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Abstract. The influence of the drilling fluid (or mud) on the drill-string dynamics is analyzed

in this paper. Usually the presence of the fluid is not taken into account in the analysis of the

nonlinear dynamics of a drill-string. The aim of this paper is to investigate how the fluid affects

this dynamics using a simplified fluid-structure interaction model that takes into account the

fluid that flows downward inside the column and then upward in the annulus. For the column,

the proposed model considers the Timoshenko beam theory with finite strain (all the terms of

the Green-Lagrange tensor are used). When finite strains are considered, the axial, lateral and

torsional vibrations become coupled. A bit-rock interaction model that describes how the bit

penetrates the soil is used and there might be impact and rubbing between the column and the

borehole. The system of equations is discretized by mean of the Finite Element Method. It turns

out that the fluid has an important influence on the drill-string dynamics, especially for the

lateral vibrations.
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1. INTRODUCTION

A drill-string is a slender structure used in oil wells to penetrate the soil in search of oil.

There are still many challenges involving the modeling of this complex dynamics that involves

bit-rock interaction, fluid-structure interaction, coupling vibrations and also impact. There are

many papers that analyze the nonlinear dynamics of a drill-string, e.g. Tucker and Wang (1999);

Christoforou and Yigit (2003); Trindade et al. (2005); Richard et al. (2007); Khulief et al.

(2007), however, none of these works consider the fluid-structure interaction. In references

Tucker and Wang (1999); Christoforou and Yigit (2003) the influence of the fluid is considered

in a simplistic way.

Fig. 1 shows a sketch of a drill-string. The upper region is composed by thin tubes

called drill-pipes and the bottom region, called Bottom-Hole-Assembly (BHA), is composed

by thicker tubes called drill-collars.

Figure 1: Sketch of a drill-string.

The drilling fluid (mud) is responsible to transport the cuttings (drilled solids) from the

bottom to the top to avoid clogging of the hole. The fluid flows downward inside the column and

then upward in the annulus. It also plays an important role in cooling the bit and stabilizing the

system (ASME, 2005). The mud has complex rheological properties, see for instance Coussot

et al. (2004). There is no doubt that the drilling fluid influences the dynamics of a drill-string,

but to solve the complete problem would be too expensive computationally. There are some

works that study only the drilling-fluid flow, as, for example, Escudier et al. (2000, 2002); Pina

and Carvalho (2006).

The aim of this paper is to investigate how the presence of the drilling fluid influences

the dynamics of a drill-string. For doing so, a simple model that considers the fluid that flows

downward inside the column and then upward in the annulus is presented. This model is an

extension of the one developed in Paidoussis et al. (2008) and it permits the influence of the

fluid to be computed by adding an axial force and a mass, a damping and a stiffness matrix that

are constant on time.

Besides the inclusion of the fluid in the nonlinear dynamics of the drill-string, the proposed



model has a new feature which is the use of the Timoshenko beam theory with finite strain

(using all the terms of the Green-Lagrange strain). The equations of motions are derived using

the extended Hamilton Principle and then they are discretized by means of the Finite Element

Method.

The paper is organized as follows. In Section 2. the model is presented, it includes finite

strain, impact and the bit-rock interaction. In Section 3. the fluid-structure interaction model is

depicted in details. In Section 4. the final discretized system of equations are presented. Then,

the numerical results are discussed in Section 5. and the conclusions are made in Section 6..

2. MODEL

In this section the standard model without the fluid-structure interaction is described. The

fluid-structure interaction model is discussed in section 3..

Previous papers Christoforou and Yigit (2003); Trindade et al. (2005); Khulief et al. (2007)

have used the Euler-Bernoulli beam theory (which neglects shear) to model the drill-string. In

this work the Timoshenko beam theory (which considers shear) is used because (1) it includes

the Euler-Bernoulli theory and (2) it allows us to inquire about the importance of shear in the

dynamics of this nonlinear system. A 3D beam model is used with six degrees of freedom in

each interpolation point: the three translational displacements of the neutral line (axial u, lateral

in y-axis v and lateral in z-axis w) and the three rotations of the cross sections (about the x-axis

θx, about the y-axis θy and about the z-axis θz). It is assumed small angles for θy and θz, which

is justified because the vibration of the column is constrained inside the borehole, however θx

is finite.

The equations of motion are derived using the extended Hamilton Principle for which the

first variation of the potential Π must vanish:

δΠ =

∫ t2

t1

(δU − δT − δW )dt = 0 , (1)

where U is the potential strain energy, T is the kinetic energy and W is the work done by the

nonconservative forces and by any force not accounted in the potential energy.

The system is discretized using the Finite Element Method. The element displacements and

rotations are written as ue(x, t) = Nu(x)ue(t), ve(x, t) = Nv(x)ue(t), we(x, t) = Nw(x)ue(t),
θx

e(x, t) = Nθx
(x) ue(t), θy

e(x, t) = Nθy
(x)ue(t), θz

e(x, t) = Nθz
(x)ue(t), where N are the

shape functions (see appendix A) and ue =
(
u1 v1 θz1 w1 θy1 θx1 u2 v2 θz2 w2 θy2 θx2

)T
,

(·)T denotes transpose. Fig. 2 shows the two node finite element used in the numerical model

(le is the length of the element).



Figure 2: Two node finite element with six degrees of freedom per node.

2.1 Kinetic energy

The kinetic energy is written as

T =
1

2

∫ L

0

ρ(AvTv + wT Iw) dx , (2)

where ρ is the mass density, A is the cross-sectional area, L is the length of the column, v is

the velocity vector, I is the cross-sectional inertia matrix and w is the section angular velocity

vector:

v =





u̇
v̇
ẇ



 , I =





Ip 0 0
0 I 0
0 0 I



 , w =





θ̇x + θyθ̇z

cos(θx)θ̇y − sin(θx)θ̇z

sin(θx)θ̇y + cos(θx)θ̇z



 . (3)

The time derivative (d/dt) is denoted by a superposed dot. In Eq. (3) I is the cross-sectional

moment of inertia and Ip is the polar moment of inertia. The angular velocity vector w is written

in the inertial frame and it is derived by first rotating the inertial frame about the x-axis θx, then

rotating the resulting frame about the y-axis θy and, finally, rotating the resulting frame about

the z-axis θz. This was done under the hypothesis of small angles θy and θz.

Note that the rotational speed about the x-axis θ̇x is not constant, therefore the discretization

of kinetic energy yields a constant mass matrix M and a nonlinear force vector fke that couples

axial, torsional and lateral vibrations. The mass element matrix is written as:

Me =

∫ 1

0

[ρA(NT
uNu + NT

v Nv + NT
wNw)+

+ρI(NT
θy
Nθy

+ NT
θz
Nθz

) + ρIp(N
T
θx

Nθx
)] ledξ .

(4)

where ξ is the element coordinate (ξ = x/le). Using the rotational speeds θ̇e
x = Nθx

u̇e, θ̇e
y =

Nθy
u̇e, θ̇e

z = Nθz
u̇e and the angular accelerations θ̈e

x = Nθx
üe, θ̈e

y = Nθy
üe, θ̈e

z = Nθz
üe, the

nonlinear force element vector due to the kinetic energy is written as:



(fke)(e) = ρIp

∫ 1

0

[

NT
θx

(θe
yθ̈

e
z + θ̇e

yθ̇
e
z) + NT

θz
(θe

yθ̈
e
x + θ̇e

yθ̇
e
x) − NT

θy
(θ̇e

xθ̇
e
z)

]

ledξ . (5)

2.2 Strain energy

The strain energy is written as:

U =
1

2

∫

V

ǫ
TSdV , (6)

where V is the volume, ǫ is the Green-Lagrange strain tensor and S is the second Piola-

Kirchhoff stress tensor (written in Voigt notation). The stress-strain relationship is given by

S = Dǫ:





σxx

τxy

τxz



 =





E 0 0
0 ksG 0
0 0 ksG









ǫxx

γxy

γxz



 . (7)

where E is the elasticity modulus, ks is the shearing factor and G is the shear modulus. The

complete strain tensor is obtained through

E =
1

2

[(
dp

dX

)

+

(
dp

dX

)T

+

(
dp

dX

)T (
dp

dX

)]

, (8)

where ǫxx = E11, γxy = E21, γxz = E31. The position in the non-deformed configuration

is X = (x y z)T and the displacement field p = (ux uy uz)
T , written in the non-deformed

configuration, is such that

ux = u − yθz + zθy ,

uy = v + y(cos(θx) − 1) − z sin(θx) ,

uz = w + z(cos(θx) − 1) + y sin(θx) .

(9)

The discretization of the linear terms yields the stiffness matrix K and the discretization of

the higher-order terms yields the nonlinear force vector f se that couples axial, torsional and lat-

eral vibrations. In fact, the dynamics takes places about a prestressed configuration (see section

4.) and the geometric stiffness matrix Kg(us) is used, where us is the prestressed state. There

is no simplification, all the terms obtained from the strain energy are used in the formulation.

The stiffness element matrix is written as:

Ke =

∫ 1

0

[
EA

le
(
N′T

u N′

u

)
+

ksGIp

le
(
N′T

θx
N′

θx

)
+

EI

le

(

N′T
θy
N′

θy
+

+N′T
θz
N′

θz

)
+

ksGA

le
(
N′T

v N′

v + N′T
w N′

w

)
+ ksGAle

(

NT
θy
Nθy

+

+NT
θz
Nθz

)
+ ksGA

(

N′T
v Nθz

+ NT
θz
N′

v + N′T
w Nθy

+ NT
θy
N′

w

)]

dξ .

(10)



where the spatial derivative is denoted by (′) and the element displacement spatial derivatives

are written as (ue)′ =
1

le
N′

uu
e, (ve)′ =

1

le
N′

vu
e, (we)′ =

1

le
N′

wue, (θx
e)′ =

1

le
N′

θx
ue, (θy

e)′ =

1

le
N′

θy
ue, (θz

e)′ =
1

le
N′

θz
ue. The geometric stiffness element matrix, when the only nonzero

displacement is the axial one (us), may be written as

(Kg(us))(e) = (ue)′
∫ 1

0

[
AE

(le)2

(
N′T

v N′

v + N′T
w N′

w + 3N′T
u N′

u

)
+

+
ksGA

le

(

N′T
v Nθz

+ N′T
w Nθy

+ NT
θz
N′

v + NT
θy
N′

w + 2leNT
θz
Nθz

+

+2leNT
θy
Nθy

)

+
EI

(le)2

(

2N′T
θx

N′

θx
+ 3N′T

θy
N′

θy
+ 3N′T

θz
N′

θz

)]

ledξ+

+(ue)′2
∫ 1

0

[

ksGA
(

NT
θy
Nθy

+ NT
θz
Nθz

)

+
EI

(le)2

(

N′T
θx

N′

θx
+

3

2
N′T

θy
N′

θy

+
3

2
N′T

θz
N′

θz

)

+
EA

(le)2

(
3

2
N′T

u N′

u +
1

2
N′T

v N′

v +
1

2
N′T

w N′

w

)]

ledξ .

(11)

The nonlinear force element vector due to the strain energy is written as:

(f se)(e) =

∫ 1

0

[

N′T
u f1 + N′T

v f2 + N′T
w f3 + N′T

θx
f4 + N′T

θy
f5+

+N′T
θz

f6 + NT
θx

f7 + NT
θy

f8 + NT
θz

f9

]

ledξ ,

(12)

where f1, .., f9 are found in appendix B.

2.3 Impact, rubbing and stabilizers

The drill-string may impact the borehole. If the radial displacement r =
√

v2 + w2 is big

enough to exceed the diameter of the borehole, there is a reaction force. This means that there

is impact and rubbing if r > (Rb − Ro), where Rb is the radius of the borehole and Ro is the

outer radius of the column, see Fig. 3.

Figure 3: Scheme of the radial displacement.



The impact is modeled as an elastic force

Fy
ip = −1ip(r) kip(r − (Rb − Ro))

v

r
,

Fz
ip = −1ip(r) kip(r − (Rb − Ro))

w

r
,

(13)

where kip is the stiffness parameter of the impact and 1ip(r) is an indicator that is equal to one

if r > (Rb −Ro) and is equal to zero otherwise. Rubbing between the column and the borehole

is modeled as a frictional torque

Tx
ip = −1ip(r) µipFnRo sign(θ̇x) , (14)

where Fn =
√

(Fy
ip)2 + (Fz

ip)2, µip is the friction coefficient and sign(a) returns the sign of a

(sign(a) = 1 if a ≥ 0 and sign(a) = −1 if a < 0).

Stabilizers are used in the BHA region to make the system stiffer, thus diminishing the

amplitude of the lateral vibrations. Stabilizers are modeled as an elastic element:

Fy|x=xstab = kstab v|x=xstab and Fz|x=xstab = kstab w|x=xstab , (15)

where kstab is the stiffness parameter of the stabilizer and xstab is the location of the stabilizer.

2.4 Bit-rock interaction

For the bit-rock interaction, the model used is the one developed in Tucker and Wang (2003)

because it describes well how the bit penetrates the rock. The force and torque acting at the bit

may be written as

f bit
x = − u̇bit

a2Z(θ̇bit)2
+

a3θ̇
bit

a2Z(θ̇bit)
− a1

a2

,

tbitx = − u̇bita4Z(θ̇bit)2

θ̇bit
− a5Z(θ̇bit) ,

(16)

where f bit
x is the axial force (also called weight-on-bit), tbitx is the torque about the x-axis,

a1, . . . , a5 are positive constants that depend on the bit and rock characteristics and Z(θ̇bit) is

the regularization function:

Z(θ̇bit) =
θ̇bit

√
(

θ̇bit
)2

+ e2

, (17)

where e is the regularization parameter. The regularization function and the torque in function

of θ̇bit are plotted in Fig. 4.
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Figure 4: (a) Regularization function. (b) torque in function of θ̇
bit.

In the next section the fluid-structure interaction model is presented.

3. FLUID-STRUCTURE INTERECTION

A linear fluid-structure coupling model similar to Paidoussis (1998); Paidoussis et al. (2008)

is used. The proposed simplified model assumes that the pressure varies linearly with x and that

the inside flow is inviscid, while the outside flow is viscous. The flow induced by the rotation

about the x-axis is not considered in the analysis. Following the strategy presented in Paidoussis

et al. (2008) and extending the analysis for a 3D problem, we first write the fluid forces in x
direction, highlighting the forces due to the internal and external flow:

F f
x = M fg − Ai

∂pi

∂x
︸ ︷︷ ︸

internalflow

−FL +
∂

∂x
(Aopo) − Ao

∂po

∂x
︸ ︷︷ ︸

externalflow

, (18)

where M f is the mass per unit length, g is the gravity acceleration, Ai and Ao are the cross-

sectional areas corresponding to the inner and outer diameters of the column (see Fig. 5), ρf

is the fluid density, pi and po are the inside and outside pressures and FL is a frictional viscous

force.



Figure 5: Scheme showing the diameters (inside, outside, borehole) and the inlet and outlet flow.

The fluid forces in z direction are written as:

F f
z = M f

(
∂2w

∂t2
+ 2Ui

∂2w

∂x∂t
+ U2

i

∂2w

∂x2

)

+ Ai
∂

∂x

(

pi
∂w

∂x

)

︸ ︷︷ ︸

internalflow

+

+ χ

(
∂

∂t
− Uo

∂

∂x

)[

ρfAo

(
∂w

∂t
− Uo

∂w

∂x

)]

− Ao
∂

∂x

(

po
∂w

∂x

)

+ FN
z + FL ∂w

∂x
︸ ︷︷ ︸

externalflow

, (19)

where Ui and Uo are the flow speed inside and outside the column, χ = (Db/Do)2+1
(Db/Do)2−1

which is

always > 1 and FNz is a frictional viscous force. The expressions of the frictional viscous

forces are shown below:

FL =
1

2
CfρfDoU

2
o , (20)

FN
z =

1

2
CfρfDoUo

(
∂w

∂t
− Uo

∂w

∂x

)

+ k
∂w

∂t
, (21)

where Cf , k are the viscous damping coefficients and Dh is the hydraulic diameter
(

Dh = 4Ab

πDb+πDo

)

.

The fluid forces in y direction are similar to the ones just presented.

The pressures vary linearly with x and are written as

pi =
(
ρfg

)
x + pcte , (22)

po =

(

ρfg +
FL

Ao

Do

Dh

)

x , (23)

where pcte is the pump pressure. Another assumption is that there is no head loss when the fluid

passes from the drill-pipe to the drill-collar (and vice-versa). The head loss due to the change

in velocity of the fluid at the bottom (it was going down, then it goes up) is given by



h =
1

2g
(Ui − Uo)

2 . (24)

After discretization by means of the Finite Element Method, the fluid mass element matrix

is written as

(Mf )(e) =

∫ 1

0

(
M f + χρfAo

)
(NT

wNw + NT
v Nv)l

edξ , (25)

The fluid mass matrix is the usual added mass. The fluid stiffness element matrix is written

as

(Kf )(e) =

∫ 1

0

(
−M fU2

i − Aipi + Aopo − χρfAoU
2
o

)
(N′T

w N′

w + N′T
v N′

v)
1

le
dξ+

+

∫ 1

0

(

−Ai
∂pi

∂x
+ Ao

∂po

∂x

)

(NT
θy
Nθy

+ NT
θz
Nθz

)ledξ .

(26)

The fluid stiffness matrix depends on the speed of the inside and outside flow, on the pres-

sure and on the pressure derivatives. The fluid damping element matrix is written as

(Cf )(e) =

∫ 1

0

(
−2M fUi + 2χρfAoUo

)
(NT

θy
Nθy

+ NT
θz
Nθz

)ledξ+

+

∫ 1

0

(
1

2
CfρfDoUo + k

)

(NT
wNw + NT

v Nv)l
edξ .

(27)

The fluid damping matrix depends on the flow speed as well as on the viscous parameters

of the fluid which are not well established values. There are uncertainties in the determination

of the damping characteristics, but a detailed analysis will not be addressed. The axial fluid

element force is written as

(ff )(e) =

∫ 1

0

(

M fg − Ai
∂pi

∂x
− 1

2
CfρfDoU

2
o

)

NT
u ledξ . (28)

This force represents the buoyancy induced by the fluid. In section 5. we investigate how

the dynamical characteristics of the system change with the inclusion of the fluid-structure

interaction model.

4. DISCRETIZED SYSTEM OF EQUATIONS

Suppose that the column is put down in the borehole until it reaches the soil. At this

point the forces acting are: the reaction force at the bit (f c), the weight of the drill-string (f g),

the weight-on-hook (supporting force at the top) and the buoyancy force (f f ). In this static

equilibrium configuration we have



us = K−1(f g + f c + f f ) . (29)

The vibration takes places about this configuration: ū = u − us. The final discretized

system of equations are written as

(M + Mf )¨̄u(t) + (C + Cf ) ˙̄u(t) + (K + Kf + Kg(us))ū(t) = fNL(t, ū, ˙̄u, ¨̄u) ,

u(0) = u0 , u̇(0) = u̇0 ,
(30)

where u0 and u̇0 are the initial conditions. It is easy to identify in Eq. (30) the mass, the stiffness

and the damping matrix of the column (M,K,C) and of the fluid (Mf ,Kf ,Cf ). Kg(us) is the

geometric stiffness matrix and fNL is the nonlinear force vector:

fNL(t, ū, ˙̄u, ¨̄u) = fke(ū, ˙̄u, ¨̄u) + f se(ū) + f ip(ū) + f bit( ˙̄u) + g(t) , (31)

where fke and f se are the higher-order terms obtained from the kinetic and strain energies (Eqs.

(5) and (12) ), f ip and f bit are the impact and bit-rock interaction forces (Eqs. (13), (14) and

(16)), and g is the force that corresponds to the Dirichlet boundary condition (rotation imposed

at the top).

5. NUMERICAL RESULTS

In this section, the influence of the fluid on the drill-string dynamics is investigated using a

numerical example. The data used in the simulations correspond to a representative drill-string

with 1600 meters length (see the data used in appendix C).

5.1 Modal analysis

The elastic modes of the structure (lateral, axial and torsional) and the associated natural

frequencies are analyzed for different configurations. This analysis is essential to understand

how the characteristics of the system are affected by the fluid flow.

To correctly compare the normal modes and the corresponding natural frequencies of two

different configurations, the matrix MAC (Allemang, 2003) defined by

MACij =
< Φ1

i ,Φ
2
j >

||Φ1
i ||.||Φ2

j ||
(32)

is used, where Φ1
i is the i-th mode for the first configuration, Φ2

j is the j-th mode for the second

configuration, < ·, · > denotes the Euclidean inner product and || · || is the associated norm.

Two modes Φ1
i Φ2

j are well associated if MACij has value close to one and they are not well

associated if this value is close to zero.

First, the influence of the prestressed configuration is analyzed and no fluid is considered

yet. Table 1 shows the natural frequencies associated with the first 10 lateral modes of the

system with and without the prestressed configuration. For short, we call them lateral natural

frequencies and it is implicit that they are the natural frequencies associated with the lateral

modes.



Rank of the eigenvalue

(prestressed config.) 1-2 3-4 5-6 7-8 9-10

prestressed (Hz) 0.0287 0.0464 0.0928 0.1098 0.1394

no prestress (Hz) 0.0127 0.0004 0.0010 0.0490 0.0020

difference (%) 55.7 99.1 98.9 55.4 98.6

Table 1: Lateral natural frequencies with and without the prestressed configuration (no fluid).

The lateral natural frequencies appear in pairs due to the symmetry about the x-axis. The

first and the second normal modes have the same shape (due to the symmetry). The values

of the natural frequencies change completely (with differences greater than 50%) when the

prestressed state is considered. The first lateral shape for the model considering the prestressed

state is associated with the ninth lateral shape for the model without the prestressed state, the

second one is associated with the first one, the third one is associated with the second one, the

forth is associated with the eighteenth one and so on. Sometimes the shapes are well related

(MACij ∼ 1) and sometimes the relation is not so good (MACij < 0.5).

Tables 2 and 3 show the differences of the axial and torsional natural frequencies comparing

the column with and without the prestressed configuration.

Rank of the axial eigenvalue

(prestressed config.) 1 2 3 4 5

prestressed (Hz) 1.202 2.882 4.676 6.503 8.343

no prestress (Hz) 1.201 2.879 4.672 6.496 8.336

difference (%) 0.092 0.094 0.094 0.095 0.095

Table 2: Axial natural frequencies with and without the prestressed configuration (no fluid).

Rank of the torsional eigenvalue

(prestressed config.) 1 2 3 4 5

prestressed (Hz) 0.2144 1.1105 2.1526 3.2138 4.2850

no prestress (Hz) 0.2141 1.1094 2.1505 3.2107 4.2809

difference (%) 0.1401 0.0992 0.0977 0.0966 0.0958

Table 3: Torsional natural frequencies with and without the prestressed configuration (no fluid).

The axial and torsional natural frequencies are little affected by the prestressed configura-

tion. The modes have to be well associated for the comparison, but they are always well related

(MACij ∼ 1).

Now the influence of the fluid is analyzed, always using the prestressed configuration. It

should be remarked that the inclusion of the fluid does not change the axial and torsional natural

frequencies of the system as it can be checked from Eqs. (25), (26) and (27).

Fig. 6 shows the comparison of the mode shapes for the model with and without the fluid.
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Figure 6: Comparison of the lateral modes for the model with and without fluid.

As shown in Fig. 6, the first lateral shape for the model with fluid is associated with the

second lateral shape for the model without fluid, the second one is associated with the third one,

the third one is associated with the first one, the fourth one is associated with the fifth one and

so on. Table 4 shows a comparison of the lateral natural frequencies:

Rank of the eigenvalue

(config. with fluid) 1-2 3-4 5-6 7-8 9-10

with fluid (Hz) 0.037 0.074 0.107 0.112 0.145

no fluid (Hz) 0.046 0.093 0.029 0.139 0.186

difference (%) -24.7 -24.7 73.1 -24.8 -24.8

Table 4: Lateral natural frequencies for the model with and without the fluid.

There is a significative change in the lateral frequencies due to the presence of the fluid.

Investigating the influence of each term of the fluid equations, it was found that the term

(−piAi + poAo) of the fluid stiffness matrix has a major influence on the stiffness of the system.

Note that pi ∼ po for a given depth, but in the lower region (BHA) Ao ∼ 10Ai, which makes

the system much stiffer in the bottom. Table 4 shows that the lateral natural frequencies for the

model with fluid might be lower or greater than the lateral natural frequencies for the model

without fluid when comparing with respect to the associated modes.

Next, it will be investigated the influence of the added mass and added stiffness separately.

The influence of the damping depends on the viscous property of the fluid, but it is not analyzed

in details in this paper. Table 5 shows the differences of the lateral natural frequencies for the

added mass only and for the added stiffness only.



Rank of the eigenvalue

(config. without fluid) 1-2 3-4 5-6 7-8 9-10

no fluid (Hz) 0.029 0.046 0.093 0.110 0.140

added mass only (Hz) 0.023 0.036 0.072 0.087 0.108

difference (%) -20.7 -22.8 -22.8 -20.7 -22.8

no fluid (Hz) 0.029 0.046 0.093 0.110 0.140

added stiffness only (Hz) 0.134 0.048 0.096 0.273 0.145

difference (%) 367.9 3.7 3.8 148.2 3.7

Table 5: Influence of the added fluid mass and stiffness on the lateral frequencies.

The presence of the fluid adds around 50% of mass, this is why the natural frequencies are

around 20% lower. It should be noted that the shapes of the lateral modes practically do not

change when only the fluid mass is considered. The changes in the mode shapes occur mainly

due to the fluid added stiffness. The first lateral shape for the model without fluid is associated

with the third lateral shape for the model with added fluid stiffness, the second one is associated

with the first one, the third one is associated with the second one, the fourth one is associated

with the seventh one and so on.

Now, the influence of the inside and outside flow are investigated separately. Table 6 shows

the differences of the lateral natural frequencies for the inside flow only and for the outside flow

only.

Rank of the eigenvalue

(config. without fluid) 1-2 3-4 5-6 7-8 9-10

no fluid (Hz) 0.029 0.046 0.093 0.110 0.140

inside flow (Hz) 0.080
√
−1 0.040 0.080 0.064 0.121

difference (%) - -13.6 -13.4 -42.0 -13.5

no fluid (Hz) 0.029 0.046 0.093 0.110 0.140

outside flow (Hz) 0.113 0.041 0.082 0.228 0.124

difference (%) 292.3 -11.2 -11.2 107.7 -11.3

Table 6: Influence of the added fluid mass and stiffness on the lateral frequencies.

The inside flow makes the system less stiff and unstable: the first eigenvalue is imaginary,

indicating that the system is unstable. The outside flow increases the eigenfrequencies associ-

ated with some lateral modes and decreases others.

Finally, Table 7 shows the difference in the lateral natural frequencies when the flow speed

is increased. It is noted that the flow speed is not so important to change significantly the

dynamic characteristics of the structure.

Rank of the eigenvalue 1-2 3-4 5-6 7-8 9-10

Ui=1.5 m s−1 (Hz) 0.0372 0.0744 0.1065 0.1117 0.1488

Ui=10 m s−1 (Hz) 0.0368 0.0736 0.1066 0.1106 0.1473

difference (%) 1.0753 1.0753 -0.0939 0.9848 1.0081

Table 7: Influence of the flow on the lateral frequencies.

5.2 Dynamical response

The column was discretized with 56 finite elements. For the time integration, the Newmark

scheme was used together with an iteration method (fixed point) to solve the nonlinear algebraic



Eq. (30) at each time step (∆t = 5 × 10−5).

As initial conditions, all the points of the column have a given axial speed u̇0 (4.2 × 10−3

m s−1), a given rotational speed about the x-axis ωx0 (5.236 rd s−1) and a given lateral displace-

ment.

Fig. 7 shows the radial response (r =
√

v2 + w2) at two points: x = 700 m and x = 1520
m. Fig. 7(a) shows the dynamical response of the middle point of the drill-pipe region (the upper

part) which is the point that presents the maximum radial displacement. The amplitude of the

displacement begins small and then it increases until a certain value. The opposite happens for

the radial displacement in the BHA region (the bottom part): the amplitude of the displacement

decreases until a certain value, see Fig. 7(b). There is an exchange of energy between the

modes, then the radial displacement gets bigger in the less stiff region (the drill-pipe region). If

the nonlinearities that come from the kinetic and strain energies were neglected (fse = fke = 0),

the amplitude of the lateral displacement would vanish because there would be no coupling

between the lateral vibration and the axial and the torsional ones. All of these effects happen

due to the vibration coupling induced by these nonlinearities.
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Figure 7: Radial response at x = 700 m (a) and x = 1520 m (b). Note that the distance between the

column and the borehole is different depending on the region of the column considered.

For the next analysis the response is considered for t > tt. Time tt was identified such that

after t = tt the transient part vanishes, so that for t ∈ [tt, t[ there is only the forced response.

Fig. 8(a) shows the axial speed at x = 700 m and Fig. 8(b) shows its Fourier transform.



The fundamental frequency 0.220 Hz is a little bigger than the first torsional natural frequency

which is 0.214 Hz. The fundamental frequency corresponds to the self-excited vibration of the

system that is related to the torsional vibration imposed by the bit-rock interaction. Due to

the nonlinearities of the system, the multiples 0.220 × i (with i = 1, 2, ..) of the fundamental

frequency appear in the frequency spectrum.
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Figure 8: Response at x = 700 m. Axial speed (a) and its Fourier transform (b).

Fig. 9(a) shows the rotational speed about the x-axis at x = 700 m and Fig. 9(b) shows its

Fourier transform. The bit-rock interaction acts on the axial speed and on the rotational speed

about the x-axis, therefore the same kind of frequency spectrum is observed for the rotational

speed about the x-axis and for the axial speed.
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Figure 9: Response at x = 700 m. Rotational speed about the x-axis (a) and its Fourier transform (b).

Fig. 10(a) shows the rotation about the z-axis and Fig. 10(b) shows its Fourier transform.

The dominant frequency, 0.110 Hz, is equal to the half of the fundamental frequency related

to the self excited vibration. The frequency spectrum shows the multiples 0.110 × i (with

i = 1, 3, 5, ..). The same behavior is observed for the lateral response v, Figs. 11(a) and (b).
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Figure 10: Response at x = 700 m. Rotation about the z-axis (a) and its Fourier transform (b).

210 220 230 240

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Lateral response v, x= 700 m

d
is

p
la

c
e
m

e
n
t 
[m

]

time [s] (a)
0 0.5 1 1.5 2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1 Fourier transform

freq [Hz]

d
is

p
la

c
e
m

e
n
t 
[m

]

(b)

Figure 11: Response at x = 700 m. Lateral displacement v (a) and its Fourier transform (b).

Next, the dynamical response for the model with and without the fluid are compared. Fig.

12 shows the radial response for t = [0, 250]s at x = 1560 m. To better compare the two

dynamical responses, the forced response is analyzed.
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Figure 12: Comparison of the dynamical response for model with and without fluid. Radial response at

x = 1560 m.

Fig. 13 shows the forced response of the radial displacement at x = 700m. The displace-

ment is shown in log-scale. The radial response is bigger when the fluid is considered in the

model. This might be explained by the shape of the first lateral modes: when the fluid is con-

sidered, the upper region is more flexible than the bottom region (see the mode shapes in Fig.

6), so the amplitude of vibration gets bigger in the upper region. It can be observed in Fig. 13

that the self excited frequency is dominating the movement of both dynamics.
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Figure 13: Comparison of the dynamical response for model with and without fluid. Radial response at

x = 700 m.

The axial and torsional vibrations are also affected by the presence of the fluid: the fun-

damental (self excited) frequency changes when the fluid is taken into account. Fig. 14(a) and

(b) shows the axial speed of the bit (or rate-of-penetration) and its Fourier transform. When the

fluid is not taken into account, the fundamental frequency 0.210 Hz is a little lower than the first

torsional natural frequency which is 0.214 Hz.
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Figure 14: Comparison of the dynamical response for model with and without fluid. Rate-of-penetration

(ROP) (a) and its Fourier transform (b).

6. CONCLUSIONS

The drill-string dynamics accounting for the drilling fluid (mud) has been analyzed in this

paper. Note that the large majority of the published papers dealing with the nonlinear dynamics

of a drill-string does not consider the fluid-structure interaction. The column has been modeled

using the Timoshenko beam theory and discretized by means of the Finite Element Method.

Finite strains (which couple axial, lateral and torsional vibrations) are considered with no sim-

plifications and the dynamics is calculated in a prestressed configuration. A bit-rock interaction

model that describes how the bit penetrates the soil is used and impact and rubbing between the

column and the borehole are taken into account.

The fluid-structure interaction model found in Paidoussis et al. (2008) has been extended

for the analyzed problem. The fluid that flows downward inside the column and then upward in

the annulus is modeled in a simple way: the influence of the fluid is included in the model by

adding three matrices – mass, damping and stiffness – and a force that are time–independent. It

has been observed that the presence of the fluid changes the dynamical response of the system,

especially the lateral vibration of the structure. The amplitude of the axial and torsional vibra-

tions are little affected, but the self excited frequency of the system (which is related to the first

torsional natural frequency) changes when the fluid is taken into account.

The added fluid damping has not been analyzed but, as there are many uncertainties involv-

ing the damping of the structure, the best strategy would be to model theses uncertainties using,

for instance, the probability theory. Such approach is in progress.



A SHAPE FUNCTIONS

Linear shape functions are used for the axial and torsional displacements, and the shape

functions for the lateral displacements are derived by calculating the static response of the beam

(Nelson, 1980; Bazoune and Khulief, 2002):

Nu = [(1 − ξ) 0 0 0 0 0 ξ 0 0 0 0 0] ,

Nv = [0 Nw1 − Nw2 0 0 0 0 Nw3 − Nw4 0 0 0] ,

Nw = [0 0 0 Nw1 Nw2 0 0 0 0 Nw3 Nw4 0] ,

Nθx
= [0 0 0 0 0 (1 − ξ) 0 0 0 0 0 ξ] ,

Nθy
= [0 0 0 Nθ1 Nθ2 0 0 0 0 Nθ3 Nθ4 0] ,

Nθz
= [0 − Nθ1 Nθ2 0 0 0 0 − Nθ3 Nθ4 0 0 0] ,

where ξ is the element coordinate (ξ = x/le) and:

Nw1 = 1
1+ϕ

(1 − 3ξ2 + 2ξ3 + ϕ (1 − ξ)) ,

Nw2 = le

1+ϕ

(
−ξ + 2ξ2 − ξ3 + ϕ

2
(ξ2 − ξ)

)
,

Nw3 = 1
1+ϕ

(3ξ2 − 2ξ3 + ϕξ) ,

Nw4 = le

1+ϕ

(
ξ2 − ξ3 + ϕ

2
(ξ − ξ2)

)
,

Nθ1 = 1
(1+ϕ)le

(6ξ − 6ξ2) ,

Nθ2 = 1
1+ϕ

(1 − 4ξ + 3ξ2 + ϕ (1 − ξ)) ,

Nθ3 = 1
(1+ϕ)le

(−6ξ + 6ξ2) ,

Nθ4 = 1
1+ϕ

(−2ξ + 3ξ2 + ϕξ) .

with ϕ =
12EI

ksGA(le)2
. Where E is the elasticity modulus, I is the area moment of inertia (y-z

plane), ks is shearing factor, G is the shear modulus, A is the cross-sectional area and le is the

length of an element.

B NONLINEAR FORCES DUE TO THE STRAIN ENERGY

The nonlinear force element vector due to the strain energy is written as shown in Eq. (12):

(f se)(e) =

∫ 1

0

[

N′T
u f1 + N′T

v f2 + N′T
w f3 + N′T

θx
f4 + N′T

θy
f5+

+N′T
θz

f6 + NT
θx

f7 + NT
θy

f8 + NT
θz

f9

]

ledξ ,



where this organization is chosen in a way that its computation is fast. f1, .., f9 are written as:

−f1 = ksGA
(
((θe

y)
2 + (θe

z)
2)(1 + (ue)′) + θe

y((w
e)′ cos (θe

x) − (ve)′ sin (θe
x))+

−θe
z((v

e)′ cos (θe
x) + (we)′ sin (θe

x))) + EI ((θe
x)

′2(1 + (ue)′)+

+
3

2
(θe

y)
′2(1 + (ue)′) +

3

2
(θe

z)
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′((ve)′((θe
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′ sin (θe
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−(θe
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′ sin (θe
x)))

)
+

+AE

(
3

2
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1

2
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1

2
(ve)′2(1 + (ue)′) +

1

2
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)

,

(B1)

−f2 = ksGA
(
−θe

z cos (θe
x)(1 + (ue)′) − θe

y sin (θe
x)(1 + (ue)′)

)
+

+EI

(
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x)
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2
(θe
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2
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(B4)

At this point we should define the area moments of inertia I2 and I4.

I2 =

∫

A

y2z2dA ,

I4 =

∫

A

y4dA =

∫

A

z4dA .

Back to the functions:
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z(θ

e
y)

′2 + (θe
y)

′(θe
x)

′
)

+ ksGA (θe
z(u

e)′(2 + (ue)′) +

−(we)′ sin (θe
x)(1 + (ue)′) − (ve)′ cos (θe

x)(1 + (ue)′)) .

(B9)

C DATA USED IN THE SIMULATION

Ωx=0 = 5.236 [rd s−1] (imposed rotational speed about the x-axis at x = 0 m),

f c = 100 [kN] (initial reaction force at the bit),

Ldp = 1400 [m] (length of the drill pipe),

Ldc = 200 [m] (length of the drill collar), Do
dp = .127 [m] (outside diameter of the drill

pipe),

Do
dc = .2286 [m] (outside diameter of the drill collar),

Di
dp = .095 [m] (inside diameter of the drill pipe),

Di
dc = 0.0762 [m] (inside diameter of the drill collar),

Db = 0.3 [m] (diameter of the borehole),

xstab = 1400 [m] (location of the stabilizer),

kstab = 17.5 [MN m−1] (stiffness per meter used for the stabilizer),

E = 210 [GPa] (elasticity modulus of the drill string material),

ρ = 7850 [kg m−3] (density of the drill string material),



ν = .29 [-] (poisson coefficient of the drill string material),

ks = 6/7 [-] (shearing correcting factor),

kip = 1e8 [N m−1] (stiffness per meter used for the impact),

µip = 0.0005 [-] (friction coefficient between the string and the borehole),

uin = 1.5 [m s−1] (inlet flow speed),

ρf = 1200 [kg m−3] (density of the fluid),

Cf = .0125 [-] (fluid viscous damping coefficient),

k = 0 [-] (fluid viscous damping coefficient),

g = 9.81 [m s−2] (gravity acceleration),

a1 = 3.429e − 3 [m s−1],

a2 = 5.672e − 8 [m N−1 s−1)],

a3 = 1.374e − 4 [m rd−1],

a4 = 9.537e6 [N rd],

a5 = 1.475e3 [N m] (constants of the bit-rock interaction model),

e = 2 [rd/s] (regularization parameter). The damping matrix is constructed using the rela-

tionship C = α(M + Mf ) + β(K + Kf + Kg(us)) with α = .0047 and β = .002.
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