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Time-domain model of the ultrasonic wave propagation in an inhomogeneous anisotropic viscoelastic fluid/solid multilayer medium: application to cortical bone

A two-dimensional finite element time-domain method is derived to model transient wave propagation in a three-layer medium composed of an inhomogeneous transverse isotropic viscoelastic solid layer sandwiched between two dissipative acoustic fluid layers. The model couples acoustic propagation in both dissipative acoustic fluid media with the response of the solid whose constitutive equation is based on the linear theory of viscoelasticity without memory. Bone viscoelasticity is assumed to be heterogeneous and a constant spatial gradient of viscoelastic properties is considered for a value of bone thickness corresponding to a relatively thick bone. [START_REF] Haiat | Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission[END_REF]. The components of the viscoelastic tensor affecting the results are the same as those of the stiffness tensor found in [START_REF] Haiat | Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission[END_REF].

Realistic variations of the viscosity of the soft tissues within the physiological range do not affect the FAS velocity in any configuration. However, when the viscoelastic bone parameters vary within their physiological range, changes of the value of the FAS velocity (up to 301 m/s) are comparable to what has been obtained for variation of the elastic parameters

Our results highlight the importance of accounting for absorption phenomena occurring in cortical bone for the analysis of ultrasonic measurements with AT device.

Viscoelasticity, viscosity, quantitative ultrasonic techniques (QUS), finite element method, axial transmission technique, cortical bone. (key words)

I. INTRODUCTION

Different metabolic diseases such as osteoporosis may affect bone quality, resulting in a decrease of bone mass and micro-architectural deterioration of bone tissue. In axial transmission (AT) technique (which is particularly adapted to cortical long bone evaluation), both ultrasound emitter and receivers are placed in the same side of the investigated skeletal site. The earliest event or wavelet (usually called First Arriving Signal, FAS) of the multicomponent signal recorded by the receivers has been the most widely investigated. The wave velocity associated with this signal, which is measured in the time domain, can be used to discriminate healthy subjects from osteoporotic patients and is therefore considered as a relevant index of bone status [START_REF] Muller | Comparison of three ultrasonic axial transmission methods for bone assessment[END_REF][START_REF] Talmant | In vivo performance evaluation of bi-directional ultrasonic axial transmission for cortical bone assessment[END_REF]. Both experimental [START_REF] Bossy | Bi-directional axial transmission can improve accuracy and precision of ultrasonic velocity measurement in cortical bone: a validation on test material[END_REF] and simulation studies [START_REF] Bossy | Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models[END_REF] have shown that the FAS velocity was related to different bone properties. Numerical simulations have been employed to show that when the cortical thickness is comparable or larger than the wavelength, the type of wave contributing to the FAS corresponds to a lateral wave, whereas when the wavelength is larger than the cortical thickness divided by four, the received signal corresponding to the FAS comes from the first symmetric Lamb wave mode S 0 guided by the cortical thickness [START_REF] Bossy | Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: a 2D simulation study[END_REF].

From a biomechanical point of view, cortical bone is a complex transverse isotropic medium. At the macroscopic scale, porosity in the radial direction (which is associated with the cross-section of the bone) is heterogeneous at all ages and for both genders [START_REF] Bousson | Distribution of intracortical porosity in human midfemoral cortex by age and gender[END_REF][START_REF] Thomas | Regional variation of intracortical porosity in the midshaft of the human femur: age and sex differences[END_REF]: the mean porosity in inner part of the bone is significantly higher than in the outer part of the bone. Moreover, cortical bone is a strongly attenuating medium where ultrasonic propagation occurs with losses [START_REF] Sasso | Frequency dependence of ultrasonic attenuation in bovine cortical bone: an in vitro study[END_REF][START_REF] Sasso | Dependence of ultrasonic attenuation on bone mass and microstructure in bovine cortical bone[END_REF]. Interestingly, Broadband Ultrasonic Attenuation (BUA, defined as the slope of the curve of the frequency dependent attenuation coefficient) measurements performed by the group of some of the authors have recently been shown to be significantly related to the microstructure as well as to bone physical properties such as mass density and bone mineral density [START_REF] Sasso | Dependence of ultrasonic attenuation on bone mass and microstructure in bovine cortical bone[END_REF]. The potential advantage of numerical simulation tools over experimental approaches is that it can be used to determine the influence of each bone property independently. Recently, our group has determined the effect of heterogeneous material bone properties on the the FAS velocity using 2-D finite element model (FEM) [START_REF] Haiat | Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission[END_REF]. Most models of AT developed in the past have considered cortical bone and the surrounding soft tissues as elastic materials. However, the influence of ultrasonic attenuation on the ultrasonic response of the investigated anatomical site in the framework of the AT device remains unclear. Studying the influence of attenuation in bone on the FAS velocity is of particular interest since BUA has been suggested as a potential indicator of bone status.

The aim of this paper is to assess the effect of the viscoelastic nature of cortical bone and of the viscous nature of the surrounding soft tissues on the ultrasonic response obtained with an AT device. Here, bone is modeled as an anisotropic (transverse isotropic) heterogeneous (a gradient of material properties in the radial direction is considered) viscoelastic material and the surrounding soft tissues are modeled as homogeneous viscous liquids.

II. METHOD

The approach employed to determine the influence of absorption is described below and more details can be found in [START_REF] Naili | Influence of viscoelastic and viscous absorption on ultrasonic wave propagation in cortical bone: application to axial transmission[END_REF].

A. Axial transmission configuration

The geometrical configuration used in the present study is the same as the one used in [START_REF] Haiat | Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission[END_REF]. Briefly, cortical bone is modeled as a two-dimensional multilayer medium composed of one heterogeneous viscoelastic transverse isotropic solid layer (corresponding to cortical bone) sandwiched between two homogeneous viscous fluid layers as shown in Fig. 1. In the simulation, a pressure source is positioned in the fluid and the excitation signal is a Gaussian pulse with a center frequency of 1 MHz. The geometrical arrangement mimics that of an actual probe developed by the `Laboratoire d'Imagerie Paramétrique' (France) [START_REF] Bossy | Bi-directional axial transmission can improve accuracy and precision of ultrasonic velocity measurement in cortical bone: a validation on test material[END_REF]. The FAS velocity estimated is given by the slope of the position of each sensor versus time delays, obtained through a least-square linear regression.

B. Two-dimensional governing equations

In both fluid media, the formulation is written in terms of pressure. The equation of propagation in the viscous fluid is given by the dissipative wave propagation equation:

p K p p f f          , ( 1 
)
where p(x, t) denotes the pressure field, ρ f mass density, K the fluid compressibility and η f the bulk viscosity of the fluid.

In the solid media, the formulation is written in terms of displacement.

Cortical bone is modeled as an heterogeneous material using the linear theory of viscoelastic without memory. The stress tensor σ is linearly related to the strain tensor ε and to the rate-

of-deformation tensor  through     E C  
, where C is the stiffness tensor and E is the viscoelastic tensor. For a 2-D transverse isotropic medium (in the plane defined by (x,z)), the stiffness tensor writes:

           55 33 13 13 11 0 0 0 0 C C C C C C , ( 2 
)
where all stiffness coefficients are written using the Voigt notation.

The present model is based on data measured for bovine cortical bone, which has been shown to be a significantly anisotropic medium in terms of ultrasonic attenuation as BUA values measured in the axial direction are significantly smaller than BUA values obtained in the radial and tangential directions [START_REF] Sasso | Frequency dependence of ultrasonic attenuation in bovine cortical bone: an in vitro study[END_REF]. Therefore, we have considered an anisotropic (transverse isotropic) tensor E to describe the bone dissipative behavior given by:

           55 33 13 13 11 0 0 0 0 ) (      z E . ( 3 
)
Moreover, in a recent study [START_REF] Sasso | Dependence of ultrasonic attenuation on bone mass and microstructure in bovine cortical bone[END_REF], BUA values were found to depend significantly on bone mineral density as well as on mass density, which are two quantities closely related to the porosity. As the spatial distribution of porosity is heterogeneous in cortical bone [START_REF] Bousson | Distribution of intracortical porosity in human midfemoral cortex by age and gender[END_REF], the viscoelastic properties of cortical bone are also expected to be spatially dependent. Therefore, we have considered an heterogeneous behavior of the viscoelastic tensor E. At both interfaces between the fluid layers and the solid layer, the boundary conditions in terms of displacement and normal stresses are taken into account. The internodal distance in both directions is chosen at least smaller than 0.15 mm in the fluid and 0.25 mm in the solid, so that it is lower than the smallest wavelength divided by 6 in all directions and both media.

C. Determination of a realistic range of variation of material properties 1) Attenuation coefficient in the soft tissues and bone marrow

We assumed constant values for the mass density ρ f =1 g.cm -3 and the compressibility K = 2.25 10 9 Pa corresponding to an acoustic wave velocity c f of 1500 m/s in the absence of viscosity. Attenuation coefficient data taken from the literature are used in order to define realistic numerical values for the viscosity η f of the soft tissues and of bone marrow. Using a model obtained for a system in which a viscous element is placed in parallel with the spring, the attenuation coefficient α f is given by [START_REF] Royer | Elastic Waves in Solids I: Free and Guided Propagation[END_REF]:

2 2    K c f f f  (4)
when the condition

f f c    is fulfilled.

2) Stiffness tensor of cortical bone

The same approach as the one described in [START_REF] Haiat | Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission[END_REF] is used in the present work in order to define realistic numerical values for the different components of the stiffness tensor of cortical bone and for their variation.

3

) Attenuation coefficient in cortical bone

The determination of realistic values of the components of the viscoelastic tensor E is performed by considering the experimental results of ultrasonic attenuation coefficient measurements obtained in the literature. Similar relationships than Eq. ( 4) are applied in the case of longitudinal and transverse wave velocities to derive the relation between the attenuation coefficient at 1 MHz (which is obtained from the literature) and η 11 , η 33 , and η 55 respectively. We could not find in the literature a simple way to determine the value of η 13 . Therefore, the reference value of η 13 is derived from the mean values of η 11 and η 55 by assuming an isotropic behavior of viscoelasticity. In addition, the minimum and maximum values of η 13 were obtained by verifying that the thermodynamical stability conditions are always respected when varying each material property independently. The physiological ranges of variation of the other viscoelastic constants are obtained by considering the different values of ultrasonic attenuation coefficient measured in the literature.

D. Modeling a gradient of material property

The impact of a controlled gradient vector δ 11 of η 11 on the FAS velocity is investigated in the case of a relatively thick bone width (h= 4mm), all other material properties (stiffness and viscoelastic coefficients) remaining equal to their reference value. The gradient vector δ 11 = δ e z is assumed to be independent of x. Only the simple situation of affine spatial variations of C 11 is considered, corresponding to a constant value of δ. The quantity η 11 (z) is given by:

η 11 (z) = η 11m + δ z,
where η 11m corresponds to the minimal value of η 11m . The minimal value δ m of δ (which corresponds to its maximum in absolute value as δ <0) is chosen so that η 11 (-h) is equal to η 11M , where η 11M is the maximal value of η 11 .

III. RESULTS

A. Range of realistic material properties

The same approach as the one described in [START_REF] Haiat | Velocity dispersion in trabecular bone: influence of multiple scattering and of absorption[END_REF] is used to derive the attenuation coefficient in bone marrow because experimental measurements could not be found in the literature. Table I shows the different values taken into account for the viscous parameters of bone and of the soft tissues. B. Dependence of the FAS velocity to changes of viscous and viscoelastic properties of bone and surrounding fluids From the analysis of numerical simulations, the variation of the FAS velocity due to changes of viscous properties of the soft tissues and of bone marrow within a realistic range was assessed for h=0.6 and 4 mm and for homogeneous material properties. The FAS velocity is independent of the viscous properties of the soft tissues as well as of marrow within the physiological range. Therefore, the soft tissues as well as bone marrow will be considered as non viscous fluids in what follows. The variation of the FAS velocity due to changes of the viscoelastic parameters of cortical bone within a realistic range was assessed for h= 4 mm and for homogeneous material properties. Table II C. Effect of a gradient of bone viscoelastic properties Figure 2 shows the dependence of the FAS velocity on δ 11 in the case of a thick solid layer (h=4 mm). The FAS velocity increases when δ 11 increases. The dashed line of Fig. 2 shows the FAS velocity obtained when considering a constant homogeneous value of η 11 equal to its spatially averaged values. A poor agreement is obtained between the dashed and solid lines which shows that in the case of a thick bone width with heterogeneous bone properties, the FAS velocity can not be obtained by simply spatially averaging η 11 . The difference between the solid and dashed lines may lead to the estimation of a contributing penetration depth using the same method as the one described in [START_REF] Haiat | Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission[END_REF] (see [START_REF] Naili | Influence of viscoelastic and viscous absorption on ultrasonic wave propagation in cortical bone: application to axial transmission[END_REF] for more details). 

IV. DISCUSSION AND CONCLUSION

To the best of our knowledge, this study is the first one to focus on the effect of ultrasonic attenuation on the FAS velocity estimated with an axial transmission configuration for different solid layer thicknesses. The present study shows that in the studied geometrical configuration, ultrasonic attenuation effects related to the surrounding soft tissues are not likely to modify the results compared to the case with no losses. However, the results shown in Table II suggest that the effect of changes of viscoelastic properties within their estimated physiological range may be of the same order of magnitude as the effect of changes of the stiffness coefficient or mass density within the physiological range [START_REF] Haiat | Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission[END_REF]. These results indicate that attenuation is an important property which should be accounted for when modeling the ultrasonic propagation in cortical bone in the context of axial transmission. Moreover, the components of the viscoelastic tensor affecting the FAS velocity are the same as the components of the elastic tensor influencing the value of the FAS velocity found in Table II of [START_REF] Haiat | Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission[END_REF].
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Figure 1 .

 1 Figure 1. Schematic representation of the simulation domain corresponding to a three-layer medium. The emitter and receivers are indicated by indents.

Figure 2 .

 2 Figure 2. Variation of the FAS velocity versus δ 11 for h=4 mm. The continuous line indicates the results obtained with the finite element model. The dashed line corresponds to the FAS velocity obtained with homogeneous spatially averaged viscoelastic properties.

TABLE I

 I 

	.	MEAN, MAXIMUM AND MINIMUM VALUES OF THE
	VISCOELASTIC CONSTANTS OF BONE AND SOFT TISSUES
		Mean	Minimum	Maximum
	α f (dB/cm)	1	0	2
	η f (Pa.s)	2	0	4
	α 11 (dB/cm)	3.2	0.8	10.6
	η 11 (Pa.s)	157	39	521
	α 33 (dB/cm)	4.2	1.7	12.8
	η 33 (Pa.s)	109	44	334
	α 55 (dB/cm)	4	0	8
	η 55 (Pa.s)	18	0	36.2
	η 13 (Pa.s)	121	39	131

  shows that the FAS velocity is only sensitive to variations of η 11.

TABLE II

 II 

	.	SENSITIVITY OF THE FAS VELOCITY TO CHANGES OF THE
	BONE VISCOELASTIC PROPERTIES FOR H=4 MM AND HOMOGENEOUS BONE MATERIAL PROPERTIES. THE COMPUTED FAS VELOCITY IS INDICATED FOR THE
	MINIMAL AND MAXIMAL VALUES OF EACH VARIABLE CORRESPONDING TO THE
	REALISTIC RANGE OF VARIATION SHOWN IN

TABLE II

 II 

	Material property (Pa.s)	η 11	η 13	η 33	η 55
	FAS velocity for the				
	minimum value (m/s)	3654	3738	3732	3734
	FAS velocity for the				
	maximum value (m/s)	3956	3735	3734	3733