosserat

theory. We consider the model developed in [Ritto et al., 2009a], which used the Timoshenko beam model with the Finite

Element Method.

In a drilling operation there are many sources of uncertainties such as material properties (column and drilling

fluid), dimensions of the system (especially the borehole), fluid-structure interaction and bit-rock interaction. The un-

certainty analysis of the present paper is focused on the bit-rock interaction because it seems to be one of the most

important sources of uncertainties in this problem. There are few articles treating the stochastic problem of the drill-

string dynamics, in especial we may cite [Spanos and Chevallier, 2000, Kotsonis and Spanos, 1997, Ritto et al., 2009b].

In [Spanos and Chevallier, 2000], stochastic lateral forces are analyzed at the bit, in [Kotsonis and Spanos, 1997], a ran-

dom weight-on-bit is analyzed using a simple two degrees of freedom drill-string model and in [Ritto et al., 2009b], the

weight-on-hook is taken as random.

The bit-rock interaction model used in the analysis is the one developed in [Tucker and Wang, 2003]. This model is

able to reproduce the main phenomena and describes the penetration of the bit into the rock. Thus, it allows the analysis of

the rate of penetration (ROP). Usually, the bit is assumed to be fixed [Khulief, 2007, Sampaio et al., 2007] or an average

rate of penetration is assumed [Spanos et al., 1995, Christoforou and Yigit, 2003].

The nonparametric probabilistic approach [Soize, 2000, Soize, 2001, Soize, 2005] is used to model the uncertainties in

the bit-rock interaction, which is represented by a nonlinear operator. It should be noticed that a new strategy is developed

to take into account uncertainties for a local nonlinear operator.

The paper is organized as follows. In Section 2.the mean model is presented then, in Section 3., the probabilistic model

of the bit-rock interaction model is developed. The results are shown in Section 4.and the concluding remarks are made in

Section 5..

2. MEAN MODEL

In this Section the equations used to model the problem are presented. To derive the equations of motion, the extended

Hamilton Principle is applied. Defining the potential Π by Π =
∫ t2

t1
(U − T − W )dt, where U is the potential strain

energy, T is the kinetic energy and W is the work done by the nonconservative forces and any force not accounted in the

potential energy. The first variation of Π must vanish:

δΠ =

∫ t2

t1

(δU − δT − δW )dt = 0 . (1)

For short, the expressions of the kinetic energy, strain energy and impact forces are omitted, but they can by found in

[Ritto et al., 2009a].

2.1 Finite element discretization

In the discretization by means of the Finite Element Method a two-node approximation with six degrees of freedom

per node is chosen. The nodal displacement is written as

ue = Nuue , ve = Nvue , we = Nwue , (2)

θxe = Nθx
ue , θye = Nθy

ue , θze = Nθz
ue , (3)

where N is the shape function, ue, ve and we are the displacements in x, y and z directions, θxe, θye and θze are the

rotations about the x, y and z-axis. Linear shape functions are used for the axial and torsional displacements and the shape

functions for the lateral displacements are derived by calculating the static response of the beam [Bazoune and Khulief, 2002].

The element coordinate is ξ = x/le and ue =
(

u1 v1 θz1 w1 θy1 θx1 u2 v2 θz2 w2 θy2 θx2

)T
, where (·)T means

transpose.

2.2 Fluid-structure interaction model

The drilling fluid (mud) is responsible for transporting the cuttings (drilled solids) from the bottom to the top to avoid

clogging of the hole. There is no doubt that the drilling fluid influences the dynamics of a drill-string, but solving the

complete problem would be extremely expensive computationally. There are some works that are strictly concerned

with the drilling fluid flow, e.g [Escudier et al., 2000, Escudier et al., 2002, Pina and Carvalho, 2006]. We use a linear

fluid-structure coupling model similar to [Paidoussis et al., 2007]. In this simplified model there are the following hy-

potheses: (1) for the inside flow the fluid is taken as inviscid, for the outside as viscous, (2) the flow induced by the
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rotational speed about the x-axis is not considered in this first analysis and (3) The pressure varies linearly with x. The

element matrices are presented in Eq. (4). These equations are an extension and an adaptation of the model developed in

[Paidoussis et al., 2007].

[Mf]
(e) =

∫ 1

0

(Mf + χρfAo) (NT
wNw + NT

v Nv)ledξ ,

[Kf]
(e) =

∫ 1

0

(

−MfU
2
i − Aipi + Aopo − χρfAoU

2
o

)

(N′T
wN′

w + N′T
v N′

v)
1

le
dξ+

+

∫ 1

0

(

−Ai
∂pi

∂x
+ Ao

∂po

∂x

)

(NT
θy

Nθy
+ NT

θz
Nθz

)ledξ ,

[Cf]
(e) =

∫ 1

0

(−2MfUi + 2χρfAoUo) (NT
θy

Nθy
+ NT

θz
Nθz

)ledξ+

+

∫ 1

0

(

1

2
CfρfDoUo + k

)

(NT
wNw + NT

v Nv)ledξ ,

f
(e)
f =

∫ 1

0

(

Mfg − Ai
∂pi

∂x
−

1

2
CfρfDoU

2
o

)

NT
u ledξ .

(4)

in which, Mf is the fluid mass per unit length, ρf is the density of the fluid, χ =
(Dch/Do)

2 + 1

(Dch/Do)2 − 1
(> 1), Dch is the

borehole (channel) diameter, Di, Do are the inside and outside diameters of the column, Ui, Uo are the inlet and outlet

flow velocities, pi, po are the pressures inside and outside the drill-string, Ai, Ao are the inside and outside cross sectional

area of the column, Cf, k are the fluid viscous damping coefficients.

As pointed out before, it is assumed that the inner and the outer pressures (pi and po) vary linearly with x

pi = (ρfg) x + pcte , po =

(

ρfg +
Ffo

Ao

)

x , Ffo =
1

2
Cfρf

D2
oU2

o

Dh

, (5)

where pcte is a constant pressure and Ffo is the frictional force due to the external.

In the above equation, Dh is the hydraulic diameter (4Ach/Stot) and Stot is the total wetted area per unit length (πDch +
πDo). Note that the reference pressure is po|x=0 = 0. Another assumption is that there is no head loss when the fluid

passes from the drill-pipe to the drill-collar (and vice-versa). The head loss due to the change in velocity of the fluid at

the bottom (it goes down and then up) is given by

h =
1

2g
(Ui − Uo)

2 . (6)

If the geometry and the fluid characteristics are given, only the inlet flow at x = 0 can be controlled as the fluid speed

is calculated using the continuity equation and the pressures are calculated using the Bernoulli equation.

Examining Eq. (4), it can be noticed that the fluid mass matrix is the usual added mass that, in our case, represents a

significant value. For example, using representative values, the added mass is approximately 50% of the original mass,

what changes the natural frequencies in about 20%.

The fluid stiffness matrix depends on the speed of the inside and outside flow as well as on the pressure and on the

pressure derivatives. Analyzing the signs in the equation (Eq. 4) it can be noticed that the outside pressure tends to

stabilize the system while the inside pressure and the flow tends to destabilize the system. The term (−piAi + poA0)
plays a major role on the stiffness of the system because, even though pi is close to po, in the drill collar region (at the

bottom) A0 is around ten times Ai what turns the system stiffer at the bottom.

The fluid damping matrix depends on the flow velocity as well as on the viscous parameters of the fluid which have

not well established values. A detailed analysis of the damping is not addressed in the present paper.

Finally, the fluid force vector ff is a constant axial force induced by the fluid and it is the only fluid force in the axial

direction.

2.3 Bit-rock interaction model

The model used in this work is the one developed in [Tucker and Wang, 2003], which can be written as
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fbit = −
u̇bit

a2Z(ωbit)2
+

a3ωbit

a2Z(ωbit)
−

a1

a2
,

tbit = −
u̇bita4Z(ωbit)

2

ωbit

− a5Z(ωbit) ,

(7)

where fbit is the axial force (also called weight-on-bit), tbit is the torque about the x-axis, Z(ωbit) is the regularization

function and a1, . . . , a5 are positive constants that depend on the bit and rock characteristics as well as on the average

weight-on-bit. Note that these forces couple the axial and torsional vibrations.

2.4 Final discretized system of equations

The dynamics is considered about the following prestressed configuration:

uS = [K]−1(fg + fc + ff) . (8)

where fg is the gravity, fc is the reaction force at the bit and ff is the fluid axial force. After assemblage, the final discretized

system is written as

([M ] + [Mf])ü + ([C] + [Cf])u̇ + ([K] + [Kf] + [Kg(uS)])u = fNL(t,u, u̇, ü) , (9)

in which u = u − uS. The response u is represented in a subspace Vm ⊂ R
m, where m equals the number of degrees

of freedom of the system. [M ], [C] and [K] are the usual mass, damping and stiffness matrices, [Mf], [Cf] and [Kf] are

the fluid mass, damping and stiffness matrices, ff is the fluid force vector, [Kg(uS)] is the geometric stiffness matrix and

fNL(t,u, u̇, ü) is the nonlinear force vector that is written as

fNL(t,u, u̇, ü) = fke(u, u̇, ü) + fse(u) + fip(u) + fbr(u̇) + g(t) . (10)

where fke is composed by the quadratic terms of the kinetic energy, fse is composed by the quadratic and higher order

terms of the strain energy, fip is the force vector due to the impact and rubbing between the column and the borehole, fbr

is the force vector due to the bit-rock interactions (see Section 2.3) and g(t) is the force that corresponds to the Dirichlet

boundary condition (rotational speed imposed at the top).

2.5 Reduced model

Usually the final discretized FE system have big matrices (dimension m×m) and the dynamical analysis may be time

consuming, which is the case of the present analysis. One way to reduce the system is to project the nonlinear dynamical

equation on a subspace Vn, with n << m, in which Vn is spanned by an algebraic basis of Rn. In the present paper,

the basis used for the reduction corresponds to the normal modes projection. The normal modes are obtained from the

following generalized eigenvalue problem

([K] + [Kf] + [Kg(uS)])φ = ω2([M ] + [Mf])φ , (11)

where φi is the i-th normal mode and ωi is the i-th natural frequency. Using the representation u = [Φ] q, where [Φ] is

a (m × n) real matrix composed by n normal modes, and projecting Eq. (9) on the subspace spanned by these normal

modes yields

[Mr] q̈(t) + [Cr] q̇(t) + [Kr] q(t) = [Φ]T fNL(t,u, u̇, ü) , (12)

where

[Mr] = [Φ]T ([M ] + [Mf])[Φ], [Cr] = [Φ]T ([C] + [Cf])[Φ] ,

[Kr] = [Φ]T ([K] + [Kf] + [Kg(uS)])[Φ] (13)

are the reduced matrices.
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3. PROBABILISTIC MODEL FOR THE BIT-ROCK INTERACTION

The parametric probabilistic approach allows physical-parameter uncertainties to be modeled. It should be noted that

the underlying deterministic model defined by Eq. (7) exhibits parameters a1, a2, a3, a4 and a5 which do not correspond

to physical parameters. Consequently, it is difficult to construct an a priori probabilistic model using the parametric

probabilistic approach. For instance, there is no available information concerning the statistical dependence of these

parameters. Then, we propose to apply the nonparametric probabilistic approach to model uncertainties [Soize, 2000]

which consists in modeling the operator of the constitutive equation (Eq. (7)) by a random operator. Such an approach

allows both system-parameters uncertainties and modeling errors to be globally taken into account.

The nonparametric probabilistic approach has been applied for linear operators [Soize, 2005]. Recently it was ex-

tended [Mignolet and Soize, 2008] but the type of problem studied in the present paper is completely different from the

geometrically nonlinear dynamical system studied in [Mignolet and Soize, 2008]. We are dealing with a nonlinear opera-

tor (related to a local nonlinearity). Therefore, it requires a different methodology. Let fbit(ẋ) and ẋ be such that

fbit(ẋ) =

(

fbit(ẋ)
tbit(ẋ)

)

and ẋ =

(

u̇bit

ωbit

)

. (14)

In the fist step of the methodology proposed, we look for a symmetric positive-definite matrix [Ab(ẋ)] depending on

ẋ such that the virtual power of the bit-rock interactions be written as

δPbit(ẋ) = < fbit(ẋ), δẋ > = − < [Ab(ẋ)]ẋ, δẋ > , (15)

and such that force fbit(ẋ) be given by:

fbit(ẋ) = ∇δẋ δPbit(ẋ) , (16)

Equation (7) can be rewritten as

fbit(ẋ) = −[Ab(ẋ)]ẋ = −











a1

a2
+

u̇bit

a2Z(ωbit)2
−

a3ωbit

a2Z(ωbit)

a4Z(ωbit)
2u̇bit

ωbit

+ a5Z(ωbit)











. (17)

From Eqs. (15) to (17) it can be deduced that

[Ab(ẋ)]11 =
a1

a2u̇bit

+
1

a2Z(ωbit)2
−

a3ωbit

a2Z(ωbit)u̇bit

,

[Ab(ẋ)]22 =
a4Z(ωbit)

2u̇bit

ω2
bit

+
a5Z(ωbit)

ωbit

,

[Ab(ẋ)]12 = [Ab(ẋ)]21 = 0 .

(18)

It can be seen that for all ẋ belonging to its admissible space C, [Ab(ẋ)] is positive-definite.

The second step consists, for all deterministic vector ẋ belonging to C, in modeling matrix [Ab(ẋ)] by a random matrix

[Ab(ẋ)] with values in the set M
+
2 (R) of all positive-definite symmetric (2 × 2) real matrices. Note that matrix [Ab(ẋ)]

should be written as [Ab(ẋ(t))] which shows that {[Ab(ẋ(t))], t > 0} is a stochastic process with values in M
+
2 (R).

Thus, for all ẋ in C, the constitutive equation defined by Eq. (17) becomes a random constitutive equation which can be

written as

Fbit(ẋ) = −[Ab(ẋ)]ẋ . (19)

The third step consists in constructing the probability distribution of random variable [Ab(ẋ)] for all fixed vector ẋ in

C. Following the methodology of the nonparametric probabilistic approach and using the Cholesky decomposition, the

mean value of [Ab(ẋ)] is written as

[Ab(ẋ)] = [Lb(ẋ)]T [Lb(ẋ)] , (20)
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and random matrix [Ab(ẋ)] is defined by

[Ab(ẋ)] = [Lb(ẋ)]T [Gb][Lb(ẋ)] . (21)

In the above equation, [Gb] is a random matrix satisfying the following available information [Soize, 2005]: (1)

random matrix [Gb] is positive-definite almost surely, (2) E{[Gb]} = [ I ] and (3) E{||[Gb]
−1||2F } = c2 , |c2| < +∞. In

which E{·} is the mathematical expectation, || · ||F denotes the Frobenius norm such that ||[A]||F = (tr{[A][A]T })1/2

and [ I ] is the identity matrix. It should be noted that, in the construction proposed, random matrix [Gb] neither depends

on ẋ nor on t. Let the dispersion parameter δ be such that

δ =

{

1

2
E{||[Gb] − [I]||2F }

}
1
2

. (22)

Taking into account the above available information and using the Maximum Entropy Principle [Shannon, 1948, Jaynes, 1957a,

Jaynes, 1957b] yield the following probability density function of [Gb] [Soize, 2005],

p[Gb]([Gb]) = 1
M

+
2 (R)([Gb])CGb

det([Gb])
3

(1−δ2)

2δ2 exp

{

−
3

2δ2
tr([Gb])

}

, (23)

where det(·) is the determinant, tr(·) is the trace. The constant of normalization is written as

CGb
=

(

3
2δ2

)3/(2δ2)

(2π)1/2Γ
(

3
2δ2

)

Γ
(

3
2δ2 − 1

2

) , (24)

where Γ(z) is the gamma function defined for z > 0 by Γ(z) =
∫ +∞

0
tz−1e−tdt. The random generator of independent

realizations of random matrix [Gb] for which the probability density function defined is by Eq. (23) is given in Appendix

A.

4. NUMERICAL RESULTS

The drill-string is discretized with 56 finite elements. For the construction of the reduced dynamical model, 158 lateral

modes, 4 torsional modes, 3 axial modes and also the two rigid body modes of the structure (axial and torsional) are used.

As boundary conditions, the lateral displacements and the rotations about the y and z-axis are zero at the top. The lateral

displacements at the bit are also zero. A constant rotational speed about the x-axis Ωx is imposed at the top. Stabilizers

are considered as elastic elements: Fy|x=xstab
= kstab v|x=xstab

and Fz|x=xstab
= kstab w|x=xstab

, where xstab is the

stabilizer location and kstab is the stabilizer stiffness. As initial conditions, all the points move with constant axial speed

and constant rotational speed about the x-axis, and the column is deflected laterally.

For the time integration procedure, the implicit Newmark integration scheme has been implemented with a predictor

and a fix point procedure to equilibrate the system response at each time step. The data used for computations are rep-

resentative values that are found in the literature [Christoforou and Yigit, 2003, Tucker and Wang, 2003, Khulief, 2007,

Sampaio et al., 2007] (see Appendix B). All the numerical results presented below correspond to the forced response

(deterministic case) and to the stationary response (stochastic case) for which the transient part of the response induced

by the initial conditions has vanished. The results presented are the time response and the frequency spectrum defined as

the modulus of its Fourier transform. The dynamical system is excited by a constant rotational speed about the x-axis at

the top and with value 0.83 Hz.

4.1 Stochastic response

The stochastic response is computed for two values of δ which are 0.001, 0.1. Figure 2 displays the random ROP for

δ = 0.001. This figure shows the response of the mean model together with the mean response of the stochastic model

and the 95% envelope (which means that the confidence region is constructed with a probability level of 0.95). The upper

and lower envelopes of the confidence region are calculated using the method of quantiles [Serfling, 1980].
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Figure 2. Stochastic response for δ = 0.001. Frequency spectrum of the ROP.

Fig. 2(b) shows that the dispersion of the random ROP is already significant in the high part of the frequency band.

However, the stochastic response in the low part of the frequency band is robust for the level of uncertainties considered.

Figure 3 shows the random radial displacement at x = 700 m (middle point of the drill pipe). It can be seen that the lateral

vibrations are also affected by the probabilistic model of the bit-rock interaction.
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d
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p
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c
e
m

e
n
t 
[m
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Figure 3. Stochastic response for δ = 0.001. Frequency spectrum of the radial displacement at x = 700 m.

Figure 4 shows the random rotational speed of the bit for δ = 0.1. It can be noted that, for this level of uncertainty, the

dispersion of the stochastic response is significant for all the frequency band analyzed. Figure 5 shows some Monte Carlo

realizations of the stochastic ROP. The arrows in Fig. 5 indicate that, for some realizations, the bit loses contact with the

soil.
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Figure 4. Stochastic response for δ = 0.1. Frequency spectrum of the rotational speed of the bit ωbit.
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Figure 5. Random ROP for δ = 0.1.

The probabilistic model proposed for the bit-rock interaction model allows us to simulate cases such as the bit losing

contact with the soil and the column impacting the borehole. The nonparametric probabilistic approach permits both

parameters and modeling errors to be taken into account for the bit-rock interaction model.

5. CONCLUDING REMARKS

A computational nonlinear dynamical model taking into account uncertainties has been developed to simulate the

drill-string dynamics and it has been shown to be well suited to describe the problem. A probabilistic model has been

proposed for the bit-rock interaction model. Since the parameters of the bit-rock interaction do not correspond to physical

parameters, these parameters are not adequate to the use of the parametric probabilistic approach. Then, the nonparametric

probabilistic approach has been applied. This corresponds to a completely novel approach to take into account model

uncertainties in a nonlinear constitutive equation. Since the dynamical system is globally nonlinear, an adapted strategy

has been developed to implement the stochastic simulation.

The Timoshenko beam model has been used and the main forces that affect the dynamics of the drill-string have

been considered such as the bit forces, the fluid forces and impacts. Finite strains have been taken into account without

neglecting the higher order terms and the vibration has been computed about a prestressed configuration.
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A ALGORITHM FOR THE REALIZATIONS OF THE RANDOM GERM [G]

Random matrix [G] can be written as [G] = [LG]T [LG] in which [LG] is an upper triangular real random matrix such

that:

1. The random variables {[LG]jj′ , j ≤ j′} are independents.

2. For j < j′ the real-valued random variable [LG]jj′ = σVjj′ , in which σ = δ3−1/2 and Vjj′ is a real-valued

gaussian random variable with zero mean and unit variance.

3. For j = j′ the real-valued random variable [LG]jj = σ(2Vj)
1/2. In which Vj is a real-valued gamma random

variable with probability density function written as

pVj
(v) = 1R+(v) 1

Γ( 3
2δ2 + 1−j

2 )
v

3
2δ2 −

1+j
2 e−v .

B DATA USED IN THE SIMULATIONS

Ωx = 0.83 Hz (rotational speed about the x-axis at the top),

Ldp = 1400 m (length of the drill pipe),

Ldc = 200 m (length of the drill collar),

Dodp = 0.127 m (outside diameter of the drill pipe),

Dodc = 0.2286 m (outside diameter of the drill collar),

Didp = 0.095 m (inside diameter of the drill pipe),

Didc = 0.0762 m (inside diameter of the drill collar),

Dch = 0.3 m (diameter of the borehole (channel)),

xstab = 1400 m (location of the stabilizer),

kstab = 17.5 MN/m (stiffness of the stabilizer per meter),

E = 210 GPa (elasticity modulus of the drill string material),

ρ = 7850 kg/m3 (density of the drill string material),

ν = 0.29 (poisson coefficient of the drill string material),

ks = 6/7 (shearing correcting factor),

kip = 1 × 108 N/m (stiffness per meter used for the impacts),

µip = 0.0005 (frictional coefficient between the string and the borehole),

uin = 1.5 m/s (flow speed in the inlet),

ρf = 1200 kg/m3 (density of the fluid),

Cf = 0.0125 (fluid viscous damping coefficient),

k = 0 (fluid viscous damping coefficient),

g = 9.81 m/s2 (gravity acceleration),

a1 = 3.429 × 10−3 m/s (constant of the bit-rock interaction model),

a2 = 5.672 × 10−8 m/(N.s) (constant of the bit-rock interaction model),

a3 = 1.374 × 10−4 m/rd (constant of the bit-rock interaction model),

a4 = 9.537 × 106 N.rd (constant of the bit-rock interaction model),

a5 = 1.475 × 103 N.m (constant of the bit-rock interaction model),

e = 2 rd/s (regularization parameter).

The damping matrix is constructed using the relationship [C] = α([M ] + [Mf]) + β([K] + [Kf] + [Kg(uS)]) with

α = 0.01 and β = 0.0003.
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