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Abstract. The aim of this work is to discuss model uncertainties, in the case of the biome-

chanics of phonation. A number of mechanical models of voice production have been proposed

in past years; but, in general, they have a deterministic nature. In previous works, data uncer-

tainties were incorporated to a two-mass model of the vocal folds to perform a probabilistic

analysis of the fundamental frequency of the oscillation. The present work is intended as a

follow-up, to explore the effect of model uncertainties, using a non-parametric probabilistic ap-

proach based on the use of a probabilistic model for symmetric positive-definite real random

matrices applying the Maximum Entropy Principle. The theory is discussed and numerical ex-

amples are presented to show that the predictability of the model may be improved when model

uncertainties are taken into account. It is shown that some realizations of the output radiated

pressure obtained are similar with samples of voice signals obtained from people with some

pathologies, as nodulus and papilomas, in their vocal folds.
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1 INTRODUCTION

To improve the predictability of models of mechanical systems uncertainties from different

sources must be considered. In general, two types of sources are discussed: (1) The first one

concerns the data from which the various parameters of the model are derived. Usually these are

uncertainties related to the geometry and properties of the material, and other similar parame-

ters. One way to incorporate them is to consider the parametric probabilistic approach, in which

the parameters are expressed as random variables; (2) The second source of uncertainties con-

cerns the structure of the model itself. Those uncertainties arise from the fact that, to compute

the response of a mechanical problem, a particular model is chosen, which does not necessarily

capture accurately the real behavior of the mechanical system. Model uncertainties are diffi-

cult to quantify because they depend heavily on the type of problem, and their effect on the

estimated response of a mechanical system is not obvious. Recently, a general non-parametric

probabilistic approach of model uncertainties for dynamical systems has been proposed using

random matrix theory [8].

In this work model uncertainties applied to a biomechanic model of phonation is discussed.

In previous works, Cataldo et al [1, 2] incorporated data uncertainties, using a parametric ap-

proch, to a two-mass model of the vocal folds [3], to perform a probabilistic analysis of the

fundamental frequency of the oscillation. Here, the aim is to follow-up the previous ideas and

to explore the effect of model uncertainties using a nonparametric approach.

2 MEAN MODEL

The two-mass model of the vocal folds, originally proposed by Ishizaka and Flanagan [3],

has provided a simple and effective representation of that system to study the underlying dy-

namics of voice production. Figure 1 shows a diagram of the model.

Figure 1: Two-mass model of the vocal folds.

For a complete representation of the vocal system, a vocal tract model must be coupled to

the vocal fold model. Here, we adopt a simple two-tube aproximation of the vocal tract. Here,

only uncertainties in the vocal fold system are taken into account. The parameters of the vocal

tract will be considered deterministic.

The dynamics of the system is given by Eqs. (1) and (2) [1]:

ψ1(w)u̇g + ψ2(w)|ug|ug + ψ3(w)ug +
1

c̃1

∫ t

0

(ug(τ) − u1(τ))dτ − y = 0 (1)
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[M ]ẅ + [C]ẇ + [K]w + h(w, ẇ, ug, u̇g) = 0 (2)

where w(t) = (x1(t), x2(t), u1(t), u2(t), ur(t))
t, the functions x1 and x2 are the displace-

ments of the masses, u1 and u2 describe the air volume flow through the (two) tubes that model

the vocal tract and ur is the air volume flow through the mouth. The subglottal pressure is

denoted by y and ug is the function that represent the glottal pulses signal. The function output

radiated pressure pr is given by pr(t) = ur(t)rr, in which rr = 128ρvc

9π3y2
2

, ρ is the air density, vc is

the sound velocity, and y2 is the radius of the second tube.

As the objective is to discuss uncertainties in the model of the vocal folds, the matrices [M ],
[C] and [K] will be written as block matrices:

[M ] =

[
[Mvf ] 0
0 [Mvt]

]
, [C] =

[
[Cvf ] 0
0 [Cvt]

]
, [K] =

[
[Kvf ] 0
0 [Kvt]

]
. (3)

The functions ψ1, ψ2, ψ3, h, and also the matrices [Mvf ], [Mvt], [Cvf ], [Cvt], [Kvf ] and [Kvt]
are described in the appendix. Figure 2 shows the output radiated pressure, considering the

following values of the parameters:

m̂1 = 0.125 g, m̂2 = 0.125 g, k̂c = 25N/m, k̂1 = 80N/m, k̂2 = 8N/m, ξ1 = 0.1, ξ2 = 0.6,
ℓg = 1.4cm, d1 = 0.25 cm, d2 = 0.05 cm and for the vocal tract model: S1 = 1 cm2, S2 =
7 cm2, L1 = 8.9 cm, L2 = 8.1 cm.
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Figure 2: Output radiated pressure (normalized) computed from the mean model.

STOCHASTIC MODEL

To construct the corresponding stochastic model, a nonparametric approach is used. Proba-

bility density functions are constructed for the mass, damping and stiffness matrices, in order

to incorporate uncertainties present on the linear part of the system.

Other quantities might be also considered as uncertain, but we restrict our analysis to the

above parameters for simplicity. The general goal is to investigate the limits and the application

of the non-parametric probabilistic approach to model voice production.

The matrices [Mvf ], [Cvf ] and [Kvf ] are substituted by random matrices [Mvf ], [Cvf ] and
[Kvf ], respectively. Probability density functions are constructed for the matrices, based on a
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non-parametric approach developed by [8]. Consequently, the matrices [M ], [C] and [K] in
Eq.(2) are substituted by the random matrices [M], [C] and [K], respectively. Vectors h and w

are substituted by the random vectors H and W, respectively. Function ug is also substituted

by the random process Ug. Therefore, Eq. (6) becomes:

[M]Ẅ + [C]Ẇ + [K]W + H(W,Ẇ, Ug, U̇g) = 0 (4)

where matrices [M], [C] and [K] are given by

[M] =

[
[Mvf ] 0
0 [Mvt]

]
, [C] =

[
[Cvf ] 0
0 [Cvt]

]
, [K] =

[
[Kvf ] 0
0 [Kvt]

]
. (5)

There are some parameters of stiffness and damping that are present in the nonlinear part of

the system, that is, in the definition of function h, but for simplicity of the analysis, they will

not be considered as uncertain.

Probability density functions will be constructed for the matrices [Mvf ], [Cvf ] and [Kvf ]
(see next section) and the Monte Carlo Method will be applied. Thus, for each realization θ,
Eq. (6) will be written as

[M(θ)]Ẅ(t, θ)+[C(θ)]Ẇ(t, θ)+[K(θ)]W(t, θ)+H(W(t, θ),Ẇ(t, θ),Ug(t, θ), U̇g(t, θ)) = 0 .
(6)

3 NONPARAMETRIC APPROACH

The non-parametric approach, rather than assessing the uncertainties on given parameters,

tries to provide a quantification of the uncertainties on a higher level and specifically, at the

level of the matrices of mass, damping and stiffness of the system. The method therefore re-

lies on random matrices. The corresponding probability density functions are constructed by

the Maximum Entropy Theorem [7, 4, 5], using algebraic properties on the matrices and their

mean values as constraints. An unique parameter for each matrix is introduced to control the

dispersion level.

The construction of the nonparametric probabilistic model is based on replacing the matrices

[Mvf ], [Cvf ], [Kvf ] by the random matrices [Mvf ], [Cvf ], [Kvf ]. The probabilistic model of
each one of these matrices is described in the following.

Let [A] be the matrix that represents each one of the matrices [Mvf ], [Cvf ] and [Kvf ]. When

applied to mechanical systems, in general, the random matrix [A] should verify the following
properties: (i) it is a real symmetric positive-definite matrix, almost surely; (ii) it is a second-

order random variable; that is, E{||[A]||2F} < +∞; (iii) the mean value E{[A]} = [A] is a real
definite-positive matrix and (iv) E{ln(det[A])} = νA, |νA| < +∞ .

However, for the random matrices [Mvf ] and [Cvf ] another restriction should be considered:
their realizations must be always diagonal matrices. The realizations will be generated followng

the general rule and the the elements extra diagonal will be set to zero.

Since [A] is positive definite, there is an upper triangular 2 × 2 matrix [L] such that [A] =
[L]T [L] and the random matrix [A] can be written as [A] = [L]T [N][L] in which [N] is a
real random matrix definite-positive, almost surely, such that: (i) it is a second-order random

variable; that is E{||[N]||2F} < +∞; (ii) its mean value is the 2 × 2 identity matrix and (iii)

E{ln(det[N]} = νN , | νN |< +∞ .
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Realizations of the random matrix [A] can be computed from the realizations of the random

matrix [N], as described in the following. It is defined with respect to the measure d̃N given by

d̃N = 21/2
∏

1≤i≤j≤2

d[N ]ij (7)

where dN =
∏

i≤i,j≤n

d[N ]ij is the Lebesgue measure on R
2. With the usual normalization

condition on the probability density function, it can be shown to be (Soize, 2000, 2001):

p[N]([N ]) = 1
M

+

2
(R)([N ]) × C[N] × (det[N ])3(1−δ2)/(2δ2) × exp

{
− 3

2δ2
tr[N ]

}
(8)

in which [N ] 7→ 1
M

+

2
(R)([N ]) is a function from M2(R) (set of all real matrices 2 × 2) into

{0, 1} that is equal to 1 when [N ] is in M
+
2 (R) and 0 otherwise, and where constant C[N] is

equal to

C[N] =
(2π)−1/2

(
3

2σ2

)3/σ2

n∏

j=1

Γ

(
3

2σ2
+

1 − j

2

) (9)

with z 7→ Γ(z) the gamma function defined for z > 0 by Γ(z) =

∫ +∞

0

tz−1e−tdt.

The dispersion parameter δN is a real parameter defined, for any random matrix [N], with
mean value [N ], by

δN =

{
E{||[N− I2]||2F}

||[N ]||2F

}1/2

, (10)

where ||.||F is the Frobenius norm. This dispersion parameter should be chosen independent

of n and such that 0 < δ <
√

3
7
, to ensure that the condition on the integrability of the inverse

of the random matrices is verified.

The probability density functions of the three matrices of mass, damping and stiffness have

been described as if they were independent. But, they correspond to the same physical problem

and it could be argued that they should be dependent. In fact, they are, through their mean

values, which are computed using the same mechanical parameters. But concerning their pro-

babilistic model, since we did not specify any particular condition of dependence, theMaximum

Entropy Theorem describes the matrices as independent (Soize,2000).

Then, one can write [N] = [LT ][L], where [L] is a real upper triangular random matrix. Let

us introduce σ2 = δ√
3
. It can be shown that

(i) random variables ([L])1≤i≤j≤n are independent;

(ii) for i < j, [L] can be written [L]ij = σ2Uij , where Uij is a Gaussian random variable with

real values, zero mean and unit variance.
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(iii) for i = j, [L]ij can be written [L]ii = σ2

√
2Vi, where Vi is a gamma random variable with

positive real values and a probability density function pVi
(v) (with respect to dv) in the

form

pVi
(v) = 1R+(v)

1

Γ
(

3
2σ2 + 1−i

2

)v
3

2σ2 −
1+i
2 e−v . (11)

This algebraic structure of [N] allows an efficient procedure to be defined for the Monte

Carlo numerical simulation of random matrix [N].
The nonparametric approach to stochastic modeling consists in setting the probability den-

sity functions of these matrices, ensuring that certain algebraic properties are verified. For the

construction of these probability distributions, the mean value and a dispersion parameter have

to be supplied for each of the matrices. We discarded the problem of the identification of the

dispersion parameters, but we still have to address that of the mean value of the matrices [Mvf ],
[Cvf ] and [Kvf ].

4 RESULTS

The Monte Carlo method is a very general resolution technique, that can deal with com-

plicated systems, with many random variables or processes. Its basic steps are: (1) generate

samples of the input random parameter vector following its prescribed set of marginal laws, (2)

compute the response of the system for each realization independently, (3) compute statistics of

the response using these response samples. Then, the Monte Carlo method will be used. The

main problem - and limitation- of this method derives from the computational time required to

assess the statistics of the response, as it is the time necessary for one deterministic computa-

tion multiplied by the number of trials. The corresponding stochastic solver is based on a Monte

Carlo numerical simulation. Realizations [Mvf ](θ), [Cvf ](θ), [Kvf ](θ), Ag0(θ) and Ys(θ) of the
random matrices [M], [C] and [K] are obtained from the probability density functions defined

before.

One of the goals here is to construct probability density functions of the fundamental fre-

quency when uncertainties in the model are taken into account using a nonparametric probabilis-

tic approach. Then, for each realization of the stochastic problem associated, the fundamental

frequency of the voice signal produced has to be calculated.

Let F0(θ) be the fundamental frequency of the radiated pressure Pr(t, θ) evaluated for each
realization. Let T (θ) be the period of the signal Ug(t, θ) for each realization θ. Then, F0(θ) =
1/T (θ).

The convergence analysis with respect to n is carried out in studying the convergence of the
estimated second-order moment of F0 defined by

Conv(n) =
1

n

n∑

j=1

F0(θj)
2. (12)

This convergence analysis is performed for δ[Mvf ] = δ[Cvf ] = δ[Kvf ] = 0.05 and Fig. 3 shows
the graph of the function n 7→ conv(n). It can be noted that a reasonable convergence is reached
for n ≥ 300.

The estimation of the probability density function pF0
of random variable F0 is constructed

as follows. Let M be the number of intervals. Let Ij = [νj , νj + ∆ν[ for j = 1, . . . ,M with

6
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Figure 3: Convergence: graphs of functions n 7→ log10Conv.

ν1 = f̃1 and ∆ν = (f̃n − f̃1)/M . An estimation p̂F0
of the probability density function of F0 is

given by

p̂F0
(f0) =

M∑

j=1

1Ij
(f0)

Nj

n∆ν
. (13)

It can be noted that the mean value is near 140Hz, which is inside the frequency band for
fundamental frequencies for men (according to the data used).

The goal of this work is to discuss the capability of the nonparametric probabilistic approach

of predicting the responses of a system, because it considers the model uncertainties.

Then, some realizations corresponding to the output radiated pressure were chosen and re-

sults are shown in Figs. 4, 5, 6, 7, 8, 9, which will be called signal A up to signal F. Herzel [6]

showed some cases of output radiated pressure with pathological characteristics. Based on his

ideas, from the realizations, six signals were chosen and they will be tested to verify if some

characteristics of pathological signals can be found.
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Figure 4: Output radiated pressure - signal A.
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Figure 5: Output radiated pressure - signal B.
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Figure 6: Output radiated pressure - signal C.
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Figure 7: Output radiated pressure - signal D.

5 TESTING THE SIGNALS USING AN ARTIFICIAL NEURAL NETWORK

The signals chosen in the last section were tested by using an artificial neural network (ANN)

described in the following. A multi-layer perceptron network was chosen to classify the voice

signals, which inputs were the values obtained from the following acoustic measures : Jitter (lo-

cal), Jitter (rap), Jitter (ppq5), Jitter (ddp), Shimmer (local), Shimmer (apq3), Shimmer (apq5),

Shimmer (apq11), Shimmer (dda), HNR (Harmonic-noise ratio) and Pitch (fundamental fre-

quency). The description of each acoustic measure can be found, for example, in [10]. To train

the network were used 107 voice signals recorded from patients with normal and pathological

voices, asking them to repeat a vowel /a/. The patologies used were: nodules, papilommas and
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Figure 8: Output radiated pressure - signal E.

10 20 30 40 50 60
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time(ms)

O
ut
pu
t r
ad
ia
te
d 
pr
es
su
re

Figure 9: Output radiated pressure - signal F.

unilateral paralysis. After training the network, the six chosen signal showed before were tested

and the results showed in Tab.1 were achieved:

Signal Classification

A nodule

B normal

C normal

D papilomma

E nodule

F papilomma

Table 1: Signals classification.

These results show the possibility of understanding phenomena of voice production related

to pathological cases. A possibility is to identify what were the realizations of the mass, stiff-

ness and damping random matrices that generated the results obtained and then to reconstruct

the corresponding mechanical model. This could be a good help for preventing or diagnosing

pathologies related to voice production.

6 CONCLUSIONS

A non-parametric probabilistic approach has been proposed to model uncertainties in a

model of vocal folds for voice production. As it has been presented in the literature, model
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uncertainties cannot be modeled by using parametric probabilistic approach, that is, if proba-

bility density functions are constructed directly for chosen uncertain parameters. The results

obtained showed that the non-parametric probabilistic approach, applied to the model used, is

capable of predicting realizations of the output radiated pressure which matches experimen-

tal data, both in cases of normal phonation and in voice disorders. By using the experience

that has been acquired with this work and other, it can be said that some results obtained here

could not be obtained by using the parametric probabilistic approach. But, this should be better

investigated.
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APPENDIX

ψ1(w) = ( ρd1

ag0
+2ℓgx1

+ ρd2

ag0
+2ℓgx2

+ ℓ̃1)

ψ2(w) = ( 0.19ρ
ag0

+2ℓgx1
+ 2ℓgx1) + ρ

(ag0
+2ℓgx2)2

[
0.5 − ag0

+2ℓgx2

a1

(
1 − ag0

+2ℓgx2

a1

)]

ψ3(w) = (12µℓg
d1

(ag0
+2ℓgx1)3

+ 12ℓ2g
d2

(ag0
+2ℓgx2)3

+ r1)

[Mvf ] =

[
m1 0
0 m2

]
, [Mvt] =




ℓ̃1 + ℓ̃2 0 0

0 ℓ̃2 + ℓ̃r −ℓ̃r
0 −ℓ̃r ℓ̃r





[Cvf ] =

[
c1 0
0 c2

]
, [Cvt] =



r1 + r2 0 0

0 r2 0
0 0 rr


 ,

[Kvf ] =

[
k1 + kc −kc

−kc k2 + kc

]
, [Kvt] =




1
c̃1

+ 1
c̃2

− 1
c̃2

0

− 1
c̃2

1
c̃2

0 ,

0 0 0





h(w, ẇ, ug, u̇g) =




s1(x1) + t1(x1)ẋ1 − f1(x1, ug, u̇g)
s2(x2) + t2(x2)ẋ2 − f2(x1, x2, ug, u̇g)

− 1
c̃1
ug

0
0



,

where

ℓ̃n = ρℓn

2πy2
n
, ℓ̃r = 8ρ

3π2yn
, rn = 2

yn

√
ρµω

2
, ω =

√
k1

m1
, an = πy2

n, c̃n = ℓnπy2
n

ρv2
c
, ℓn is the length

of the n th tube, yn is the radius of the n th tube, and µ is the shear viscosity coefficient.

sα(wα) =





kαηkα
x3

α , xα > −ag0

2ℓg

kαηkα
x3

α + 3kα

{(
wα +

ag0

2ℓg

)
+ ηhα

(
wα +

ag0

2ℓg

)3
}
, xα ≤ −ag0

2ℓg

, α = 1, 2.

tα(xα) =

{
0 , xα > −ag0

2ℓg

2ξ
√
m1k1 , xα ≤ −ag0

2ℓg

, α = 1, 2.

f1(x1, ug, u̇g) =

{
ℓgd1pm1

(x1, ug, u̇g) , x1 > −ag0

2ℓg

0 , otherwise

f2(x1, x2, ug, u̇g) =





ℓgd2pm2
(w1, w2, ug, u̇g) , x1 > −ag0

2ℓg
and x2 > −ag0

2ℓg

ℓgd2ps , x1 > −ag0

2ℓg
and x2 ≤ −ag0

2ℓg

0 , otherwise

pm1
(x1, ug, u̇g)

= ps − 1.37ρ
2

(
ug

ag0
+2ℓgx1

)2

− 1
2

(
12µℓg

d1

(ag0
+2ℓgx1)3

+ ρd1

ag0
+2ℓgx1

)
u̇g
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pm2
(x1, x2, ug, u̇g) = pm1

− ∗
∗ = 1

2

{
(12µℓg

d1

(ag0
+2ℓgx1)3

+ 12ℓ2g
d2

(ag0
+2ℓgx2)3

)ug + ( ρd1

ag0
+2ℓgx1

+ ρd2

ag0
+2ℓgx2

)u̇g

}

−ρ
2
u2

g

(
1

(ag0
+2ℓgx2)2

− 1
(ag0

+2ℓgx1)2

)
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