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Abstract

We prove a strong approximation result for the empirical process associated to a stationary se-
quence of real-valued random variables, under dependence conditions involving only indicators of half
lines. This strong approximation result also holds for the empirical process associated to iterates of
expanding maps with a neutral fixed point at zero, as soon as the correlations decrease more rapidly
than n−1−δ for some positive δ. This shows that our conditions are in some sense optimal.

1 Introduction

Let (Xi)i∈Z be a strictly stationary sequence of real-valued random variables with common distribution
function F , and define the empirical process of (Xi)i∈Z by

RX(s, t) =
∑

1≤k≤t

(
1Xk≤s − F (s)

)
, s ∈ R , t ∈ R

+ . (1.1)

For independent identically distributed (iid) random variables Xi with the uniform distribution over
[0, 1], Komlós, Major and Tusnády (1975) constructed a continuous centered Gaussian process KX

with covariance function

E
(
KX(s, t)KX(s′, t′)

)
= (t ∧ t′)(s ∧ s′ − ss′)

in such a way that

sup
s∈R,t∈[0,1]

|RX(s, [nt]) − KX(s, [nt])| = O(log2 n) almost surely, (1.2)

(we refer also to Castelle and Laurent-Bonvalot (1998) for a detailed proof). The rate of convergence
given in (1.2) improves on the one obtained earlier by Kiefer (1972) and the two-parameter Gaussian
process KX is known in the literature as the Kiefer process.

Such a strong approximation allows not only to derive weak limit theorems, as Donsker’s invariance
principle (1952) for the empirical distribution function, but also almost sure results, as the functional
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form of the Finkelstein’s law of the iterated logarithm (1971). Moreover, from a statistical point of
view, strong approximations with rates allow to construct many statistical procedures (we refer to the
monograph of Shorack and Wellner (1986) which shows how the asymptotic behavior of the empirical
process plays a crucial role in many important statistical applications).

In the dependent setting, the weak limiting behavior of the empirical process RX has been studied
by many authors in different cases. See, among many others: Dehling and Taqqu (1989) for station-
ary Gaussian sequences, Giraitis and Surgailis (2002) for linear processes, Yu (1993) for associated
sequences, Borovkova, Burton and Dehling (2001) for functions of absolutely regular sequences, Rio
(2000) for strongly mixing sequences, Wu (2008) for functions of iid sequences and Dedecker (2010)
for β-dependent sequences.

Strong approximations of type (1.2), for the empirical process with dependent data, have been
less studied. Berkes and Philipp (1977) proved that, for functions of strongly mixing sequences
satisfying α(n) = O(n−8) (where α(n) is the strong mixing coefficient of Rosenblatt (1956)), and if F
is continuous, there exists a two-parameter continuous Gaussian process KX such that

sup
s∈R,t∈[0,1]

|RX(s, [nt]) − KX(s, [nt])| = O(
√

n(ln(n))−λ) almost surely, (1.3)

for some λ > 0. The covariance function ΓX of KX is given by

ΓX(s, s′, t, t′) = min(t, t′)ΛX(s, s′),

where
ΛX(s, s′) =

∑

k≥0

Cov(1X0≤s,1Xk≤s′) +
∑

k>0

Cov(1X0≤s′ ,1Xk≤s) . (1.4)

As a corollary, Berkes and Philipp (1977) obtained that the sequence {(2n ln lnn)−1/2RX(s, [nt]), n ≥
3} of random functions on R × [0, 1] is with probability one relatively compact for the supremum
norm, and that the set of limit points is the unit ball of the of the reproducing kernel Hilbert space
(RKHS) associated with ΓX . Their result generalizes the functional form of the Finkelstein’s law of
the iterated logarithm. Next, Yoshihara (1979) weakened the strong mixing condition required in
Berkes and Philipp (1977), and proved the strong approximation (1.3) assuming α(n) = O(n−a) for
some a > 3. However this condition still appears to be too restrictive: indeed Rio (2000, Th. 7.2 p.
96) proved that the weak convergence of n−1/2RX(s, n) to a Gaussian process holds in D(R) under the
weaker condition α(n) = O(n−a) for some a > 1. In view of this result, one may think that the strong
approximation by a Kiefer process, as given in (1.3), holds as soon as the dependence coefficients are
of the order of O(n−a) for some a > 1.

Since the classical mixing coefficients have some limitated applicability, many papers have been
written in the last decade to derive limit theorems under various weak dependence measures (see
for instance the monograph by Dedecker et al (2007)). Concerning the empirical process, Dedecker
(2010) proved that the weak convergence of n−1/2RX(s, n) to a Gaussian process holds in D(R)
under a dependence condition involving only indicators of half line, whereas Wu (2008) obtained
the same result under conditions on, what he called, the predictive dependent measures. These
predictive dependence measures allow coupling by independent sequences and are well adapted to some
functions of iid sequences. However they seem to be less adequate for functionals of nonirreducible
Markov chains or dynamical systems having some invariant probability. The recent paper by Berkes,
Hörmann and Shauer (2009) deals with strong approximations as in (1.3) in the weak dependent
setting by considering, what they called, S-mixing conditions. Actually their S-mixing condition lies
much closer to the predictive dependent measures considered by Wu (2008) and is also very well
adapted to functions of iid sequences. Roughly speaking they obtained (1.3) as soon as F is Lipschitz
continuous, the sequence (Xi)i∈Z can be approximated by a 2m-dependent sequence, and one has a
nice control of the deviation probability of the approximating error.

2



In this paper, we prove that the strong approximation (1.3) holds under a dependence condition
involving only indicators of half line, which is quite natural in this context (see the discussion at the
beginning of Section 2 in Dedecker (2010)). More precisely, if β2,X(n) = O(n−(1+δ)) for some positive
δ, where the coefficients β2,X(n) are defined in the next section, we prove that there exists a continuous
(with respect to its natural metric) centered Gaussian process KX with covariance function given by
(1.4) such that

sup
s∈R,t∈[0,1]

|RX(s, [nt]) − KX(s, [nt])| = O(n1/2−ε) almost surely, (1.5)

for some ε > 0. As consequences of (1.5), we obtain the functional form of the Finkelstein’s law of the
iterated logarithm and we recover the empirical central limit theorem obtained in Dedecker (2010).
Notice that our dependence condition cannot be directly compared to the one used in the paper by
Berkes, Hörmann and Shauer (2009).

In Theorem 3.1, we show that (1.5) also holds for the empirical process associated to an expanding
map T of the unit interval with a neutral fixed point at 0, as soon as the parameter γ belongs to
]0, 1/2[ (this parameter describes the behavior of T in the neighborhood of zero). Moreover, we shall
prove that the functional law of the iterated cannot hold at the boundary γ = 1/2, which shows that
our result is in some sense optimal (see Remark 3.2 for a detailed discussion about the optimality of
the conditions).

Let us now give an outline of the methods used to prove the strong approximation (1.5). We
consider the dyadic fluctuations

(
RX(s, 2L+1) − RX(s, 2L)

)
L≥0

of the empirical process on a grid

with a number of points depending on L, let say dL. Our proof is mainly based on the existence
of multidimensional Gaussian random variables in R

dL that approximate, in a certain sense, the
fluctuations of the empirical process on the grid. These multidimensional Gaussian random variables
will be the skeleton of the approximating Kiefer process. To prove the existence of these Gaussian
random variables, we apply a conditional version of the Kantorovich-Rubinstein Theorem, as given
in Rüschendorf (1985) (see our Section 4.1.1). The multidimensional Gaussian random variables are
constructed in such a way that the error of approximation in L

1 of the supremum norm between the
fluctuations of the empirical process on the grid and the multidimensional Gaussian r.v’s is exactly
the expectation of the Wasserstein distance of order 1 (with the distance associated to the supremum
norm) between the conditional law of the fluctuations of the empirical process on the grid and the
corresponding multidimensional Gaussian law (see Definition 4.1 and the equality (4.5)). This error
can be evaluated with the help of the Lindeberg method as done in Section 4.1.3. The oscillations of
the empirical process; namely, the quantities involved in (4.21) and (4.22), are handled with the help
of a suitable exponential inequality combined with the Rosenthal-type inequality proved by Dedecker
(2010, Proposition 3.1). Moreover, it is possible to adapt the method of constructing the skeleton
Kiefer process (by conditioning up to the future rather than to the past) to deal with the empirical
process associated to intermittent maps.

The paper is organized as follows: in Section 2 (resp. Section 3) we state the strong approximation
results obtained for the empirical process associated to a class of stationary sequences (resp. to a class
of intermittent maps). Section 4 is devoted to the proof of the main results, whereas some technical
tools are stated and proved in Appendix.

2 Strong approximation for the empirical process associated

to a class of stationary sequences

Let (Xi)i∈Z be a strictly stationary sequence of real-valued random variables defined on the probability
space (Ω,A, P). Assume that (Ω,A, P) is large enough to contain a sequence (Ui)i∈Z = (δi, ηi)i∈Z
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of iid random variables with uniform distribution over [0, 1]2, independent of (Xi)i∈Z. Define the
nondecreasing filtration (Fi)i∈Z by Fi = σ(Xk : k ≤ i). Let F−∞ =

⋂
i∈Z

Fi and F∞ =
∨

i∈Z
Fi. We

shall denote by Ei the conditional expectation with respect to Fi.

Let us now define the dependence coefficients of the sequence (Xi)i∈Z that we consider in this
paper.

Definition 2.1 Let P be the law of X0 and P(Xi,Xj) be the law of (Xi, Xj). Let PXk|X0
be the

conditional distribution of Xk given X0, PXk|Fℓ
be the conditional distribution of Xk given Fℓ, and

P(Xi,Xj)|Fℓ
be the conditional distribution of (Xi, Xj) given Fℓ. Define the functions ft = 1]−∞,t], and

f
(0)
t = ft − P (ft). Define the random variables

b(X0, k) = sup
t∈R

|PXk|X0
(ft) − P (ft)| ,

b1(Fℓ, k) = sup
t∈R

|PXk|Fℓ
(ft) − P (ft)| ,

b2(Fℓ, i, j) = sup
(s,t)∈R2

|P(Xi,Xj)|Fℓ
(f

(0)
t ⊗ f (0)

s ) − P(Xi,Xj)(f
(0)
t ⊗ f (0)

s )| .

Define now the coefficients

β(σ(X0), Xk) = E(b(X0, k)), β1,X(k) = E(b1(F0, k)) ,

and β2,X(k) = max{β1(k), sup
i>j≥k

E((b2(F0, i, j)))} .

Define also
α1,X(k) = sup

t∈R

‖PXk|F0
(ft) − P (ft)‖1 ,

and note that α1,X(k) ≤ β1,X(k) ≤ β2,X(k).

Examples of non mixing sequences (Xi)i∈Z in the sense of Rosenblatt (1956) for which the coeffi-
cients β2,X(n) can be computed may be found in the paper by Dedecker and Prieur (2007). We shall
present another example in the next section.

Our main result is the following:

Theorem 2.1 Assume that β2,X(n) = O(n−1−δ) for some δ > 0. Then

1. for all (s, s′) in R
2, the series ΛX(s, s′) defined by (1.4) converges absolutely.

2. For any (s, s′) ∈ R
2 and (t, t′) in R

+ × R
+, let ΓX(s, s′, t, t′) = min(t, t′)ΛX(s, s′). There exists

a centered Gaussian process KX with covariance function ΓX , whose sample paths are almost
surely uniformly continuous with respect to the pseudo metric

d((s, t), (s′, t′)) = |F (s) − F (s′)| + |t − t′| ,

and such that (1.5) holds with ε = δ2/(22(δ + 2)2).

Note that we do not make any assumption on the continuity of the distribution function F .
As in the paper of Berkes, Hörmann and Shauer (2009), we can formulate corollaries to Theorem

2.1. The first one is direct. To obtain the second one, we need to combine the strong approximation
(1.5) with Theorem 2 in Lai (1974).

Corollary 2.1 Assume that β2,X(n) = O(n−1−δ) for some δ > 0. Then the empirical process
{n−1/2RX(s, [nt]), s ∈ R, t ∈ [0, 1]} converges in D(R × [0, 1]) to the Gaussian process KX defined
in Item 2 of Theorem 2.1.
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Corollary 2.2 Assume that β2,X(n) = O(n−1−δ) for some δ > 0. Then, with probability one, the
sequence {(2n ln lnn)−1/2RX(s, [nt]), n ≥ 3} of random functions on R × [0, 1] is relatively compact
for the supremum norm, and the set of limit points is the unit ball of the of the reproducing kernel
Hilbert space (RKHS) associated with the covariance function ΓX defined in Theorem 2.1.

3 Strong approximation for the empirical process associated

to a class of intermittent maps

In this section, we consider the following class of intermittent maps, introduced in Dedecker, Gouëzel
and Merlevède (2010):

Definition 3.1 A map T : [0, 1] → [0, 1] is a generalized Pomeau-Manneville map (or GPM map) of
parameter γ ∈]0, 1[ if there exist 0 = y0 < y1 < · · · < yd = 1 such that, writing Ik =]yk, yk+1[,

1. The restriction of T to Ik admits a C1 extension T(k) to Ik.

2. For k ≥ 1, T(k) is C2 on Ik, and infx∈Ik
|T ′

(k)(x)| > 1.

3. T(0) is C2 on ]0, y1], with T ′
(0)(x) > 1 for x ∈ (0, y1], T ′

(0)(0) = 1 and T ′′
(0)(x) ∼ cxγ−1 when

x → 0, for some c > 0.

4. T is topologically transitive; that is, there exists some x in ]0, 1[ such that {Tn(x) : n ∈ N} is a
dense subset of ]0, 1[.

The third condition ensures that 0 is a neutral fixed point of T , with T (x) = x + c′x1+γ(1 + o(1))
when x → 0. The fourth condition is necessary to avoid situations where there are several absolutely
continuous invariant measures, or where the neutral fixed point does not belong to the support of the
absolutely continuous invariant measure. As a well known example of a GPM map, let us cite the
Liverani-Saussol-Vaienti (1999) map (LSV map) defined by

T (x) =

{
x(1 + 2γxγ) if x ∈ [0, 1/2]

2x − 1 if x ∈ (1/2, 1].

Theorem 1 in Zweimüller (1998) shows that a GPM map T admits a unique absolutely continuous
invariant probability measure ν, with density hν . Moreover, it is ergodic, has full support, and
hν(x)/x−γ is bounded from above and below.

Let Q be the Perron-Frobenius operator of T with respect to ν, defined by

ν(f · g ◦ T ) = ν(Q(f)g) , (3.1)

for any bounded measurable functions f and g. Let (Xi)i∈Z be a stationary Markov chain with
invariant measure ν and transition Kernel Q. Dedecker and Prieur (2009, Theorem 3.1) have proved
that

β2,X(n) = O(n−a) for any a < (1 − γ)/γ (3.2)

(this upper bound was stated for the Liverani-Saussol-Vaienti map only, but is also valid in our
context: see the last paragraph of the introduction in Dedecker and Prieur (2009)). As a consequence,
if γ < 1/2, the stationary sequence (Xi)i∈Z satisfies all the assumptions of Theorem 2.1.

Now (T, T 2, . . . , Tn) is distributed as (Xn, Xn−1, . . . , X1) on ([0, 1], ν) (see for instance Lemma
XI.3 in Hennion and Hervé (2001)). Hence any information on the law of

∑n
i=1(f ◦ T i − ν(f)) can be
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obtained by studying the law of
∑n

i=1(f(Xi) − ν(f)). However, the reverse time property cannot be
used directly to transfer the almost sure results for

∑n
i=1(f(Xi)−ν(f)) to the sum

∑n
i=1(f ◦T i−ν(f)).

For any s ∈ [0, 1] and t ∈ R, let us consider the empirical process associated to the dynamical
system T :

RT (s, t) =
∑

1≤i≤t

(1T i≤s − Fν(s)) where Fν(s) = ν([0, s]) . (3.3)

For any ν-integrable function g, let g(0) = g − ν(g) and recall that fs = 1]−∞,s]. Our main result
is the following:

Theorem 3.1 Let T be a GPM map with parameter γ ∈]0, 1/2[. Then

1. For all (s, s′) ∈ [0, 1]2, the following series converges absolutely:

ΛT (s, s′) =
∑

k≥0

ν(f (0)
s · f (0)

s′ ◦ T k) +
∑

k>0

ν(f
(0)
s′ · f (0)

s ◦ T k) . (3.4)

2. For any (s, s′) ∈ [0, 1]2 and any (t, t′) ∈ R
+ × R

+, let ΓT (s, s′, t, t′) = min(t, t′)ΛT (s, s′). There
exists a continuous centered Gaussian process K∗

T with covariance function ΓT such that for
some ε > 0,

sup
(s,t)∈[0,1]2

|RT (s, [nt]) − K∗
T (s, [nt])| = O(n1/2−ε) almost surely.

Remark 3.1 According to the proof of Theorem 3.1, Item 2 holds for any ε in ]0, (1 − 2γ)2/22[.

Remark 3.2 In the case γ = 1/2, Dedecker (2010, Proposition 4.1) proved that, for the LSV map with
γ = 1/2, the finite dimensional marginals of the process {(n lnn)−1/2RT (·, n)} converge in distribution
to those of the degenerated Gaussian process G defined by

for any t ∈ [0, 1], G(t) =
√

hν(1/2)(1 − Fν(t))1t6=0Z ,

where Z is a standard normal. This shows that an approximation by a Kiefer process as in Theorem
3.1 cannot hold at the boundary γ = 1/2.

For the same reason, when γ = 1/2, the conclusion of Theorem 2.1 does not apply to the stationary
Markov chain (Xi)i∈Z with invariant measure ν and transition kernel Q given in (3.1). In fact, it
follows from Theorem 3.1 in Dedecker and Prieur (2009) that β2,X(k) > C/k for some positive
constant C, so that the Markov chain (Xi)i∈Z does not satisfy the assumptions of Theorem 2.1.

In the case γ = 1/2, with the same proof as that of Theorem 1.7 of Dedecker, Gouëzel and Merlevède
(2010), we see that, for any (s, t) ∈ [0, 1]2 and b > 1/2,

lim
n→∞

1√
n(lnn)b

RT (s, [nt]) = 0 almost everywhere.

This almost sure result is of the same flavour than in the corresponding iid case, when the random
variables have exactly a weak moment of order 2, so that the normalization in the central limit theorem
is (n lnn)−1/2: see the discussion in Dedecker, Gouëzel and Merlevède (2010), last paragraph of
Section 1.2.

4 Proofs

In this section we shall sometimes use the notation an ≪ bn to mean that there exists a numerical
constant C not depending on n such that an ≤ Cbn, for all positive integers n.
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4.1 Proof of Theorem 2.1

Notice first that for any (s, s′) ∈ R
2,

|Cov(1X0≤s,1Xk≤s′)| ≤ ‖E0(1Xk≤s′ − F (s′))1X0≤s‖1 ≤ E(b(X0, k)) ≤ β1,X(k) .

Since
∑

k≥0 β1,X(k) < ∞, Item 1 of Theorem 2.1 follows.
To prove Item 2, we first introduce another probability on Ω. Let P

∗
0 be the probability on Ω whose

density with respect to P is

C(β)−1
(
1 + 4

∞∑

k=1

b(X0, k)
)

with C(β) = 1 + 4

∞∑

k=1

β(σ(X0), Xk) . (4.1)

Recall that P is the distribution of X0. Then the image measure P ∗ of P
∗
0 by X0 is absolutely

continuous with respect to P with density

C(β)−1
(
1 + 4

∞∑

k=1

b(x, k)
)
. (4.2)

Let FP∗ be the distribution function of P ∗, and let FP∗(x − 0) = supz<x FP∗(z). Recall that the
sequence (ηi)i∈Z of iid random variables with uniform distribution over [0, 1] has been introduced at
the beginning of Section 2. Define then the random variables

Yi = FP∗(Xi − 0) + ηi(FP∗(Xi) − FP∗(Xi − 0)) . (4.3)

Let PY be the distribution of Y0, and FY be the distribution function of Y0. Some properties of
the sequence (Yi)i∈Z are given in Lemma 5.1 of the appendix. In particular, it follows from Lemma
5.1 that Xi = F−1

P∗ (Yi) almost surely, where F−1
P∗ is the generalized inverse of the cadlag function FP∗ .

Hence RX(·, ·) = RY (FP∗(·), ·) almost surely, where

RY (s, t) =
∑

1≤k≤t

(
1Yk≤s − FY (s)

)
, s ∈ [0, 1] , t ∈ R

+ .

We now prove that, if β2,X(n) = O(n−1−δ) for some δ > 0, then the conclusion of Theorem 2.1
holds for the stationary sequence (Yi)i∈Z and the associated continuous Gaussian process KY with
covariance function ΓY (s, s′, t, t′) = min(t, t′)ΛY (s, s′) where

ΛY (s, s′) =
∑

k≥0

Cov(1Y0≤s,1Yk≤s′) +
∑

k>0

Cov(1Y0≤s′ ,1Yk≤s) . (4.4)

This imply Theorem 2.1, since ΓX(s, s′, t, t′) = ΓY (FP∗(s), FP∗(s′), t, t′).
The proof is divided in two steps: the construction of the Kiefer process with the help of a

conditional version of the Kantorovich-Rubinstein theorem, and a probabilistic upper bound for the
error of approximation.

4.1.1 Construction of the Kiefer process

For L ∈ N, let m(L) ∈ N and r(L) ∈ N
∗ be such that m(L) ≤ L and 4r(L) ≤ m(L). For j in

{1, . . . , 2r(L) − 1}, let sj = j2−r(L) and define for any ℓ ∈ {1, . . . , 2L−m(L)},

IL,ℓ =]2L + (ℓ − 1)2m(L), 2L + ℓ2m(L)] ∩ N and U
(j)
L,ℓ =

∑

i∈IL,ℓ

(
1Yi≤sj

− FY (sj)
)
.
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The associated column vectors UL,ℓ are then defined in R
2r(L)−1 by

UL,ℓ =
(
U

(1)
L,ℓ, . . . , U

(2r(L)−1)
L,ℓ

)′
.

Let us now introduce some definitions.

Definition 4.1 Let m be a positive integer. Let P1 and P2 be two probabilities on (Rm,B(Rm)). Let
d be a distance on R

m associated to a norm. The Wasserstein distance of order 1 between P1 and P2

with respect to the distance d is defined by

Wd(P1, P2) = inf{E(d(X, Y )), (X, Y ) such that X ∼ P1, Y ∼ P2} = sup
f∈Lip(d)

(P1(f) − P2(f)) ,

where Lip(d) is the set of functions from R
m into R that are 1-Lipschitz with respect to d; namely for

any x and y of R
m, |f(x) − f(y)| ≤ d(x, y).

Definition 4.2 Let r be a positive integer. For x =
(
x(1), . . . , x(2r−1)

)′
and y =

(
y(1), . . . , y(2r−1)

)′
,

we set
dr(x, y) = sup

j∈{1,...,2r−1}

|x(j) − y(j)| .

Let L ∈ N and ℓ ∈ {1, . . . , 2L−m(L)}. Let

ΛY,L = (ΛY (sj , sj′))j,j′=1,...,2r(L)−1 ,

where the ΛY (sj , sj′) are defined in (4.4). Let G2m(L)ΛY,L
denote the N (0, 2m(L)ΛY,L)-law and

PUL,ℓ|F2L+(ℓ−1)2m(L)
be the conditional distribution of UL,ℓ given F2L+(ℓ−1)2m(L) .

According to Rüschendorf (1985) (see also Theorem 2 in Dedecker, Prieur and Raynaud de Fitte

(2006)), there exists a random variable VL,ℓ =
(
V

(1)
L,ℓ , . . . , V

(2r(L)−1)
L,ℓ

)′
with law G2m(L)ΛY,L

, measurable
with respect to σ(δ2L+ℓ2m(L))∨σ(UL,ℓ)∨F2L+(ℓ−1)2m(L) , independent of F2L+(ℓ−1)2m(L) and such that

E
(
dr(L)(UL,ℓ, VL,ℓ)

)
= E

(
Wdr(L)

(PUL,ℓ|F2L+(ℓ−1)2m(L)
, G2m(L)ΛL

)
)

(4.5)

= E sup
f∈Lip(dr(L))

(
E

(
f(UL,ℓ)|F2L+(ℓ−1)2m(L)

)
− E(f(VL,ℓ))

)
.

By induction on ℓ, the random variables (VL,ℓ)ℓ=1,...,2L−m(L) are mutually independent, indepen-

dent of F2L and with law N (0, 2m(L)ΛY,L). Hence we have constructed Gaussian random variables
(VL,ℓ)L∈N,ℓ=1,...,2L−m(L) that are mutually independent. In addition, according to Lemma 2.11 of Dud-
ley and Philipp (1983), there exists a Kiefer process KY with covariance function ΓY such that for
any L ∈ N, any ℓ ∈ {1, . . . , 2L−m(L)} and any j ∈ {1, . . . , 2r(L)−1},

V
(j)
L,ℓ = KY (sj , 2

L + ℓ2m(L)) − KY (sj , 2
L + (ℓ − 1)2m(L)) . (4.6)

Our construction is now complete.
In Proposition 4.1 proved in Section 4.1.3, we shall bound up the quantities E

(
dr(L)(UL,ℓ, VL,ℓ)

)

for L ∈ N and ℓ ∈ {1, . . . , 2L−m(L)}, showing that under our condition on the dependence coefficients
there exists a positive constant C such that

E
(
dr(L)(UL,ℓ, VL,ℓ)

)
≤ C2(m(L)+2r(L))/((2+δ)∧3)L2 . (4.7)

In Section 4.1.2 below, starting from (4.7), we shall bound up the error of approximation between the
empirical process and the Kiefer process.
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4.1.2 Upper bound for the approximation error

Let {KY (s, t), s ∈ [0, 1], t ≥ 0} be the Gaussian process constructed as in the step 1 with the following
choice of r(L) and m(L). For ε < 1/10, let

r(L) = ([L/5] ∧ [2εL + 5 log2(L)]) ∨ 1 and m(L) = L − r(L) , (4.8)

so that, for L large enough,

22εL−1L5 ≤ 2r(L) ≤ 22εLL5 and 2L(1−2ε)L−5 ≤ 2m(L) ≤ 21+L(1−2ε)L−5 . (4.9)

Let N ∈ N
∗ and let k ∈]1, 2N+1]. To shorten the notations, let KY = K and RY = R. We first notice

that

sup
1≤k≤2N+1

sup
s∈[0,1]

∣∣R(s, k) − K(s, k)
∣∣ ≤ sup

s∈[0,1]

∣∣R(s, 1) − K(s, 1)
∣∣ +

N∑

L=0

DL . (4.10)

where
DL := sup

2L<ℓ≤2L+1

sup
s∈[0,1]

∣∣(R(s, ℓ) − R(s, 2L)) − (K(s, ℓ) − K(s, 2L))
∣∣ . (4.11)

Notice first that sups∈[0,1] |R(s, 1) − K(s, 1)| ≤ 1 + sups∈[0,1] |K(s, 1)|. Dedecker (2010) (see the
beginning of the proof of his Theorem 2.1) has proved that, for u and v in [0, 1] and any positive
integer n,

Var
(
K(u, n) − K(v, n)

)
≤ C(β)n|u − v| . (4.12)

Therefore according to Theorem 11.17 in Ledoux and Talagrand (1991), E(sups∈[0,1] |K(s, 1)|) = O(1).
It follows that for any ε ∈]0, 1/2[,

sup
s∈[0,1]

|R(s, 1) − K(s, 1)| = O(2N( 1
2−ε)) a.s. (4.13)

To prove Theorem 2.1, it then suffices to prove that for any L ∈ {0, . . . , N},

DL = O(2L( 1
2−ε)) a.s. for ε = δ2/(22(δ + 2)2). (4.14)

With this aim, we decompose DL with the help of several quantities. For any K ∈ N and any s ∈ [0, 1],
let ΠK(s) = 2−K [2Ks]. Notice that the following decomposition is valid: For any L ∈ N,

DL ≤ DL,1 + DL,2 + DL,3 , (4.15)

where

DL,1 = sup
2L<ℓ≤2L+1

sup
s∈[0,1]

∣∣(R(s, ℓ) − R(Πr(L)(s), ℓ)) − (R(s, 2L) − R(Πr(L)(s), 2
L))

∣∣ ,

DL,2 = sup
2L<ℓ≤2L+1

sup
s∈[0,1]

∣∣(K(s, ℓ) − K(Πr(L)(s), ℓ)) − (K(s, 2L) − K(Πr(L)(s), 2
L))

∣∣ ,

DL,3 = sup
2L<ℓ≤2L+1

sup
s∈[0,1]

∣∣(R(Πr(L)(s), ℓ) − R(Πr(L)(s), 2
L)) − (K(Πr(L)(s), ℓ) − K(Πr(L)(s), 2

L))
∣∣ .

In addition,

DL,3 ≤ AL,3 + BL,3 + CL,3 , (4.16)
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where

AL,3 = sup
j∈{1,...,2r(L)−1}

sup
k≤2L−m(L)

∣∣∣
k∑

ℓ=1

(U
(j)
L,ℓ − V

(j)
L,ℓ )

∣∣∣ ,

BL,3 = sup
j∈{1,...,2r(L)−1}

sup
k≤2L−m(L)

sup
ℓ∈IL,k

∣∣∣R(sj , ℓ) − R(sj , 2
L + (k − 1)2m(L))

∣∣∣ ,

CL,3 = sup
j∈{1,...,2r(L)−1}

sup
k≤2L−m(L)

sup
ℓ∈IL,k

∣∣∣K(sj , ℓ) − K(sj , 2
L + (k − 1)2m(L))

∣∣∣ ,

with sj = j2−r(L).
Let us first deal with the terms DL,2 and CL,3 involving only the approximating Kiefer process.

For any positive λ,

P
(
|DL,2| ≥ λ

)
≤

2r(L)∑

j=1

P

(
sup

2L<ℓ≤2L+1

sup
sj−1≤s≤sj

∣∣(K(s, ℓ) − K(s, 2L)) − (K(sj , ℓ) − K(sj , 2
L))

∣∣ ≥ λ
)

.

Setting

X(u, v) = (K(sj +u(sj+1−sj), 2
L +v2L)−K(sj +u(sj+1−sj), 2

L))− (K(sj , 2
L +v2L)−K(sj , 2

L)) ,

we have

P
(
DL,2 ≥ λ

)
≤

2r(L)∑

j=1

P

(
sup

(u,v)∈[0,1]2

∣∣X(u, v)
∣∣ ≥ λ

)
.

Using (4.12), we infer that

E|X(u, v) − X(u′, v′)|2 ≪ 2L−r(L)(|u − u′| + |v − v′|) and sup
(u,v)∈[0,1]2

E|X(u, v)|2 ≪ 2L−r(L) .

Next using Lemma 2 in Lai (1974) as done in Lemma 6.2 in Berkes and Philipp (1977), and taking
into account (4.9), we infer that there exists a positive constant c such that, for L large enough,

P
(
|DL,2| ≥ c2L(1/2−ε)

)
≪ 2r(L) exp(−L5/2) .

Therefore ∑

L>0

P
(
DL,2 ≥ c2L(1/2−ε)

)
< ∞ . (4.17)

Consider now the term CL,3. For any positive λ,

P
(
CL,3 ≥ λ

)
≤

2L−m(L)∑

k=1

P

(
sup

s∈[0,1]

sup
ℓ∈IL,k

∣∣K(s, ℓ) − K(s, 2L + (k − 1)2m(L))
∣∣ ≥ λ

)
.

Setting X(s, u) = K(s, 2L + (k − 1)2m(L) + u2m(L)) − K(s, 2L + (k − 1)2m(L) + u2m(L)), and using
(4.12), we have that

E|X(s, u) − X(s′, u′)|2 ≪ 2m(L)(|s − s′| + |u − u′|) and sup
(s,u)∈[0,1]2

E|X(s, u)|2 ≪ 2m(L) .

Therefore by using once again Lemma 2 in Lai (1974) as done in Lemma 6.3 in Berkes and Philipp
(1977), and taking into account (4.9), we infer that there exists a positive constant c such that, for L
large enough,

P

(
sup

s∈[0,1]

sup
ℓ∈IL,k

∣∣K(s, ℓ) − K(s, 2L + (k − 1)2m(L))
∣∣ ≥ c2L(1/2−ε)

)
≪ exp(−L5/2) .
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Therefore ∑

L>0

P
(
CL,3 ≥ c2L(1/2−ε)

)
< ∞ . (4.18)

We now prove that ∑

L>0

P
(
AL,3 ≥ 2L(1/2−ε)

)
< ∞ . (4.19)

From the stationarity of the sequence ((UL,ℓ, VL,ℓ))ℓ=1,...,2L−m(L) ,

P
(
AL,3 ≥ 2L( 1

2−ε)
)
≤ 2L−m(L)2L(ε− 1

2 )
E

(
dr(L)(UL,1, VL,1)

)
.

Therefore by using (4.7), we get that

P
(
AL,3 ≥ 2L( 1

2−ε)
)
≪ 2L(ε− 1

2 )2L−m(L)2
m(L)+2r(L)

(2+δ)∧3 L2 ,

which together with (4.9) proves (4.19), provided that

ε <
δ ∧ 1

2(8 + 3(δ ∧ 1))
. (4.20)

We now show that ∑

L>0

P
(
BL,3 ≥ C2L(1/2−ε)

)
< ∞ . (4.21)

By stationarity, for any positive λ,

P
(
BL,3 ≥ λ

)
≤ 2L−m(L)

2r(L)∑

j=1

P

(
sup

ℓ≤2m(L)

∣∣∣
ℓ∑

i=1

(
1Yi≤j2−r(L) − FY (j2−r(L))

)∣∣∣ ≥ λ
)

.

By Lemma 5.1 |Cov(1Y0≤j2−r(L) ,1Yi≤j2−r(L))| ≤ E(b(X0, i)) = β(σ(X0), Xi), and consequently

∑

i∈Z

∣∣Cov
(
1Y0≤j2−r(L) ,1Yi≤j2−r(L)

)∣∣ ≤ C(β) .

Applying Theorem 1 in Dedecker and Merlevède (2010), we get that for any v ≥ 1,

P

(
sup

ℓ≤2m(L)

∣∣∣
ℓ∑

i=1

(1Yi≤j2−r(L)−FY (
j

2r(L)
))

∣∣∣ ≥ 4λ
)
≪

(
1+

λ2

2m(L)vC(β)

)−v/4

+
(2m(L)

λ
+

λ

v

)
β2,X

([λ

v

])
.

Applying this inequality with 4λ = 2L(1/2−ε) and v = L5/C(β) and taking into account (4.9) together
with our condition on the dependence coefficients, we derive that for L large enough,

P

(
sup

ℓ≤2m(L)

∣∣∣
ℓ∑

i=1

(
1Yi≤j2−r(L) − FY (j2−r(L))

)∣∣∣ ≥ 2L( 1
2−ε)

)
≪ exp(−c1L

5) + L5δ2−L( 1
2−ε)δ .

Therefore (4.21) holds provided that ε < δ/(8 + 2δ) which holds under (4.20).
Taking into account (4.17), (4.18), (4.19) and (4.21) together with the decompositions (4.15) and

(4.16), the proof of (4.14) will be complete if we prove that, for some positive constant A to be choosen
later, ∑

L>0

P
(
DL,1 ≥

√
AC(β)2L( 1

2−ε)
)

< ∞ . (4.22)
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To shorten the notations, we set for l > m ≥ 0,

µℓ,m(s) = R(s, ℓ) − R(s, m) and Zℓ,m = dµℓ,m .

We start from the elementary decomposition

µℓ,2L(s) − µℓ,2L(Πr(L)(s)) =

L∑

K=r(L)+1

µℓ,2L(ΠK(s)) − µℓ,2L(ΠK−1(s)) + µℓ,2L(s) − µℓ,2L(ΠL(s)) .

Consequently,

sup
s∈[0,1]

|µℓ,2L(s) − µℓ,2L(Πr(L)(s))| ≤
L∑

K=r(L)+1

∆K,ℓ,2L + ∆∗
L,ℓ,2L , (4.23)

where

∆K,ℓ,m = sup
1≤i≤2K

|Zℓ,m(](i − 1)2−K , i2−K ])| and ∆∗
L,ℓ,m = sup

s∈[0,1]

|Zℓ,m(]ΠL(s), s])| .

Note that
−(ℓ − 2L)P(ΠL(s) < Y0 ≤ ΠL(s) + 2−L) ≤ Zℓ,2L(]ΠL(s), s]), (4.24)

and

Zℓ,2L(]ΠL(s), s]) ≤ Zℓ,2L(]ΠL(s),ΠL(s) + 2−L]) + (ℓ − 2L)P(ΠL(s) < Y0 ≤ ΠL(s) + 2−L) . (4.25)

Applying Lemma 5.1,

P(ΠL(s) < Y0 ≤ ΠL(s) + 2−L) ≤ C(β)P∗
0(ΠL(s) < Y0 ≤ ΠL(s) + 2−L) = C(β)2−L . (4.26)

From (4.24), (4.25) and (4.26), we infer that ∆∗
L,ℓ,2L ≤ ∆L,ℓ,2L + C(β). Hence it follows from (4.23)

that

sup
s∈[0,1]

|µℓ,2L(s) − µℓ,2L(Πr(L)(s))| ≤ C(β) + 2

L∑

K=r(L)+1

∆K,ℓ,2L .

Therefore

sup
2L<ℓ≤2L+1

sup
s∈[0,1]

|µℓ,2L(s) − µℓ,2L(Πr(L)(s))| ≤ C(β) + 2

L∑

K=r(L)+1

sup
2L<ℓ≤2L+1

∆K,ℓ,2L .

Hence, to prove (4.22), it suffices to show that

∑

L>0

P

( L∑

K=r(L)+1

sup
2L<ℓ≤2L+1

∆K,ℓ,2L >
√

AC(β)2L( 1
2−ε)−2

)
< ∞ . (4.27)

Let cK = (K(K + 1))−1. Clearly, using the stationarity, (4.27) is true provided that

∑

L>0

L∑

K=r(L)+1

P

(
sup

0<ℓ≤2L

∆K,ℓ,0 >
√

AC(β)cK2L( 1
2−ε)−2

)
< ∞ . (4.28)

We now give two upper bounds for the quantity

P

(
sup

0<ℓ≤2L

∆K,ℓ,0 >
√

AC(β)cK2L( 1
2−ε)−2

)
.
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Choose p ∈]2, 3] such that p < 2(1 + δ). Applying Markov’s inequality at order p, we have

P

(
sup

0<ℓ≤2L

∆K,ℓ,0 >
√

AC(β)cK2L( 1
2−ε)−2

)
≪ c−p

K 2L(εp−p/2)
∥∥∥ sup

0<ℓ≤2L

∆K,ℓ,0

∥∥∥
p

p
.

Applying Inequality (7) of Proposition 1 in Wu (2007) to the stationary sequence (T
(j)
K,i)j∈Z defined

by T
(j)
K,i = 1(i−1)2−K<Yj≤i2−K , we have

∥∥∥ sup
0<ℓ≤2L

∆K,ℓ,0

∥∥∥
p
≤ 2L/p

L∑

j=0

2−j/p
∥∥∆K,2j ,0

∥∥
p
.

Let 0 < η < (p− 2)/2. Dedecker (2010) (see the displayed inequality after (2.19) in his paper) proved
that ∥∥∆K,2j ,0

∥∥p

p
≪ 2jp/2

(
2−K(p−2)/2 + 2−jη(2(1+δ)−p)/2 + 2jη−j(p−2)/2

)
.

Therefore
∥∥∥ sup

0<ℓ≤2L

∆K,ℓ,0

∥∥∥
p

p
≪ 2Lp/2

(
2−K(p−2)/2 + 2−ηL(2(1+δ)−p)/2 + 2ηL−L(p−2)/2

)
. (4.29)

On the other hand

P

(
sup

0<ℓ≤2L

∆K,ℓ,0 >
√

AC(β)cK2L( 1
2−ε)−2

)

≤
2K∑

i=1

P

(
sup

0<ℓ≤2L

|Zℓ,0(](i − 1)2−K , i2−K ])| >
√

AC(β)cK2L( 1
2−ε)−2

)
.

We now apply Theorem 1 in Dedecker and Merlevède (2010), taking into account the stationarity: for

any x > 0, v ≥ 1, and s2
L ≥ 2L

∑2L

j=0 |Cov(T
(0)
K,i, T

(j)
K,i)|,

P

(
sup

0<ℓ≤2L

|Zℓ,0(](i − 1)2−K , i2−K ])| > 4x
)
≪

((
1 +

x2

vs2
L

)−v/4

+ 2L
( 1

x
+

2x

vs2
L

)
β2,X

([x

v

]))
.

Applying Lemma 5.1, we have |Cov(T
(0)
K,i, T

(j)
K,i)| ≤ 2E(T

(0)
K,ib(X0, j)). Hence

∞∑

j=0

|Cov(T
(0)
K,i, T

(j)
K,i)| ≤ C(β)P∗

0((i − 1)2−K < Y0 ≤ i2−K) = C(β)2−K . (4.30)

It follows that, for K ≥ r(L),

∞∑

j=0

|Cov(T
(0)
K,i, T

(j)
K,i)| ≤ C(β)2−r(L) .

For L ≥ 2, let x = xK,L =
√

AC(β)cK2L(1/2−ε)−4, s2
L = C(β)2L−r(L) and v = vL = 4L. Taking into

account (4.9) and noting that cK ≥ (L(L+1))−1 for K ≤ L, we obtain for L large enough and K ≤ L,

(
1 +

x2

vs2
L

)−v/4

≤
(
1 +

A2L(1−2ε)

210L3(L + 1)22L−r(L)

)−L

≤ 3−L ,
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the last bound being true provided A is large enough. Hence, for L large enough and r(L) ≤ K ≤ L,

P

(
sup

0<ℓ≤2L

|Zℓ,0(](i − 1)2−K , i2−K ])| > 4xK,L

)
≪

(
1

3L
+

L5+3δ2Lε(2+δ)

2Lδ/2

)
. (4.31)

From (4.29) and (4.31), we then get that for L large enough and any κ ≤ 1,

L∑

K=r(L)+1

P

(
sup

0<ℓ≤2L

∆K,ℓ,0 >
√

AC(β)cK2L( 1
2−ε)−2

)
≪

[κL]∑

K=r(L)+1

2K

(
1

3L
+

L5+3δ2Lε(2+δ)

2Lδ/2

)

+ 2εLpL2p
L∑

K=[κL]+1

(
2−K(p−2)/2 + 2−ηL(2(1+δ)−p)/2 + 2−L(p−2)/2+ηL

)
.

Take κ = κ(ε) = 1 ∧ 2ε(p + 1)/(p − 2). It follows that (4.27) (and then (4.22)), holds provided that
the following constraints on ε are satisfied

ε <
p − 2

2(p + 1)
, ε

(
2 + δ +

2(p + 1)

p − 2

)
< δ/2 , εp <

p − 2

2
− η , and εp < η

(
1 + δ − p/2) .

Let us take

η =
p − 2

4 + 2δ − p
and p = 3 ∧ (2 + δ/2) .

Both the above constraints on ε and (4.20) are satisfied for ε = δ2/(22(δ + 2)2). Therefore (4.22)
holds, and Theorem 2.1 follows.

4.1.3 Gaussian approximation

Proposition 4.1 For L ∈ N, let m(L) ∈ N and r(L) ∈ N
∗ be such that m(L) ≤ L and 4r(L) ≤ m(L).

Under the assumptions of Theorem 2.1 and the notations of Section 4.1.1, the following inequality
holds: there exists a positive constant C not depending on L such that, for any ℓ ∈ {1, . . . , 2L−m(L)},

E
(
dr(L)(UL,ℓ, VL,ℓ)

)
≤ C2

m(L)+2r(L)
(2+δ)∧3 L2 .

Proof of Proposition 4.1. From the stationarity of the sequence ((UL,ℓ, VL,ℓ))ℓ=1,...,2L−m(L) , it
suffices to prove the proposition for ℓ = 1. Let L ∈ N and K ∈ {0, . . . , r(L) − 1}. To shorten the
notations, let us define the following set of integers

E(L, K) = {1, . . . , 2r(L)−K − 1} ∩ (2N + 1) ,

meaning that if k ∈ E(L, K) then k is an odd integer in [1, 2r(L)−K − 1].
For K ∈ {0, . . . , r(L) − 1} and k ∈ E(L, K), define

BK,k =
] (k − 1)2K

2r(L)
,

k2K

2r(L)

]
and Z

(K,k)
L =

∑

i∈IL,1

(
1Yi∈BK,k

− PY (BK,k)
)
.

The associated column vector ZL in R
2r(L)−1 is then defined by

ZL =
((

Z
(i,ki)
L , ki ∈ E(L, i)

)
i=0,...,r(L)−1

)′

.
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Notice that for any j ∈ {1, . . . , 2r(L) − 1},

U
(j)
L,1 =

r(L)−1∑

K=0

∑

kK∈E(L,K)

bK,kK
(j)Z

(K,kK)
L , (4.32)

with bK,kK
(j) = 0 or 1. This representation is unique in the sense that, for j fixed, there exists

only one vector
(
b(K,kK)(j), kK ∈ E(L, K)

)
K=0,...,r(L)−1

satisfying (4.32). In addition, for any K in

{0, . . . , r(L)−1}, ∑
k∈E(L,K) bK,k(j) ≤ 1. Let the column vector b(j, L) and the matrix PL be defined

by

b(j, L) =
((

bK,kK
(j), kK ∈ E(L, K)

)
K=0,...,r(L)−1

)′

and PL =
(
b(1, L), b(2, L), . . . , b(2r(L) − 1, L)

)′

.

PL has the following property: it is a square matrix of R
2r(L)−1 with determinant equal to 1. Let us

denote by P−1
L its inverse. With this notation, we then notice that

ZL = P−1
L UL,1 . (4.33)

Let now a2 be a positive real and V =
(
V (1), · · · , V (2r(L)−1)

)′
be a random variable with law

N (0, a2PLPT
L). According to the coupling relation (4.5), we have that

E
(
dr(L)(UL,1, VL,1)

)
= E

(
Wdr(L)

(PUL,1|F2L
, G2m(L)ΛL

)
)

≤ E
(
Wdr(L)

(PUL,1|F2L
∗ PV , G2m(L)ΛL

∗ PV )
)

+ 2E
(
dr(L)(V, 0)

)
, (4.34)

where ∗ stands for the usual convolution product. Since V (j) is a centered real Gaussian random

variable with variance v2
j = a2

∑r(L)−1
K=0

∑
k∈E(L,K) bK,k(j), according to the inequality (3.6) in Ledoux

and Talagrand (1991), we derive that

E
(
dr(L)(V, 0)

)
= E

(
max

j∈{1,...,2r(L)−1}
|V (j)|

)
≤

(
2 + 3(log(2r(L) − 1))1/2

)
max

j∈{1,...,2r(L)−1}
vj .

Since v2
j ≤ a2r(L) ≤ a2L, we then get that

E
(
dr(L)(V, 0)

)
≤ 5 a L . (4.35)

Let us now give an upper bound for the quantity E
(
Wdr(L)

(PUL,1|F2L
∗ PV , G2m(L)ΛL

∗ PV )
)

in (4.34).
Let (Ni,L)i∈Z be a sequence of independent random variables with normal distribution N (0,ΛL).
Suppose furthermore that the sequence (Ni,L)i∈Z is independent of F∞ ∨ σ(ηi, i ∈ Z). Denote by

I2r(L)−1 the identity matrix on R
2r(L)−1 and let N be a N (0, a2I2r(L)−1)-distributed random variable,

independent of F∞ ∨ σ(Ni,L, i ∈ Z) ∨ σ(ηi, i ∈ Z). Set ÑL = N1,L + N2,L + . . . + N2m(L),L. We first
notice that

E
(
Wdr(L)

(PUL,1|F2L
∗ PV , G2m(L)ΛL

∗ PV )
)

= E sup
f∈Lip(dr(L))

(
E

(
f(UL,1 + PLN)|F2L

)
− E(f(ÑL + PLN))

)
. (4.36)

Introduce now the following definition:
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Definition 4.3 For x =
((

x(i,ki), ki ∈ E(L, i)
)
i=0,...,r(L)−1

)′

, y =
((

y(i,ki), ki ∈ E(L, i)
)
i=0,...,r(L)−1

)′

two column vectors of R
2r(L)−1, let d∗r(L) be the following distance:

d∗r(L)(x, y) =

r(L)−1∑

K=0

sup
k∈E(L,K)

|x(K,k) − y(K,k)| .

Let also Lip(d∗r(L)) be the set of functions from R
2r(L)−1 into R that are Lipschitz with respect to d∗r(L);

namely, |f(x) − f(y)| ≤ ∑r(L)−1
K=0 supk∈E(L,K) |x(K,k) − y(K,k)|.

Let x =
(
x(1), · · · , x(2r(L)−1)

)′
and y =

(
y(1), · · · , y(2r(L)−1)

)′
be two column vectors of R

2r(L)−1.

Let now u = P−1
L x and v = P−1

L y. The vectors u and v of R
2r(L)−1 can be rewritten u =

((
u(i,ki), ki ∈

E(L, i)
)
i=0,...,r(L)−1

)′

and v =
((

v(i,ki), ki ∈ E(L, i)
)
i=0,...,r(L)−1

)′

. Notice now that if f ∈ Lip(dr(L)),

then

|f(x) − f(y)| ≤ dr(L)(x, y) = sup
j∈{1,...,2r(L)−1}

|b(j, L)′u − b(j, L)′v|

≤ sup
j∈{1,...,2r(L)−1}

r(L)−1∑

K=0

∑

kK∈E(L,K)

bK,kK
(j)|u(K,kK) − v(K,kK)|

≤ sup
j∈{1,...,2r(L)−1}

r(L)−1∑

K=0

∑

kK∈E(L,K)

bK,kK
(j) sup

i∈E(L,K)

|u(K,i) − v(K,i)| .

Since for any K ∈ {0, . . . , r(L) − 1} and any j ∈ {0, . . . , 2r(L) − 1}, ∑
k∈E(L,K) bK,k(j) ≤ 1, it follows

that if f ∈ Lip(dr(L)),

|f(x) − f(y)| = |f ◦ PL(u) − f ◦ PL(v)| ≤
r(L)−1∑

K=0

sup
k∈E(L,K)

|u(K,k) − v(K,k)| = d∗r(L)(u, v) .

Therefore, starting from (4.36) and taking into account (4.33), we get

E
(
Wdr(L)

(PUL,1|F2L
∗ PV , G2m(L)ΛL

∗ PV )
)

≤ E sup
f∈Lip(d∗

r(L)
)

(
E

(
f(ZL + N)|F2L

)
− E(f(P−1

L ÑL + N))
)

. (4.37)

Let Lip(d∗r(L),F2L) be the set of measurable functions g : R
2r(L)−1 × Ω → R wrt the σ-fields

B(R2r(L)−1) ⊗ F2L and B(R), such that g(·, ω) ∈ Lip(d∗r(L)) and g(0, ω) = 0 for any ω ∈ Ω. For

the sake of brevity, we shall write g(x) in place of g(x, ω). From Point 2 of Theorem 1 in Dedecker,
Prieur and Raynaud de Fitte (2006), the following inequality holds:

E sup
f∈Lip(d∗

r(L)
)

(
E(f(ZL + N)|F2L) − E(f(P−1

L ÑL + N))
)

= sup
g∈Lip(d∗

r(L)
,F2L )

E(g(ZL + N)) − E(g(P−1
L ÑL + N)) . (4.38)
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We shall prove that if a ∈ [L, L2m(L)], there exists a positive constant C not depending on (L, a),
such that

sup
g∈Lip(d∗

r(L)
,F2L )

E(g(ZL + N)) − E(g(P−1
L ÑL + N)) ≤ Ca−3L5/22m(L)

+ CL−122r(L) + Ca−1−δLδ22r(L)+m(L) + Ca−2L222r(L)+m(L) + Ca−1L22r(L) . (4.39)

Gathering (4.39), (4.38), (4.37), (4.34) and (4.35), and taking a = L2(m(L)+2r(L))/((2+δ)∧3), Proposition
4.1 follows.

Let then a ∈ [L, L2m(L)] and continue the proof by proving (4.39). For any i ≥ 1, let Yi,L be the

column vector defined by Yi,L =
(
Y

(1)
i,L , · · · , Y

(2r(L)−1)
i,L

)′
where Y

(j)
i,L = 1Y

i+2L≤sj
−FY (sj). Notice then

that

ZL =

2m(L)∑

i=1

Zi,L where Zi,L = P−1
L Yi,L .

Therefore Zi,L =
((

Z
(K,kK)
i,L , kK ∈ E(L, K)

)
K=0,...,r(L)−1

)′

where Z
(K,k)
i,L = 1Y

i+2L∈BK,k
− PY (BK,k).

Notation 4.1 Let ϕa be the density of N and let for x =
((

x(i,ki), ki ∈ E(L, K)
)
i=0,...,r(L)−1

)′

,

g ∗ ϕa(x, ω) =

∫
g(x + y, ω)ϕa(y)dy .

For the sake of brevity, we shall write g ∗ ϕa(x) instead of g ∗ ϕa(x, ω) (the partial derivatives will be
taken wrt x). Let also

S0,L = 0, and for j > 0 , Sj,L =

j∑

i=1

Zi,L .

We now use the Lindeberg method to prove (4.39). We first write that

E
(
g(ZL + N) − g(P−1

L ÑL + N)
)

=

2m(L)∑

i=1

E

(
g
(
Si−1,L + Zi,L +

2m(L)∑

j=i+1

P−1
L Nj,L + N

)
− g

(
Si−1,L + P−1

L Ni,L +
2m(L)∑

j=i+1

P−1
L Nj,L + N

))

≤
2m(L)∑

i=1

sup
g∈Lip(d∗

r(L)
,F2L )

E

(
g
(
Si−1,L + Zi,L + N

)
− g

(
Si−1,L + P−1

L Ni,L + N
))

. (4.40)

Let us introduce some notations and definitions.

Definition 4.4 For two positive integers m and n, let Mm,n(R) be the set of real matrices with m
lines and n columns. The Kronecker product (or Tensor product) of A = [ai,j ] ∈ Mm,n(R) and
B = [bi,j ] ∈ Mp,q(R) is denoted by A ⊗ B and is defined to be the block matrix

A ⊗ B =




a1,1B · · · a1,nB
...

...
am,1B · · · am,nB


 ∈ Mmp,nq(R) .

For any positive integer k, the k-th Kronecker power A⊗k is defined inductively by: A⊗1 = A and
A⊗k = A ⊗ A⊗(k−1).
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If ∇ denotes the differentiation operator given by ∇ =
(

∂
∂x1

, . . . , ∂
∂xm

)′
acting on the differentiable

functions f : R
m → R, we define

∇⊗∇ =
( ∂

∂x1
◦ ∇, . . . ,

∂

∂xm
◦ ∇

)′
,

and ∇⊗k by ∇⊗1 = ∇ and ∇⊗k = ∇ ⊗ ∇⊗(k−1). If f : R
m → R is k-times differentiable, for any

x ∈ R
m, let Dkf(x) = ∇⊗kf(x), and for any vector A of R

m, we define Dkf(x).A⊗k as the usual

scalar product in R
mk

between Dkf(x) and A⊗k.

For any i ∈ {1, . . . , 2m(L)}, let Gi,L = P−1
L Ni,L,

∆1,i,L(g) = g ∗ ϕa

(
Si−1,L + Zi,L

)
− g ∗ ϕa

(
Si−1,L

)
− 1

2
D2g ∗ ϕa

(
Si−1,L

)
.G⊗2

i,L ,

and

∆2,i,L(g) = g ∗ ϕa

(
Si−1,L + Gi,L

)
− g ∗ ϕa

(
Si−1,L

)
− 1

2
D2g ∗ ϕa

(
Si−1,L

)
.G⊗2

i,L .

With this notation,

E

(
g
(
Si−1,L + Zi,L + N

)
− g

(
Si−1,L + P−1

L Ni,L + N
))

= E(∆1,i,L(g)) − E(∆2,i,L(g)) . (4.41)

By Taylor’s integral formula and noticing that E(G⊗3
i,L) = 0, we get

∣∣E(∆2,i,L(g))
∣∣ ≤ 1

6

∣∣∣E
∫ 1

0

D4g ∗ ϕa

(
Si−1,L + tGi,L

)
.G⊗4

i,Ldt
∣∣∣ .

Applying Lemma 5.5, we then derive that

∣∣E(∆2,i,L(g))
∣∣ ≪ a−3

E

(( r(L)−1∑

K=0

sup
k∈E(L,K)

|G(K,k)
1,L |

)( r(L)−1∑

K=0

∑

kK∈E(L,K)

(G
(K,kK)
1,L )2

)3/2)

≪ a−3
(
E

( r(L)−1∑

K=0

sup
k∈E(L,K)

|G(K,k)
1,L |

)4)1/4(
E

( r(L)−1∑

K=0

∑

kK∈E(L,K)

(G
(K,kK)
1,L )2

)2)3/4

. (4.42)

Notice that

r(L)−1∑

K=0

sup
k∈E(L,K)

|G(K,k)
1,L | ≤

r(L)−1∑

K=0

( ∑

kK∈E(L,K)

(G
(K,kK)
1,L )2

)1/2

≤
√

r(L)
( r(L)−1∑

K=0

∑

kK∈E(L,K)

(G
(K,kK)
1,L )2

)1/2

.

(4.43)
Moreover

E

( r(L)−1∑

K=0

∑

kK∈E(L,K)

(G
(K,kK)
1,L )2

)2

≤
( r(L)−1∑

K=0

∑

kK∈E(L,K)

(
E(G

(K,kK)
1,L )4

)1/2
)2

≤ 3
( r(L)−1∑

K=0

∑

kK∈E(L,K)

E((G
(K,kK)
1,L )2)

)2

.

and ∑

k∈E(L,K)

E((G
(K,k)
1,L )2) =

∑

k∈E(L,K)

(
Var(Z

(K,k)
1,L ) + 2

∑

i>0

Cov(Z
(K,k)
1,L , Z

(K,k)
i+1,L)

)
.
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Arguing as to get (4.30), we then obtain that

∑

k∈E(L,K)

E((G
(K,k)
1,L )2) ≤ C(β)

∑

k∈E(L,K)

2K−r(L) ≤ C(β) .

From the above computations, it follows that

E

( r(L)−1∑

K=0

∑

kK∈E(L,K)

(G
(K,kK)
1,L )2

)2

≤ 3(C(β)r(L))2 . (4.44)

Therefore, starting from (4.42), taking into account (4.43), (4.44) and the fact that r(L) ≤ L, we then
derive that ∣∣E(∆2,i,L(g))

∣∣ ≪ a−3L5/2 . (4.45)

Let now

R1,i,L(g) = g ∗ ϕa

(
Si−1,L + Zi,L

)
− g ∗ ϕa

(
Si−1,L

)
−Dg ∗ ϕa

(
Si−1,L

)
.Zi,L − 1

2
D2g ∗ ϕa

(
Si−1,L

)
.Z⊗2

i,L ,

and

D1,i,L(g) = Dg ∗ ϕa

(
Si−1,L

)
.Zi,L +

1

2
D2(g ∗ ϕa)

(
Si−1,L

)
.Z⊗2

i,L − 1

2
D2g ∗ ϕa

(
Si−1,L

)
.E(G⊗2

i,L) .

With this notation,
E(∆1,i,L(g)) = E(R1,i,L(g)) + E(D1,i,L(g)) . (4.46)

By Taylor’s integral formula,

∣∣E(R1,i,L(g))
∣∣ ≤

∣∣E
∫ 1

0

(1 − t)2

2
D3g ∗ ϕa

(
Si−1,L + tZi,L

)
.Z⊗3

i,L

∣∣ .

Applying Lemma 5.5 and using the fact that supk∈E(L,K) |Z(K,k)
i,L | ≤ 2 and

∑
k∈E(L,K)(Z

(K,k)
i,L )2 ≤ 2,

we get that ∣∣E(R1,i,L(g))
∣∣ ≪ a−2(r(L))2 ≪ a−2L2 . (4.47)

Let
∆(i, j)(g) = D2g ∗ ϕa

(
Si−j,L

)
− D2g ∗ ϕa

(
Si−j−1,L

)
, (4.48)

and
uL = [aL−1] . (4.49)

Clearly with the notation X(0) = X − E(X),

D2g ∗ ϕa

(
Si−1,L

)
.(Z⊗2

i,L)(0) =

(uL∧i)−1∑

j=1

∆(i, j)(g).(Z⊗2
i,L)(0) + D2g ∗ ϕa

(
Si−(uL∧i),L

)
.(Z⊗2

i,L)(0) . (4.50)

For any j ≤ (uL ∧ i) − 1, write that E
(
∆(i, j)(g).(Z⊗2

i,L)(0)
)

= E
(
∆(i, j)(g).Ei−j+2L((Z⊗2

i,L)(0))
)
, and

notice that, by Lemma 5.6,

E
(
∆(i, j)(g).Ei−j+2L(Z⊗2

i,L)(0)
)
≤ sup

t∈[0,1]

∣∣∣E
(
D3g∗ϕa(Si−j−1,L+tZi−j,L). (Zi−j,L⊗Ei−j+2L(Z⊗2

i,L)(0))
)∣∣∣

≪ a−2
∑

K1,kK1

∑

K2,kK2

∑

K3,kK3

E
(
|ZK1,kK1

i−j,L ||Ei−j+2L(Z
K2,kK2

i,L Z
K3,kK3

i,L − E(Z
K2,kK2

i,L Z
K3,kK3

i,L ))|
)
,
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where for any i ∈ {1, 2, 3}, Ki ∈ {0, . . . , r(L)− 1} and kKi
∈ E(L, Ki). Applying Lemma 5.1, we infer

that
|Ei−j+2L(Z

K2,kK2

i,L Z
K3,kK3

i,L − E(Z
K2,kK2

i,L Z
K3,kK3

i,L ))| ≤ 4b1(Fi−j+2L , i + 2L) .

Therefore since
∑r(L)−1

K1=0

∑
kK1

∈E(L,K1)
|ZK1,kK1

i−j,L | ≤ 2r(L) and E(b1(Fi−j+2L , i + 2L)) ≤ β1,X(j), we

derive that
E

(
∆(i, j)(g).(Z⊗2

i,L)(0)
)
≪ a−2r(L)22r(L)β1,X(j) . (4.51)

On the other hand, by using Lemma 5.6, we infer that

E
(
D2g ∗ ϕa

(
Si−(uL∧i),L

)
.(Z⊗2

i,L)(0)
)

= E
(
D2g ∗ ϕa

(
Si−(uL∧i),L

)
.Ei−(uL∧i)+2L(Z⊗2

i,L)(0)
)

≪ a−1
∑

K1,kK1

∑

K2,kK2

E
(
|Ei−(uL∧i)+2L(Z

K1,kK1

i,L Z
K1,kK1

i,L − E(Z
K1,kK1

i,L Z
K1,kK1

i,L ))|
)
.

Using the same arguments as to get (4.51), we obtain that

E
(
D2g ∗ ϕa

(
Si−(uL∧i),L

)
.(Z⊗2

i,L)(0)
)
≪ a−122r(L)β1,X(uL ∧ i) . (4.52)

Starting from (4.50) and taking into account (4.51), (4.52), the choice of uL and the condition on the
β-dependence coefficients, we then derive that

2m(L)∑

i=1

E
(
D2g ∗ ϕa

(
Si−1,L

)
.(Z⊗2

i,L)(0)
)
≪ 22r(L)a−1

(2m(L)L1+δ

a1+δ
+ 2m(L) L

a

)
. (4.53)

To give now an estimate of the expectation of Dg ∗ ϕa

(
Si−1,L

)
.Zi,L, we write

Dg ∗ ϕa

(
Si−1,L

)
= Dg ∗ ϕa (0) +

i−1∑

j=1

(Dg ∗ ϕa(Si−j,L) − Dg ∗ ϕa(Si−j−1,L)) .

Hence

E
(
Dg ∗ ϕa(Si−1,L).Zi,L

)
= E

(
Dg ∗ ϕa(0).Zi,L

)
+

i−1∑

j=1

E
(
(Dg ∗ ϕa(Si−j,L)−Dg ∗ ϕa(Si−j−1,L)).Zi,L

)
.

(4.54)
Applying Lemma 5.1,

|E(Dg∗ϕa(0).Zi,L)| = |E(Dg∗ϕa(0).E2L(Zi,L))| ≤ E

( r(L)−1∑

K=0

∑

kK∈E(L,K)

∣∣∣
∂g ∗ ϕa

∂x(K,kK)
(0)

∣∣∣b1(F2L , i+2L)
)

.

Notice now that by the inequality (5.3), for any K in {0, . . . , r(L) − 1}, the random variable

∑

k∈E(L,K)

∣∣∣
∂g ∗ ϕa

∂x(K,k)
(0)

∣∣∣

is a F2L-measurable random variable with infinite norm less than one. Therefore

|E(Dg ∗ ϕa(0).Zi,L)| ≪ r(L)β1,X(i) . (4.55)
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We give now an estimate of
∑i−1

j=1 E
(
(Dg ∗ϕa(Si−j,L)−Dg ∗ϕa(Si−j−1,L)).Zi,L

)
. By Lemma 5.6 and

Lemma 5.1, for any i ≥ j + 1,

|E((Dg ∗ ϕa(Si−j,L) − Dg ∗ ϕa(Si−j−1,L)).Zi,L)|
= |E((Dg ∗ ϕa(Si−j,L) − Dg ∗ ϕa(Si−j−1,L)).Ei−j+2L(Zi,L))|
≤ sup

t∈[0,1]

∣∣∣E
(
D2g ∗ ϕa(Si−j−1,L + tZi,L).(Zi−j,L ⊗ Ei−j+2L(Zi,L))

)∣∣∣

≪ a−1

r(L)−1∑

K1=0

∑

kK1
∈E(L,K1)

r(L)−1∑

K2=0

∑

kK2
∈E(L,K2)

E
(
|ZK1,kK1

i−j,L |b1(Fi−j+2L , i + 2L)
)
.

We then infer that for any i ≥ j + 1,

|E((Dg ∗ ϕa(Si−j,L) − Dg ∗ ϕa(Si−j−1,L)).Zi,L)| ≪ a−1r(L)2r(L)β1,X(j) . (4.56)

From now on, we assume that j < i ∧ uL. Notice that

(Dg ∗ ϕa(Si−j,L) − Dg ∗ ϕa(Si−j−1,L)).Zi,L − D2g ∗ ϕa(Si−j−1,L).(Zi−j,L ⊗ Zi,L)

=

∫ 1

0

(1 − t)D3g ∗ ϕa(Si−j−1,L + tZi−j,L).(Z⊗2
i−j,L ⊗ Zi,L)dt .

By using Lemma 5.6 and Lemma 5.1, we infer that

∣∣E
( ∫ 1

0

(1 − t)D3g ∗ ϕa(Si−j−1,L + tZi−j,L).(Z⊗2
i−j,L ⊗ Zi,L)dt

)∣∣

≪ a−2

r(L)−1∑

K1=0

∑

kK1
∈E(L,K1)

r(L)−1∑

K2=0

∑

kK2
∈E(L,K2)

r(L)−1∑

K3=0

∑

kK3
∈E(L,K3)

E
(
|ZK1,kK1

i−j,L ||ZK2,kK2

i−j,L |b1(Fi−j+2L , i+2L)
)
.

Therefore,

∣∣∣E
( ∫ 1

0

(1 − t)D3g ∗ ϕa(Si−j−1,L + tZi−j,L).(Z⊗2
i−j,L ⊗ Zi,L)dt

)∣∣∣ ≪ a−2(r(L))22r(L)β1,X(j) . (4.57)

In order to estimate the term E
(
D2g ∗ ϕa(Si−j−1,L).(Zi−j,L ⊗ Zi,L)

)
, we use the following decompo-

sition:

D2g∗ϕa(Si−j−1,L) =

(j−1)∧(i−j−1)∑

l=1

(D2g∗ϕa(Si−j−l,L)−D2g∗ϕa(Si−j−l−1,L))+D2g∗ϕa(S(i−2j)∨0,L) .

For any l ∈ {1, · · · , (j − 1) ∧ (i − j − 1)}, using the same arguments as to get (4.57), we obtain that

|E((D2g ∗ ϕa(Si−j−l,L) − D2g ∗ ϕa(Si−j−l−1,L)).(Zi−j,L ⊗ Zi,L))| ≪ a−2(r(L))22r(L)β1,X(j) . (4.58)

As a second step, we bound up
∣∣E

(
D2g ∗ ϕa(S(i−2j)∨0,L).(Zi−j,L ⊗ Zi,L)(0)

)∣∣. Assume first that
j ≤ [i/2]. Clearly, using the notation (4.48),

D2g ∗ ϕa(Si−2j,L) =

(uL−1)∧(i−j−1)∑

l=j

∆(i, l + j)(g) + D2g ∗ ϕa(S(i−j−uL)∨0,L) .
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Now for any l ∈ {j, . . . , (uL − 1) ∧ (i − j − 1)}, by using Lemma 5.6 we get that

∣∣E
(
∆(i, l + j).(Zi−j,L ⊗ Zi,L)(0)

)
|

≪ a−2
∑

K1,kK1

∑

K2,kK2

∑

K3,kK3

E
∣∣ZK1,kK1

i−j−l,LEi−j−l+2L(Z
K2,kK2

i−j,L Z
K3,kK3

i,L − E(Z
K2,kK2

i−j,L Z
K3,kK3

i,L ))
∣∣.

Applying Lemma 5.1, we infer that

∣∣Ei−j−l+2L(Z
K2,kK2

i−j,L Z
K3,kK3

i,L − E(Z
K2,kK2

i−j,L Z
K3,kK3

i,L ))
∣∣ ≤ 4b2(Fi−j−l+2L , i − j + 2L, i + 2L) .

Therefore ∣∣E
(
∆(i, l + j).(Zi−j,L ⊗ Zi,L)(0)

)
| ≪ a−2r(L)22r(L)β2,X(l) . (4.59)

If j ≤ i − uL, with similar arguments,

∣∣E
(
D2g ∗ ϕa(Si−j−uL,L).(Zi−j,L ⊗ Zi,L)(0)

)
| ≪ a−122r(L)β2,X(uL) . (4.60)

Now if j > i − uL, we infer that

∣∣E
(
D2g ∗ ϕa(0)).(Zi−j,L ⊗ Zi,L)(0)

)
| ≪ a−122r(L)β2,X([i/2]) , (4.61)

by using also the fact that, since j ≤ [i/2], β2,X(i − j) ≤ β2,X([i/2]). Assume now that j ≥ [i/2] + 1.
For any j ≤ i, we get

∣∣E
(
D2g ∗ ϕa(0)).Zi−j,L ⊗ Zi,L

)
| ≪ a−1r(L)2r(L)β1,X([i/2]) . (4.62)

Starting from (4.54), adding the inequalities (4.55)-(4.62) and summing on j and l, we then obtain:

∣∣E
(
Dg ∗ ϕa(Si−1,L).Zi,L

)
−

uL−1∑

j=1

E
(
D2g ∗ ϕa(Si−2j,L)).E(Zi−j,L ⊗ Zi,L)1j≤[i/2]

∣∣

≪ r(L)β1,X(i) + a−1L2r(L)
i∑

j=uL

β1,X(j) + a−122r(L)uLβ2,X(uL)

+ a−122r(L)uLβ2,X([i/2]) + a−2L22r(L)
uL∑

j=1

jβ2,X(j) .

Next summing on i and taking into account the condition on the β-dependence coefficients and the
choice of uL, we get that

2m(L)∑

i=1

∣∣E
(
Dg ∗ ϕa(Si−1,L).Zi,L

)
−

uL−1∑

j=1

E
(
D2g ∗ ϕa(Si−2j,L)).E(Zi−j,L ⊗ Zi,L)1j≤[i/2]

∣∣

≪ L−122r(L) + a−1−δLδ22r(L)+m(L) + a−2L222r(L)+m(L) . (4.63)

It remains to bound up

Ai :=
∣∣∣

uL−1∑

j=1

E
(
D2g ∗ ϕa(Si−2j)

)
.E(Zi−j,L ⊗ Zi,L)1j≤[i/2] −

∞∑

j=1

E
(
D2g ∗ ϕa(Si−1)

)
.E(Zi−j,L ⊗ Zi,L)

∣∣∣.
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We first notice that by Lemma 5.6, for any positive integer j,

|E(D2g ∗ ϕa(Si−1)).E(Zi−j,L ⊗ Zi,L)|

≪ a−1

r(L)−1∑

K1=0

∑

kK1
∈E(L,K1)

r(L)−1∑

K2=0

∑

kK2
∈E(L,K2)

∣∣E
(
Z

K1,kK1

i−j,L Ei−j+2L(Z
K2,kK2

i,L ))
∣∣ .

Therefore,
|E(D2g ∗ ϕa(Si−1)).E(Zi−j,L ⊗ Zi,L)| ≪ a−1r(L)2r(L)β1,X(j) . (4.64)

On an other hand, applying Lemma 5.6, we obtain for any i ≥ 2 and any j ∈ {1, . . . , [i/2]},

|E((D2g ∗ ϕa(Si−1) − D2g ∗ ϕa(Si−2j)).E(Zi−j,L ⊗ Zi,L)| ≪

a−2

r(L)−1∑

K1=0

∑

kK1
∈E(L,K1)

r(L)−1∑

K2=0

∑

kK2
∈E(L,K2)

r(L)−1∑

K3=0

∑

kK3
∈E(L,K3)

2j−1∑

ℓ=1

(
E|ZK1,kK1

i−ℓ,L |
)∣∣E

(
Z

K2,kK2

i−j,L Ei−j+2L(Z
K3,kK3

i,L )
∣∣ ,

which implies that

uL−1∑

j=1

∣∣E
(
(D2g ∗ϕa(Si−1)−D2g ∗ϕa(Si−2j)

)
.E(Zi−j,L ⊗Zi,L)

∣∣1j≤[i/2] ≪ a−2(r(L))22r(L)
uL∑

j=1

jβ1,X(j) .

(4.65)
Therefore (4.64) together with (4.65), the choice of uL and the condition on the β-dependence coeffi-
cients entail that

2m(L)∑

i=1

Ai ≪ a−1L22r(L) + a−2L32r(L)+m(L) + a−1−δL1+δ2r(L)+m(L) . (4.66)

Taking into account (4.40)-(4.47), (4.53), (4.63) and (4.66), the bound (4.39) follows. ⋄

4.2 Proof of Theorem 3.1

Let (Xi)i∈Z be a stationary Markov chain with transition Kernel Q defined in (3.1). Notice that for
all (s, s′) ∈ [0, 1]2,

ν(f (0)
s · f (0)

s′ ◦ T k) = Cov(1Xk≤s,1X0≤s′) .

Since β2,X(k) satisfies (3.2), according to the proof of Item 1 of Theorem 2.1, it follows that Item 1
of Theorem 3.1 holds true.

As at the beginning of the proof of Theorem 2.1, we start by considering the probability P ∗
ν whose

density with respect to ν is given by (4.2). Let F ∗
ν be the distribution function of P ∗

ν (F ∗
ν is continuous

since ν is absolutely continuous with respect to the Lebesgue measure). Let now T̃i = F ∗
ν (T i) and

Yi = F ∗
ν (Xi). Let FY be the distribution function of Y0. Clearly RT (·, ·) = R eT (F ∗

ν (·), ·) almost surely,
where

R eT (s, t) =
∑

1≤k≤t

(
1eTk≤s − FY (s)

)
, s ∈ [0, 1] , t ∈ R

+ .

Theorem 3.1 will then follow if we can prove that there exists a two-parameter Gaussian process K∗
eT

with covariance function ΓeT given by Γ eT (s, s′, t, t′) = min(t, t′)Λ eT (s, s′) where

Λ eT (s, s′) =
∑

k≥0

ν(f (0)
s · f (0)

s′ ◦ F ∗
ν (T k)) +

∑

k>0

ν(f
(0)
s′ · f (0)

s ◦ F ∗
ν (T k)) . (4.67)
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For L ∈ N, let m(L) and r(L) be the two sequences of integers defined by (4.8). For any integer j,
let sj = j2−r(L). As for the proof of Theorem 2.1, we start by constructing the approximating Kiefer
process K∗

eT
with covariance function ΓeT . With this aim, we first define for any ℓ ∈ {1, · · · , 2L−m(L)},

IL,ℓ =]2L + (ℓ − 1)2m(L), 2L + ℓ2m(L)] ∩ N and U
∗(j)
L,ℓ =

∑

i∈IL,ℓ

(
1eTi≤sj

− FY (sj)
)
.

The associated column vectors U∗
L,ℓ are then defined in R

2r(L)−1 by U∗
L,ℓ =

(
U

∗(1)
L,ℓ , · · · , U

∗(2r(L)−1)
L,ℓ

)′
.

Let
Λ eT ,L = (Λ eT (sj , sj′))j,j′=1,··· ,2r(L)−1 ,

where the Λ eT (sj , sj′) are defined in (4.67). Let G2m(L)Λ eT ,L
denote the N (0, 2m(L)Λ eT ,L)-law, and for

any ℓ ∈ {1, · · · , 2L−m(L)}, let PU∗

L,ℓ
|G

2L+ℓ2m(L)+1
be the conditional law of U∗

L,ℓ given G2L+ℓ2m(L)+1

where Gm = σ(T i, i ≥ m). By the Markov property, PU∗

L,ℓ
|G

2L+ℓ2m(L)+1
= P

U∗

L,ℓ
|T 2L+ℓ2m(L)+1 .

According to Rüschendorf (1985), there exists a random variable V ∗
L,ℓ =

(
V

∗(1)
L,ℓ , · · · , V

∗(2r(L)−1)
L,ℓ

)′
with law G2m(L)Λ eT ,L

, measurable with respect to σ(δ2L+ℓ2m(L))∨ σ(U∗
L,ℓ)∨G2L+ℓ2m(L)+1, independent

of G2L+ℓ2m(L)+1, and such that, with the notation of Section 4.1.1,

E
(
dr(L)(U

∗
L,ℓ, V

∗
L,ℓ)

)
= E

(
Wdr(L)

(PU∗

L,ℓ
|G∗

2L+ℓ2m(L)+1

, G2m(L)Λ eT ,L
)
)
. (4.68)

By induction on ℓ, the random variables (V ∗
L,ℓ)ℓ=1,··· ,2L−m(L) are mutually independent, independent

of G2L+1+1 and with law N (0, 2m(L)Λ eT ,L). Hence we have constructed Gaussian random variables

(V ∗
L,ℓ)L∈N,ℓ=1,··· ,2L−m(L) that are mutually independent. In addition, according to Lemma 2.11 of

Dudley and Philipp (1983), there exists a Kiefer process K∗
eT

with covariance function ΓeT such that

for any L ∈ N, any ℓ ∈ {1, . . . , 2L−m(L)} and any j ∈ {1, . . . , 2r(L)−1},

V
∗(j)
L,ℓ = K∗

eT
(sj , 2

L + ℓ2m(L)) − K∗
eT
(sj , 2

L + (ℓ − 1)2m(L)) . (4.69)

Thus our construction is now complete.
Notice now that, by stationarity, for any ℓ ∈ {1, · · · , 2L−m(L)},

E
(
dr(L)(U

∗
L,ℓ, V

∗
L,ℓ)

)
= E

(
dr(L)(U

∗
L,1, V

∗
L,1)

)
.

In addition, on the probability space ([0, 1], ν), the random variable (T 2L+1, T 2L+2, . . . , T 2L+1

) is

distributed as (X2L+1 , X2L+1−1, . . . , X2L+1). Let U
(j)
L,ℓ =

∑
i∈IL,ℓ

(1Yi≤sj
− FY (sj)), and let UL,ℓ be

the associated column vectors in R
2r(L)−1 defined by UL,ℓ =

(
U

(1)
L,ℓ, · · · , U

(2r(L)−1)
L,ℓ

)′
. According to the

coupling relation (4.5), we get that

E
(
Wdr(L)

(PU∗

L,1|G2L+2m(L)+1
, G2m(L)ΛT,L

)
)

= E sup
f∈Lip(dr(L))

(
E

(
f(U∗

L,1)|T 2L+ℓ2m(L)+1
)
− E(f(V ∗

L,1))
)

= E sup
f∈Lip(dr(L))

(
E

(
f(UL,2L−m(L))|X2L+1−2m(L)

)
− E(f(V ∗

L,1))
)

. (4.70)

Let us construct the Gaussian random variables VL,ℓ associated to the UL,ℓ as in Section 4.1.1. Notice
that since the covariance function Λ eT is the same as the covariance function ΛY defined by (4.4), for
any measurable function f , E(f(V ∗

L,1)) = E(f(VL,2L−m(L))). Therefore starting from (4.68) and taking
into account (4.70) together with (4.5), we get that

E
(
dr(L)(U

∗
L,1, V

∗
L,1)

)
= E sup

f∈Lip(dr(L))

(
E

(
f(UL,2L−m(L))|F2L+1−2m(L)

)
− E(f(VL,2L−m(L)))

)

= E
(
dr(L)(UL,2L−m(L) , VL,2L−m(L))

)
. (4.71)
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Setting Πr(L)(s) = 2−r(L)[s2r(L)] and mimicking the notations of Section 4.1.2, let now

D∗
L,1 = sup

2L<ℓ≤2L+1

sup
s∈[0,1]

∣∣(R eT (s, ℓ) − R eT (Πr(L)(s), ℓ)) − (R eT (s, 2L) − R eT (Πr(L)(s), 2
L))

∣∣ ,

B∗
L,3 = sup

j∈{1,...,2r(L)−1}

sup
1≤k≤2L−m(L)

sup
ℓ∈IL,k

∣∣R eT (sj , ℓ) − R eT (sj , 2
L + (k − 1)2m(L))

∣∣ ,

and let DL,1 and BL,3 be the same quantities with RY replacing R eT . Using once again that, on

([0, 1], ν), the random variable (T 2L+1, T 2L+2, . . . , T 2L+1

) is distributed as (X2L+1 , X2L+1−1, . . . , X2L+1),
we infer that for any positive λ,

P(D∗
L,1 ≥ λ) ≤ P(2DL,1 ≥ λ) and P(B∗

L,3 ≥ λ) ≤ P(2BL,3 ≥ λ) . (4.72)

Proceeding as in Section 4.1.2 of the proof of Theorem 2.1, using the fact that the covariance function
Γ eT is the same as the covariance function ΓY defined by (4.4) (so that all the quantities involving
only the Kiefer process K∗

eT
can be computed as in the Section 4.1.2) and taking into account (4.71),

(4.72), and the fact that the Markov chain (Xi)i∈Z satisfies the assumptions of Theorem 2.1, Theorem
3.1 follows. ⋄

5 Appendix

5.1 Properties of the random variables Yi

For the next lemma, we keep the same notations as that of Definition 2.1 and of the beginning of
Section 4.1. Recall that the random variables Yi have been defined in (4.3).

Lemma 5.1 The following assertions hold

1. The image measure of P
∗
0 by the variable Y0 is the uniform distribution over [0, 1].

2. The equality F−1
P∗ (Yi) = Xi holds P-almost surely. Moreover, P-almost surely,

b(X0, k) ≥ sup
t∈R

|PYk|X0
(ft) − PY (ft)| ,

b1(Fℓ, k) ≥ sup
t∈R

|PYk|Fℓ
(ft) − PY (ft)| ,

b2(Fℓ, i, j) ≥ sup
(s,t)∈R2

|P(Yi,Yj)|Fℓ
(f

(0)
t ⊗ f (0)

s ) − P(Yi,Yj)(f
(0)
t ⊗ f (0)

s )| .

Proof of Lemma 5.1. As in Definition 2.1, define

b(Xi, k) = sup
t∈R

|PXk|Xi
(ft) − P (ft)| .

On Ω, we introduce the probability P
∗
i whose density with respect to P is

C(β)−1
(
1 + 4

∞∑

k=i+1

b(Xi, k)
)

with C(β) = 1 + 4

∞∑

k=1

β(σ(X0), Xk) . (5.1)

By stationarity of (Xi)i∈Z, the image measure of P
∗
i by Xi is again P ∗. It follows from Lemma F.1

page 161 in Rio (2000) that the image measure of P
∗
i by the variable Yi is the uniform distribution

over [0, 1] (proving Item 1), and that the equality F−1
P∗ (Yi) = Xi holds P

∗
i -almost surely. Since the
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probabilities P and P
∗
i are equivalent, it follows that the equality F−1

P∗ (Yi) = Xi holds P-almost surely,
proving the first point of Item 2.

Now, note that Yi = g(Xi, ηi), where the function x → g(x, u) is non decreasing for any u ∈ [0, 1].
Since (X0, Xk) is independant of ηk,

|PYk|X0
(ft) − PY (ft)| =

∣∣∣
∫ 1

0

{E(ft(g(Xk, u))|X0) − E(ft(g(Xk, u)))}du
∣∣∣ almost surely.

The function x → g(x, u) being non decreasing, we infer that

|E(ft(g(Xk, u))|X0) − E(ft(g(Xk, u)))| ≤ b(X0, k) almost surely,

in such a way that
|PYk|X0

(ft) − PY (ft)| ≤ b(X0, k) almost surely.

The two last inequalities of Item 2 may be proved in the same way. ⋄

5.2 Some upper bounds for partial derivatives

Let x and y be two column vectors of R
2r(L)−1 with coordinates

x =
((

x(i,ki), ki ∈ E(L, i)
)
i=0,...,r(L)−1

)′

and y =
((

y(i,ki), ki ∈ E(L, i)
)
i=0,...,r(L)−1

)′

where E(L, i) = {1, · · · , 2r(L)−i − 1} ∩ (2N + 1). Let f ∈ Lip(d∗r(L)), meaning that

|f(x) − f(y)| ≤
r(L)−1∑

K=0

sup
k∈E(L,K)

|x(K,k) − y(K,k)|

(the distance d∗r(L) is defined in Definition 4.3). Let a > 0 and ϕa be the density of a centered Gaussian

law of R
2r(L)−1 with covariance a2I2r(L)−1 (I2r(L)−1 being the identity matrix on R

2r(L)−1). Let also

‖x‖∞,L =

r(L)−1∑

K=0

sup
k∈E(L,K)

|x(K,k)| and ‖x‖2,L =
( r(L)−1∑

K=0

∑

kK∈E(L,K)

(x(K,kK))2
)1/2

.

For the statements of the lemmas, we refer to Notation 4.4.

Lemma 5.2 The partial derivatives of f exist almost everywhere and the following inequality holds:

sup
y∈R2r(L)

−1

sup
u∈R2r(L)

−1 , ‖u‖∞,L≤1

∣∣Df(y).u
∣∣ ≤ 1 . (5.2)

In addition

sup
K∈{0,··· ,r(L)−1}

∑

kK∈E(L,K)

∣∣∣
∂f

∂x(K,kK)
(y)

∣∣∣ ≤ 1 . (5.3)

Proof of Lemma 5.2. The first part of the lemma follows directly from the fact that f is Lipschitz
with respect to the distance d∗r(L) together with the Rademacher theorem. We prove now (5.3). For

any K ∈ {0, · · · , r(L) − 1}, we consider the column vector uK =
((

u
(i,ki)
K , ki ∈ E(L, i)

)
i=0,...,r(L)−1

)′

with coordinates given by

u
(i,ki)
K = sign

( ∂f

∂x(i,ki)
(y)

)
1i=K .
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Applying the inequality (5.2) together with the fact that ‖uK‖∞,L = 1, we get that

∑

k∈E(L,K)

∣∣∣
∂f

∂x(K,k)
(y)

∣∣∣ =
∣∣Df(y).uK

∣∣ ≤ 1 ,

and (5.3) follows. ⋄

Lemma 5.3 Let X and Y be two random variables in R
2r(L)−1. For any positive integer m and any

t ∈ [0, 1],
∣∣∣E

(
Dmf ∗ ϕa(Y + tX).X⊗m

)∣∣∣ ≤ E

(
‖Df(·).X‖∞ × ‖Dm−1ϕa(·).X⊗m−1‖1

)
.

Proof of Lemma 5.3. For any positive integer m and any x, y ∈ R
2r(L)−1, it follows, from the

properties of the convolution product, that

Dmf ∗ ϕa(y).x⊗m =
(
Df(·).x

)
∗

(
Dm−1ϕa(·).x⊗m−1

)
(y) ,

where Df(·).x : y 7→ Df(y).x and Dm−1ϕa(·).x⊗m−1 : y 7→ Dm−1ϕa(y).x⊗m−1. The lemma then
follows immediately. ⋄

Lemma 5.4 Let X be a random variable in R
2r(L)−1. For any nonnegative integer m, there exists a

positive constant cm depending only on m such that

‖Dmϕa(·).X⊗m‖1 ≤ cma−m‖X‖m
2,L . (5.4)

Proof of Lemma 5.4. In order to simplify the proof, and to avoid the double indexes (K, kK) for

the coordinates of a column vector of R
2r(L)−1, we set d = 2r(L)−1 and we denote by x = (x1, . . . , xd)

′

an element of R
d. Proceeding by induction on m, we infer that for any u, x in R

d and any integer m,

Dmϕa(u).x⊗m =
1

(2πa2)d/2
exp

(
− 1

2a2

d∑

i=1

u2
i

) [m/2]∑

ℓ=0

cm,ℓ

a2ℓ

( d∑

i=1

x2
i

)ℓ( d∑

i=1

uixi

a2

)m−2ℓ

, (5.5)

with the following recurrence relations between the cm,ℓ:

cm,0 = (−1)m for any m ≥ 0, c2,1 = −1,

cm+1,ℓ = (m − 2ℓ + 2)cm,ℓ−1 − cm,ℓ for ℓ ∈ {1, . . . , [m/2]} and m ≥ 2,

cm+1,[(m+1)/2] = cm,[m/2] if m is odd, cm+1,[(m+1)/2] = cm+1,[m/2] if m is even.

Starting from (5.5) and setting ‖x‖2,d =
( ∑d

i=1 x2
i

)1/2

, we get that for any integer m,

∫

Rd

∣∣Dmϕa(u).x⊗m
∣∣du ≤

‖x‖m
2,d

am(2πa2)d/2

∫

Rd

exp
(
− 1

2a2

d∑

i=1

u2
i

) m∑

ℓ=0

∣∣∣cm,ℓ

( d∑

i=1

uixi

a‖x‖2,d

)m−2ℓ∣∣∣
d∏

i=1

dui

≤
‖x‖m

2,d

am

∫

Rd

1

(2π)d/2
exp

(
− 1

2

d∑

i=1

u2
i

) m∑

ℓ=0

∣∣∣cm,ℓ

( d∑

i=1

uixi

‖x‖2,d

)m−2ℓ∣∣∣
d∏

i=1

dui .

Now, for any integer k, we have that

1

(2π)d/2

∫

Rd

exp
(
− 1

2

d∑

i=1

u2
i

)∣∣∣
d∑

i=1

uixi

‖x‖2,d

∣∣∣
k d∏

i=1

dui = E(|N |k) ,
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where N ∼ N (0, 1). Therefore

∫

Rd

∣∣Dmϕa(u).x⊗m
∣∣du ≤ a−m‖x‖m

2,d

[m/2]∑

ℓ=0

|cm,ℓ|E(|N |m−2ℓ) ,

which completes the proof of (5.4). ⋄

Lemma 5.5 Let X and Y be two random variables with values in R
2r(L)−1. For any positive integer

m and any t ∈ [0, 1], there exists a positive constant cm−1 depending only on m such that
∣∣∣E

(
Dmf ∗ ϕa(Y + tX).X⊗m

)∣∣∣ ≤ cm−1a
1−m

E

(
‖X‖∞,L × ‖X‖m−1

2,L

)
.

Proof of Lemma 5.5. Applying Lemmas 5.3 and 5.4 and using the fact that, by (5.2),

‖Df(·).X‖∞ = ‖X‖∞,L sup
y∈R2r(L)

−1

∣∣∣Df(y).
X

‖X‖∞,L

∣∣∣ ≤ ‖X‖∞,L ,

the result follows. ⋄

Lemma 5.6 For any y ∈ R
2r(L)−1 and any integer m ≥ 1, there exists a positive constant cm depend-

ing only on m such that

sup
(Ki,kKi

),i=1,...,m

∣∣∣
∂mf ∗ ϕa∏m

i=1 ∂x(Ki,kKi
)
(y)

∣∣∣ ≤ cma1−m ,

where the supremum is taken over all the indexes Ki ∈ {0, · · · , r(L) − 1} and kKi
∈ E(L, Ki) for any

i = 1, · · · , m.

Proof of Lemma 5.6. Notice first that by the properties of the convolution product,

∂mf ∗ ϕa∏m
i=1 ∂x(Ki,kKi

)
(y) =

( ∂f

∂x(K1,kK1
)
∗ ∂m−1ϕa∏m

i=2 ∂x(Ki,kKi
)

)
(y) .

Therefore by using (5.3),

∣∣∣
∂mf ∗ ϕa∏m

i=1 ∂x(Ki,kKi
)
(y)

∣∣∣ ≤
∥∥∥

∂f

∂x(K1,kK1
)

∥∥∥
∞

∥∥∥
∂m−1ϕa∏m

i=2 ∂x(Ki,kKi
)

∥∥∥
1
≤

∥∥∥
∂m−1ϕa∏m

i=2 ∂x(Ki,kKi
)

∥∥∥
1
. (5.6)

Let now ha be the density of the N (0, a2) distribution, and let

Sm =
{

(ℓ1, . . . , ℓm) ∈ {0, . . . ,m}⊗m such that

m∑

i=1

ℓi = m
}

.

With this notation, we infer that

∥∥∥
∂m−1ϕa∏m

i=2 ∂x(Ki,kKi
)

∥∥∥
1
≤ sup

(ℓ1,...,ℓm−1)∈Sm−1

m−1∏

i=1

‖h(ℓi)
a ‖1 ,

where h
(ℓi)
a is the ℓi-th derivative of ha. Since for any real u, h

(ℓi)
a (u) = a−(ℓi+1)h

(ℓi)
1 (u/a), it follows

that ‖h(ℓi)
a ‖1 = a−ℓi‖h(ℓi)

1 ‖1. Therefore

∥∥∥
∂m−1ϕa∏m

i=2 ∂x(Ki,kKi
)

∥∥∥
1
≤ a1−m sup

(ℓ1,...,ℓm−1)∈Sm−1

m−1∏

i=1

‖h(ℓi)
1 ‖1 . (5.7)
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Starting from (5.6) and using (5.7) the lemma is proved, with

cm = sup
(ℓ1,...,ℓm−1)∈Sm−1

m−1∏

i=1

‖h(ℓi)
1 ‖1 . ⋄
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[1] I. Berkes, S. Hörmann and J. Schauer (2009), Asymptotic results for the empirical process of
stationary sequences. Stoch. Process. Appl. 119, 1298-1324.

[2] I. Berkes and W. Philipp (1977), An almost sure invariance principle for the empirical distribution
function of mixing random variables. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 41, 115-137.

[3] S. Borovkova, R. Burton and H. Dehling (2001), Limit theorems for functionals of mixing processes
with applications to U -statistics and dimension estimation. Trans. Amer. Math. Soc. 353, 4261-
4318.

[4] N. Castelle and F. Laurent-Bonvalot (1998), Strong approximations of bivariate uniform empirical
processes. Ann. Inst. H. Poincar Probab. Statist. 34, 425-480.

[5] J. Dedecker (2010), An empirical central limit theorem for intermittent maps. Probab. Theory
Relat. Fields 148, 177-195.

[6] J. Dedecker, P. Doukhan, G. Lang, J. R. León, S. Louhichi and C. Prieur (2007), Weak dependence:
with examples and applications. Lecture Notes in Statistics 190, Springer, New York.
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Mathématiques et applications de la SMAI. 31, Springer.

[23] M. Rosenblatt (1956), A central limit theorem and a strong mixing condition, Proc. Nat. Acad.
Sci. U. S. A. 42 43-47.
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