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Abstract

Multi-season reflectance data from radiometricaltyl geometrically corrected
multispectral SPOT-5 images of 10-m resolution wenabined with thorough field campaigns
and land cover digitizing using a binary classtiica tree algorithm to estimate the area of
marshes covered with common re@@dbragmites australisand submerged macrophytes
(Potamogeton pectinatus, P. pusillus, Myriophyllspicatum, Ruppia maritima, Chara spyer
an area of 145 000 ha. Accuracy of these modelsstamated by cross-validation and by
calculating the percentage of correctly classifieels on the resulting maps. Robustness of this
approach was assessed by applying these modeisndependent set of images using
independent field data for validation. Biophysiparameters of both habitat types were used to
interpret the misclassifications. The resulting&@rovided a cross-validation accuracy of 98.7%
for common reed and 97.4% for submerged macrophysables discriminating reed marshes
from other land covers were the difference in tearrinfrared band between March and June, the
Optimized Soil Adjusted Vegetation Index of Decemlaad the Normalized Difference Water
Index (NDWI) of September. Submerged macrophytes veste discriminated with the
shortwave-infrared band of December, the NDWI gft8mber, the red band of September and
the Simple Ratio index of March. Mapping validasgrovided accuracies of 98.6% (2005) and
98.1% (2006) for common reed, and 86.7% (2005)8n8% (2006) for submerged
macrophytes. The combination of multispectral amdtisesasonal satellite data thus
discriminated these wetland vegetation types eifitty. Misclassifications were partly explained
by digitizing inaccuracies, and were not relatetitiphysical parameters for reedbeds. The
classification accuracy of submerged macrophytesinfuenced by the proportion of plants
showing on the water surface, percent cover of suged species, water turbidity, and salinity.

Classification trees applied to time series of SPihages appear as a powerful and reliable
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tool for monitoring wetland vegetation experiencdifferent hydrological regimes even with a

small training sample\ = 25) when initially combined with thorough fieldeasurements.

Keywords: Camargue, classification tree, multispgandices, multitemporal indices,

Phragmites australis, remote sensing, SPOT-5, sugmdemacrophytes, wetland monitoring.

1. Introduction

Efficient, accurate and robust tools for monitormetlands over large areas are urgently
needed following their destruction and degradatiospite of the many services and functions
they provide to human kind (Ozesmi & Bauer, 20@2curate wetland mapping is an important
tool for understanding wetland functions and mamiig their response to natural and
anthropogenic actions (Baker et al, 2006).

Satellite remote sensing increasingly presents nadrgntages for inventorying and
monitoring all types of wetlands (Ozesmi & Baudd02). Unsupervised classification or
clustering is the most commonly used digital classiion to map wetlands with multispectral
data, while the maximum likelihood algorithm is tmest frequently used method for supervised
classification. Low wetland accuracies (30 — 60%groresult from these classification methods
(Ozesmi, 2000; but see Macalister and Mahaxy, 2008)Iti-temporal, multi-spectral, ancillary
data or a rule-based approach are expected todertvetter results than traditional image
processing techniques (Ozesmi & Bauer, 2002)

Many wetland species have overlapping spectratctthces at peak biomass (Schmidt &
Skidmore, 2003) and aggregation of similar wetlaladses are sometimes necessary to achieve

better accuracies (Wright & Gallant, 2007). Herecejultiseasonal imagery can be most useful
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for distinguishing plant species within a singlewing season (Ghioca-Robrecht et al., 2008),
further integrating seasonal variability in wategimes and vegetation (Ozesmi & Bauer, 2002).
For instance, Ramsey & Laine (1997) have demomstridiat the combination of images from
two seasons facilitates the segregation betweengemieand floating vegetation (winter and
spring), and between flooded emergent vegetatidropen water (fall and winter).

Multispectral data have also been used as an atteerapproach for wetland plant
discrimination with satellite remote sensing (Oze&Bauer, 2002). Johnston & Barson (1993)
observed that using simple density slicing of bahds are related to physical parameters such as
vegetation indices, mid infrared and visible blugymbe as effective as more complicated
statistical classification. Multispectral indicesl(lition, subtraction, multiplication or divisiof o
pixel brightness between two bands) are also egpeaotimprove models for wetland
discrimination (Bradley & Fleishman, 2008) becatls®y are sensitive to vegetation surface
roughness, its moisture conditions and stage oéldpment.

Non-parametric classifiers such as rule-based ndsthce an increasingly used alternative
to traditional remote sensing techniques to enh#meaccuracy of wetland classification (Sader
et al., 1995; Ozesmi, 2000; Baker et al., 2006 aBee classification trees (CTs) easily
accommodate data from all measurements scalesatbayseful for distinguishing spectral
similarities among wetlands with ancillary enviroemtal data (Wright & Gallant, 2007).
Resampling statistical methods such as bagginggtvap aggregation) and boosting can
improve CT accuracy, but they also make the ingtgpion of the results more complex
(Lawrence et al., 2004).

Flooded areas pose unusual challenges for fielppammns, and class imbalance in remote
sensing of wetlands is a well-known problem (WrighBallant, 2007). Spatial studies of these

ecosystems require flexible and robust analyticgthwds to deal with non-linear relationships,
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high-order interactions, and missing data. Despitsh difficulties, methods used for mapping
the distribution of wetlands should be simple tdenstand and easy to interpret in order to
contribute to management advising. Seasonal timessef satellite multispectral data may
provide, through the use of CTs, reliable, replieand understandable tools for a wetland
mapping and follow-up. The aim of this study i®t@luate the potential of CTs and
multiseasonal SPOT-5 images to model the presdrbensinant emergent and submerged
macrophytes of Camargue marshes. The ultimateigt@lprovide a re-applicable remote-
sensing tool for their long-term monitoring to assnanagement decisions that will insure a good

balance between economic interests and nature v@thesa.

2. Methods

2.1. Study area

The study area is the Camargue or Rhone deltaiogvé45 000 ha near the
Mediterranean Sea in southern France (Fig. 1).ddreargue consists mainly of agricultural
land (mostly rice) mixed with natural or semi-nalusrackish marshes either covered with
submerged marcrophyteBdtamogeton, Myriophyllum, Ruppia, Chawa tall helophytes
(mostly common reeBhragmites australibut also club-rusBolboschoenus maritimus,
Schoenoplectus littoralis, S. lacustasd cattaillypha angustifolia, T. latifolia)The climate is
Mediterranean with mild and windy winters and hiod @ry summers. Mean annual rainfall over
the last 30 years is 579 + 158 (SD) mm, being cotnated in spring and autumn, with large
intra- and inter-annual variations (Chauvelon, 2008e Camargue has lost 40 000 ha of natural
areas, including 33 000 ha of wetlands over thied@gears, following the extension of

agriculture, salt exploitation and industry (Tarais& Grillas, 1994). A large part of the
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remaining marshes, located on private estateddms fragmented and intensively managed
through freshwater inputs for socio-economic atiésisuch as waterfowl hunting, reed
harvesting, and cattle grazing. The increased Ipgirod of these marshes results in a loss of
their Mediterranean flora and fauna, which are \adlpted to summer droughts (Tamisier &
Grillas, 1994). Vegetation development and densitgamargue marshes is influenced by
physical factors such as salinity, water depth,\water level fluctuations, which have an effect

on reflectance spectra (Silvestri et al., 2002).

2.2. Habitat description

In the Camargue, common re@hragmites australisgan form monospecific stands over
large areas in shallow marshes or develop lineddyg canals. Aerial stems emerge during
spring and reach their maximum growth at the endliake. The inflorescences or panicles start
developing in July and turn purplish-brown withlaffly aspect at maturation in autumn. Seeds
are wind-dispersed in early winter with the parsdbecoming thinner and switching to a beige
colour. Leaves remain green until October and yettow before drying and falling down in
winter. The stems then dry but stand for a few yé&&fore breaking down. In order to provide
sustainable conditions for reed harvesting in wineedbeds are flooded from March to June,
dried in summer, flooded in autumn and drainedimeav for mechanical harvest (December —
March). Flooding can be extended through springuonmer if waterfowl hunting occurs. The
total area of reedbeds in the Camargue is estinatablout 8000 ha, of which 2000 ha is
harvested every year (Mathevet & Sandoz, 1999).

Beds of submerged macrophytes develop in unmanageshes that dry in summer as
well as in marshes managed for waterfowl huntingctv are either permanently flooded with

freshwater inputs or drained shortly in spring (Taer & Grillas, 1994). These open marshes,



121  which vary in size from 0.02 ha to 250 ha, can tlgvdense mono- or multispecific stands of
122 pondweedsRotamogeton pectinatuyBotamogeton pusilljsEurasian water milfoils

123  (Myriophyllum spicatumor widgeon grasse®(@ppia maritimy SomeCharaspp. characteristic
124 of unmanaged marshes can develop in spring bugearerally quickly replaced by the species
125 mentioned above that are more competitive in gnaskanently flooded marshes. Thus,

126 depending upon the water management and the spsgieaerged macrophytes develop from
127 mid-February to late March, reaching their maximgnowth in May through July. A progressive
128 senescence starts from early winter but some ptamsemain until the next spring. Water inputs
129 generating new emergence can also be observedumauWater turbidity is generally low

130 because submerged plants limit sediment movemeobnéinuous surficial water flow is

131 sometimes favoured by managers to increase marabtateness to ducks. The total area of
132 submerged macrophytes in the Camargue has notestiemated.

133

134 2.3. Field sampling

135 2.3.1. Reed and submerged macrophyte beds

136 Physical access to many wetlands was hindered bgrw shallow for boat access and
137 by roads too bad for vehicle access. The diffiegltassociated with the sampling of remote
138 flooded marshes were further hampered by land gyiv@election of study plots was a

139 compromise between admittance, accessibility, atitihg a representative sample of the

140 Camargue marshes based on aerial photographs @gwb\wgollected during flights by plane or
141 ultra-light motorized engines (ULM). The numbembdts surveyed was further limited by the
142 relatively short sampling period of optimal plambwgth. The training sample, collected in 2005,
143 consisted of 46 plots of common reed and 25 plbssibmerged macrophytes spread throughout

144  the Camargue (Fig. 1). The independent validateonme of 2006 consisted of 21 sites of
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common reed, and 83 sites of aquatic beds. Allysplots were located in seasonal or permanent
shallow marshes either covered with reed-dominagtaphytes or with submerged macrophytes
during some time of the year.

For each habitat type, water and vegetation measugee taken within 20 X 20 m
squares (i.e., four pixels of a SPOT-5 scene) aidgeneous vegetation placed within a larger
homogeneous zone and located at least 70 m froimottaer to reduce edge effects in spectral
response.. Plot size was defined in order to corableast one pure pixel (10 X 10 m) of a
SPOT-5 scene. Each sampling plot was placed iffexelt hydrological unit to increase
structural diversity and avoid autocorrelation. yiesre geolocated with a GPS (Holux GR-
230XX) situated in the centre of the plot at thnesters above ground to avoid interferences
caused by high reed stems, using the average@osibtained during the whole process of field
data gathering (1-2 hours). Water level, plant carel composition were estimated along two
diagonals crossing the entire plot between MayJygl depending upon the development of the
vegetation. Common reed density was measured bytioguhe green and dry stems inside four
quadrats of 50 X 50 cm per plot in June or Julated at seven meters from the center of the plot
in each cardinal direction. Homogeneity throughtbetplot was visually estimated and coded
from 1 to 4. Vegetation cover was evaluated witlr fdigital pictures taken vertically from the
ground level upwards in the centre of the 50-cndgata and processed with CANEYE (Baret &
Weiss, 2004), a software that derive canopy charatts such as LAI, fAPAR and the cover
fraction with several photographs. The estimatibthe canopy characteristics are based on the
transmittance of light through the canopy consittgthe vegetation elements as opaque (Baret &
Weiss, 2004).

Water levels were measured at a permanent rulegluggetation sampling, as well as

monthly or twice monthly at each hydrological usaimpled.
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2.3.2. Other land covers

Tamarisk Tamarix gallicg, riparian forest, rush, grassland, sand (durieeach), salt
pan, saline marsh (more or less covered by peremai@phytes such asrthrocnemum spp
other forests (including pine forest), agricultusald urban areas were extracted from a vector
layer created by the Réserve Nationale de Camdrguoreaerial photographs in 2001 provided
by the Parc Naturel Régional de Camargue. Additicategories were digitized based on aerial
photographs and ground or aerial (airplane and-light aircrafts) surveys: sea, rice, sawgrass
(Cladium mariscug club rush Bolboschoenus maritimus, Schoenoplectus littor&lidacustriy,
cattails(Typha spp,)and groundsel bugBaccharis halimifolia) In 2006, an updated land cover
was available, providing details for agriculturedgs. Homogenous stands of groundsel bush and
cattails were unfortunately too few to be includiethe validation sample. We therefore obtained

a total of 640 polygonfr the training sample and 587 polygons for thieeéion sample.

2.4. Image processing

The Camargue can be covered with a single SPOE#ieg®0 X 60 km). Two seasonal
time series of SPOT-5 images (SPOT/Programme &8yright CNES) and field data sets
were acquired at one year intervals for model lngd2004-2005) and validation (2005-2006).
Thanks to the Spot satellite programming servicenss were acquired in late December, March,
May, June, July and September (October in 2006ptf years. These dates had been selected
based on vegetation phenology and seasonal wateagement of the targeted habitats. The
programming service provided several possible imagtin a two-week period when
meteorological conditions were not optimal. SPORas 10-m spatial resolution and four bands:
B1 (green: 0.50 to 0.59m), B2 (red: 0.61 to 0.68 m), B3 (near-infrared NIR: 0.79 to 0.89

m) and B4 (shortwave-infrared SWIR: 1.58 to 1u/®). Spot scenes came with radiometric
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193 correction of distortions due to differences insgwity of the elementary detectors of the

194 viewing instrument that is the preprocessing leatled 1A (Spot image, 2008).

195 Scenes were radiometrically normalized using that@é®spheric code (Davranche et al.,
196 2009) developed by Vermote et al. (1997), and pteptto Lambert conformal conic projection
197 datum NTF (Nouvelle Triangulation Francaise) usangecond-order transformation and nearest-
198 neighbour re-sampling. The scenes were georefeldncetopographic map at 1:25, 000 scale.
199 We extracted the mean reflectance value for eamttopreed and aquatic beds and each polygon
200 of other land covers from each band of each sceimg tihe ‘Spatial Analyst’ of ArcGis version
201 9.2 (Environmental Systems Research Institute, MeuBrance). Using these data, we further
202 calculated for each plot and polygon the most commaltispectral indices (Table 1), and

203 multitemporal indices corresponding to subtractibesveen each pair combination of dates. In
204 the data file, these variables were labelled deviolOSAVI_12 for the Optimized Soil Adjusted
205 Vegetation Index of December and B3_0603 for tlffeidince between March and June in the
206 reflectance value of band B3.

207

208 2.5. Statistical modelling and mapping

209 2.5.1 Classification trees

210 CT analyses based on dichotomous patrtitioning (Baiet al., 1984) were performed with
211 the Rpart (Recursive PARTItioning, Therneau & Adon, 1997) package in the R software

212 using a class coded “1” for the presence of reexsibmerged macrophyte beds and a class coded
213 “0” for absence (= other land cover types detaiifed.4.2). This method is less sensitive to data
214 fragmentation than multivariate classification g€Brostaux, 2005) and uses the cost-complexity
215 parameterdp) for pruning.

216 For the pruning phase, we tested two cross-vatidgirocedures CV-0SE and CV-1SE,
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described by Esposito et al. (1999). Cross-valheis well suited to small samples, but can also
improve results for large data sets (Breiman ¢t18i84). For both methods, we used 10 cross-
validation subsets, which is the recommended devallie by Breiman et al. (1984). The
optimally pruned tree was defined with &@providing the smallest overall classification erro
rate among 10 iterative runs of the algorithm. Mpriove classification accuracies with our
unbalanced samples, the optimal prior parameteéigitias the highest classification accuracy

was selected using the iterative method proposdgréeiynan et al. (1984).

2.5.2. Map validation

The equations issued from the resulting trees appéied to SPOT-5 scenes of 2005 for
estimating model accuracy and to 2006 scenes fonasg model robustness. For this
procedure we used the raster calculator (Spatialyst) of ArcGIS to create binary maps, with 1
encoded for the presence of reed or aquatic betl® & the presence of other land covers.
Using the zonal statistics tool (Spatial AnalystpocGIS, we extracted the values 1 and O for
each class of the validation sampling. As descriipetVright & Gallant (2007), overall
accuracies and omission error rates were calculetied the sample error matrix, whereas the
commission and overall error rates were estimatad the population error matrix given known
numbers of reedbeds, aquatic beds and other laredm the study area for each map. We
further calculated the omission error rates fordtfierent categories of the other land cover in
the validation sample. The resulting distributinaps were confronted with expert knowledge

and additional field visits for interpretation abtentially misclassified areas.
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2.5.3 Relevance of the models and interpretatianie€lassifications

To test the relevance of the variables selectdaih models, their mean value and 95%
confidence intervals were calculated for each abdiske training and the validation samples. The
binary response (0/1) for miss-classified and wklbsified plots in both years was confronted to
structural parameters of reed or submerged macteplepnsidered individually, using the
likelihood ratio test (Sokal & Rohlf, 1995) for meldsignificance. This test is considered as more
reliable than the Wald test with small samples (e1§r2001). The following parameters were
examined for common reed: height of green stemssityeof green and dry stems, dry-to-green
stem ratio, diameter of green and dry stems, motdgeneity, and percent cover of vegetation.
For submerged macrophytes, the parameters usedpezoent cover of the vegetation,
dominant plant species, water level, water turipjdihd proportion of submerged plants showing
on the water surface. For both habitats, a yeaabigrwas included as a potential parameter for

misclassification.

3. Reaults

3.1. Models

The resulting classification tree for common refeid)(2) provided a cross-validation
accuracy of 98.7% with the equation: B3_0603.04897 and OSAVI_12 < 0.2467 and
MNDWI_09 < -0.3834. The resulting classificatioad for submerged vegetation (Fig. 3)
provided a cross-validation accuracy of 97.4% hih equation(B4_12 < 0.05355 and
NDWIF_09 < 0.2466 and B2_09 < 0.07147) or (B4>1205355 and SR_080.9827). The
CV-1SE pruning method offered the best results. Gdst prior parameter was 0.40 for the class

“0" and 0.60 for the class “1” in both models.
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265 3.3. Mapping validation

266 The map of common reed resulted in an overall aoguof 98.6% in 2005 and 98.1% in
267 2006 (Table 2, Figs. 4-5). Common reed sites waserrectly classified at 16.7% in 2005 and
268 11.5% in 2006. Misclassifications involved mostyrarisks on both years, as well as club rush
269 and sunflower in 2006 (Table 3). Considering thessin error rates of both classes, the total
270 area covered by common reed in the Camargue mmastil at 8842 ha in 2005 and 9128 ha in
271  2006.

272 The overall accuracy of the submerged-macrophyie was 86.7% in 2005 and 85.9% in
273 2006 (Table 2 & Figs. 4-5). Submerged macrophytssvere incorrectly classified at 10.1% in
274 2005 and 16.2% in 2006. Misclassifications involweaistly club-rush and saline marshes on
275 Dboth years (Table 3), leading to commission erateg of 25 to 41% higher than those of

276 reedbeds (Table 2). Considering the omission eates of both classes, the total area covered by
277 submerged macrophytes in the Camargue is estima®22 244 ha in 2005 and 33 797 hain
278 2006.

279

280 3.4. Robustness of the models and misclassificatterpretation

281 The variables selected in the models exhibitedrélai range of variation in 2005 and

282 2006, suggesting that our approach might be rdbustiter-annual applications. The 95%

283 confidence interval of most variables for reed andmerged macrophyte beds was far from the
284  splitting values used for classification (Figs.)6-Bhe only exceptions were the lowest values of
285 the NDWIF in October and the highest values of3Reindex in March for classifying

286 submerged macrophytes on both years.

287 None of the measured structural parameters of remdd explain their misclassification,

288 which was nevertheless associated to the yearé¥gblith a better classification in 2005
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(training sample). Classification of submerged ropbgtes was influenced by proportion of
plants showing on the water surface, percent colveubmerged species, water turbidity,
salinity, and to a lesser extent the year (TabldBg best conditions for submerged macrophyte
classification were high percentage of plant cavin low turbidity and salinity in 2005.
Following the confusion with seagra@ostera noltii)in the Vaccares lagoon in 2006, we further
calculated the NDWIF values of September and Octfilvgoresumed seagrass in the Vaccares
and observed that they were well below the minispditting rule & 0.2466) of the CT in

October (0.09 — 0.12) but not September (0.32 8)0.3

4. Discussion

Although no additional environmental ancillary datanew methods to address the
shortcomings of CT were used in this study, thelmoation of multispectral and multiseasonal
remotely-sensed data provided a good discriminaifometland vegetation. The fact that CTs
can process a large amount of data without requaipre-selection of variables facilitates their
application and allowed us to create simple modéis. predictive variables involved in the
models were linked to the hydrology and plant plegywknown to influence the spectral
responses of costal wetland vegetation (Caillawad.£1998). For reedbed discrimination,
difference of the B3 between March and June w&dlrio their chlorophyll production, which
is particularly high in summer and low in wintergifaud et al., 1998; Valta-Hulkkonen et al.,
2003). The OSAVI of December probably reflectedhifrgh homogeneity of dry reed stands in
winter that presents a uniform reddish-brown caldinis index is recognised as a good tool for
highlighting homogeneous grass or agricultural @apopies at mid latitudes (Rondeaux et al.,
1996), and presents similar values for ploughegsrace cultivation, sand and sunflower that

have a comparable uniform colour in December inGamargue. The MNDWI provides
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negative values for soil and vegetation, and pasitalues for water (Hangiu, 2006). Its selection
in September could be related to the specific nespof panicles and/or the water inputs that
decrease the near and shortwave infrared valuesuBe the values of MNDWI in September for
reed and groundsel bush are close, a specific nespaf the panicles is likely to explain the
selection of this variable in the model. The graeidush grows on dikes where water levels
have no influence. Its terminal and conspicuousiagcences are white to pale yellow in
autumn, and are expected to provide a similar sgplagtsponse to that of reed inflorescences in
late September. Moreover, some MNDWI values ofadgitots were also in the range of the
reed values in September. When ripen in fall, titéad inflorescences consist of golden to brown
fluffy hairs attached to the tip of the shoot.

Confusion between tamarisk and reed in the traisargple was linked to the OSAVI of
December 2004. Confusion with club-rush in 2006 pabably related to the use of an October
image instead of September, the confidence inteezalhing the splitting value of the MNDWI
in October 2006 but not September 2005 (Figs. &@hfusion between reed and agricultural
crops (namely sun flower) could be related, attlpasgtially, to the presence of reed at the edge
of crops, such as revealed by our field validatiroA006. Reed also grows between rows of vines
(8.1% mixed with common reed in 2006) when theyreretreated with herbicides and flooded
in winter, a common practice in the Camargue.

For macrophyte bed discrimination, the values oilBBecember were close to those of
sea, club-rush and saline marshes, which are tttest@abitats in our samples. The selection of
B4 in December at the first node of the tree wastrlikely related to the high water levels
observed in macrophyte marshes at that periodslatang into the lowest mid-infrared values.
The NDWIF usually classifies water in positive veduand, chlorophyt and turbid

environments in negative values (McFeeters, 199éhce, the NDWIF discriminates aquatic
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beds from open-water marshes. This index also amshinformation about B1 and B3 that are
respectively linked to the variable density andgshbmersion depth of aquatic macrophytes
(Lieutaud & Puech, 1996). The values for aquatisdes between those of open water (eg., sea)
and habitats with a dense vegetation cover. Landrsgresenting a mixture of water and sparse
vegetation (eg., salt pans and club-rush marshes indeed within the same range of values
than aquatic macrophytes. Pinnel (2006) observaittile spectra of submerged macrophytes in
lakes were influenced by canopy structure, chloyb@isorption, and secondarily
photosynthetic pigments. B2 of SPOT-5 is a chlogtipbsorption band important for
vegetation discrimination. Hence, the new emergefisabmerged macrophytes in early fall
following water inputs in hunting marshes inducgsm#icular spectral response and explains the
selection of both NDWIF and B2 in September foirtdescrimination. The selection of the SR
of March is related to one plot of the training gderthat changed markedly between summer
2004 and 2005, with a replacement of pondweedsubgdtan water milfoils after a salinity
decrease. This index reveals the contrast betwakarsl vegetation (Pearson & Miller, 1975),
and its value for aquatic bed is unique comparemthier land cover classes. Water levels were
unusually low in winter 2004-2005, inducing a muddypect of the marsh with limited
underwater light availability for plants. A graduatrease in water levels during February-March
2005 allowed the development of Eurasian wateraislf well adapted to rapid growth in
eutrophic marshes. Hence, it appears that the SRaofh permitted the selection of the few
turbid, muddy marshes in winter prior to the depetent of aquatic vegetation.

In both the training and validation samples, thedjotive variables selected for
discrimination of macrophyte beds did not allowitlifferentiation from saline and club-rush
marshes. However, our training sample includedq@redantly permanent marshes, and

misclassifications could be partly explained by tér@dency of submerged plafi@hara,
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Potamotegon, Ruppidd also develop in temporary marshes assignduetodtegories of club-
rush, saline marsh and salt pan. For instance bsereed an 80% percent cover of submerged
macrophytes in some club-rush beds when they M@oddd in spring. Confusion with riparian
forest and tamarisk could be explained by digiizimaccuracies.

Overall accuracy, omission and commission err@srate recommended as primary
measures for thematic classification accuracy @tial., 2007). Commission rates, which are
useful for understanding the precision of boundadiglineation, are rarely addressed in studies
of wetland classification, potentially because they sensitive to unbalanced classes (Wright &
Gallant, 2007). Rutchey & Vilcheck (1999) clasdifiend recoded a SPOT scene that provided a
commission error rate of 29% for various densitiesattail, from which an overall error rate of
17% could be calculated. Using the combinationpetcsral bands and textural features (Landsat
TM, SPOT and IRS scenes), Arzandeh & Wang (200@)domap reed stands with a minimum
commission error rate of 25%. Broun de Colstoual.e2003) obtained a commission error rate
of 10% for a wetland class using classificatior ta@d two Landsat (ETM) scenes. Baker et al.
(2006) classified wetlands with a commission erade of 21% and 24%, using CTs alone and
with a classification algorithm based on stochagtadient boosting, respectively. When
discriminating wetlands from uplands using CTs andillary data, Wright & Gallant (2007)
obtained a minimum commission error rate of 40%\ait overall error rate of 7%. Using
multiseason Quickbird multispectral imagery withuarsupervised classification of eight classes,
Ghioca-Robrecht et al. (2008) obtained commissroor eates of 24% for common reed and 48%
for cattail, from which a 24%overall error rate wbe calculated. Our reedbed maps presented
an overall accuracy of 99 and 98%, with a commissioor of 23 and 30%, and an overall error
of 2 and 2% in 2005 and 2006, respectively. Theselts are amongst the most accurate for

mapping wetland emergent vegetation that couldbad in the literature, providing a robust
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tool for reedbed monitoring and management (Stoyafagalton 1986). Our estimation of total
reed area in the Camargue is close to the 8008thmated by Mathevet & Sandoz (1999), when
taking into account the smaller geographic areaidened by these authors, which would lead to
8204 (2005) and 8334 (2006) ha of reedbeds usingmuroach. These authors used a supervised
classification with the maximume-likelihood algonithapplied to a Landsat TM scene of July

1995, eliminated the cropland layer from the sdellewing the high confusion with ricefields,

and corrected the resulting map based on expewlkdge (A. Sandoz, pers. comm.).
Unfortunately, the different approaches used preustirom concluding about changes in reed
area over this ten-year period.

Our maps of submerged macrophytes presented aalloaecuracy of 87 and 86% with a
commission error of 64 and 55%, and an overallreafd 3 and 14% in 2005 and 2006,
respectively. These commission error rates cowddymably be improved by integrating the
macrophytes developing into temporarily flooded shas currently classified as club-rush, saline
marshes and salt pans. Coverage estimation of sgbthenacrophytes over an area comprising
hundreds of marshes characterized by differentialband biotic conditions (water depth,
salinity, hydroperiods, aquatic fauna, grazing pues, etc) had never been done to our
knowledge. Such dynamic vegetation that developscdmsonously under water is particularly
difficult to monitor, whether from ground surveyral photographs or satellite data (Vis et al.,
2003; Valley et al., 2005). Estimation of the atesered by submerged macrophytes in the
Camargue is a major conservation issue given tbie-szonomic importance of this habitat for
waterfowl hunting and its vulnerability to invasispecies such as the emergent plamwigia
spp or theLouisiana red-swamp crayfigfrocambarus clarkiiThe total area of submerged
macrophyte beds in the Camargue was estimated 2¢£28a in 2005 and 33 797 ha in 2006.

The 2006 increase is largely imputable to the csinfuwith seagrass in the Vaccares lagoon that
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represents 3101 ha in 2006.

CTs have previously provided good accuracies fnote-sensing data especially with
multi-date LANDSAT datasets (Brown de Colstounlet2003; Baker et al., 2006). This study is
original for having used higher-resolution imagembined with thorough field campaigns and a
wide variety of multispectral and multiseasonaliced as predictive variables. Likewise, our
model performance was not influenced by reed bismakich affects reflectance (Valta-
Hulkkonen et al., 2003) requiring several densi&gses for good classification accuracy in other
studies (Maheu-Giroux & De Bois, 2005).

CTs are considered as especially robust with ssaatiples of remotely-sensed data
(Tadjudin & Landgrebe, 1996). To our knowledge, shwallest sample used for testing CT
reliability was fifty observations (Brostaux, 200&hd we found no study explaining the impact
of an extremely rare class in an unbalanced saraber & Friedl (2002) showed that prior
probabilities can be a good solution for not peaiadj small classes under a non-parametric
classification and observed that adding a prioapeater helped to distinguish hardly separable
classes of remote-sensing data, affecting onlysasearlapping between two classes. Our results
demonstrate that CTs used with an adjusted pri@mpeter provide reliable models for an
unbalanced sample when the smallest class corgaifesv as 25 observations.

Since our objective was to develop re-applicabkéeasy interpretable models with good
accuracies, we chose to enhance the performar€&oby cross-validation and priority
probabilities that are particularly well suited fiata difficult to collect. The CV-1SE pruning
method makes the CT approach even more robusty thelassumption that the training sample
is representative of the underlying population & et al., 1999). Cross-validation,
jackknifing and bootstrapping have been widely usegstimating prediction errors in many

statistical models based on regression and cleasdin (Wintle et al., 2005). However, to ensure
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that the inferred relationships are robust andptieeictions reliable, models should ideally be
tested on a completely independent dataset comgrigbund validation data collected expressly
for such purposes in areas not sampled for thénatighodel derivation (Muller et al., 1998;
Congalton & Green, 1999; Wintle et al., 2005; Thomst al., 2007). Our models were validated
with a completely independent set of images arld flata, complemented with a comparative
analysis of the mean reflectance (and confidentsval) of each land cover type. Model
usefulness also depends on the “time-robustness"space-robustness” of the model itself and
of its predictive variables. In Camargue marshes vegetation development is related to
seasonal rainfall and human interventions, whiehheghly variable in time and space
(Chauvelon, 2009). The training and validation gediffered in their rainfall regime (664 mm in
2005 vs 411 mm in 2006, with 72% of this differethegng attributed to April-May) certainly
affecting the seasonal development of marsh vagatdh spite of these annual differences, our
training sample based on a single year providedsomodels, with CTs integrating different
types of wetland hydrology and phenology.

According to DongMei & Douglas (2002), differentgaling protocols might have more
impact on the resulting classification when a firesolution is used. Additional field campaigns
addressing other land use types would certainlyrifnrte to improve the accuracy of our
models. Likewise, the lack of a September imagefer2006 validation sample decreases the
accuracy of our models, highlighting the importantesing pre-programmed scenes of which
the date is carefully selected based on phelonBigychological events.

Satellite remote sensing techniques have often beticized in the past because they
lacked the necessary resolution for wetland spatialysis (see Ozesmi & Bauer, 2002). The
resolution of SPOT-5 scenes provides an adequate &g acquiring detailed field data within

homogeneous stands, allowing to optimize the tipgasfor data collecting and to properly



457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

21

locate the sampled plots on the ground and ondirees. Remote sensing has often been seen as
a complementary tool to conventional mapping teghes (Girard & Girard, 1999; Ozesmi &
Bauer, 2002). Our results demonstrate that it sside with a good field campaign to avoid
repeated sampling for long-term cost-efficient nomng, with four scenes being sufficient for a
follow-up of emergent and submerged macrophytésarCamargue. A programmed SPOT-5
scene costs 250 € (with ISIS funding) or 2700 4 ffce ), which is less than the costs
associated with a complete photographic aerial ra@es not to mention the time further required
for image interpretation, digitalization and fieldlidation. The accuracy and reliability of our
models provide a vision where the roles are redeitbe field campaigns become a

complementary tool in wetland monitoring using Bégeremote sensing.
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Table 1

Multispectral indices used in this study.
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Indices Formula References
SR - Simple Ratio B2/B3 Pearson & Miller, 1972
VI - vegetation index B3/B2 Lillesand & Kiefer, 188

DVI - Differential Vegetation
B3-B2
Index

MSI - Moisture Stress Index B4/B3

NDVI - Normalized Difference
_ (B3-B2)/(B3+B2)
Vegetation Index

SAVI - Soil Adjusted

_ 1.5*(B3-B2)/(B3+B2+0.5)
Vegetation Index

OSAVI — Optimized SAVI (B3-B2)/(B3+B2+0.16)

NDWI — Normalized

_ (B3-B4)/(B3+B4)
Difference Water Index

NDWIF — Normalized
Difference Water Index of Mc (B1-B3)/(B1+B3)

Feeters

MNDW!I — Modified
Normalized Difference Water (B1-B4)/(B1+B4)

Index
DVW - Difference between

_ NDVI - NDWI
Vegetation and Water

Richardson & Everitt, 1992

Hunt & Rock, 1989

Rouse et al., 1973

Huete, 1988

Rondeaet. al, 1996

Gao, 1996

Mc Feeters, 1996

Hangiu, 2006

Gondet al 2004




Table 2

Error rates and accuracy for maps of reed and edoeds in 2005 and 2006.

Omission error (%) Overal Commission error (%) Overall
accuracy error (%)
(%)
Reedbeds Other land Reedbeds Other land
covers covers
2005 16.7 1.4 98.6 22.9 1.0 2.2
2006 11.5 1.9 98.1 29.7 0.6 2.4
Aquatic beds Other land Aquatic beds Other land
covers covers
2005 10.1 13.3 86.7 64.2 1.0 13.1

2006 16.2 14.1 85.9 55.4 2.5 14.4
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Table 3

Omission error rates (%) for reed and aquatic re@905 and 2006 relative to other land cover

types.
2005 2006
Map of Map of Map of Map of
common submerged common submerged
reed macrophytes reed macrophytes

Land cover types
(Total class: (Total class: (Total class: (Total class:

1.4 %) 13.3 %) 1.9 %) 14.1 %)

Sea 6362 0.0 0.0 0.0 0.1
Submerged macrophytes 99 0.0 0.0

Common reed 30 0.0 0.0
Tamarisk 1264 18.8 1.0 16.1 9.1
Riparian forest 8822 8.8 0.4 1.4 6.9
Sawgrass 93 0.0 0.0 0.0 0.0
Rush 6236 0.5 0.8 2.1 2.1
Grassland 8631 0.7 0.1 0.6 0.3
Sand 5370 0.1 2.5 0.5 1.1
Saline marsh 98047 0.0 26.4 0.0 24.1
Salt pan 42248 1.5 5.3 0.9 13.0

Urban 6669 4.5 0.0 4.7 0.0



Table 3. continued
Club rush
Other forests
Sunflower
Wheat
Orchard
Rape
Vines
Market gardening
Fallow land
Corn
Ploughed crop
Meadow
Rice

All crops

3017

1709

1241

2319

1359

1395

611

2468

2031

746

498

13278

27655

0.0

1.0

3.1

44.4

0.0

14

30.0

0.7

23.2

5.4

0.0

0.0

8.4

3.8

0.2

0.2

135

0.0

7.8

6.3

31

77.8

2.9

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0
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Table 4

Contribution of plant structure and hydrology tdhat misclassification (Likelihood-ratio test).

Difference
Structural parameters of scaled df P
deviances
Common reed
Height of green stems 0.0885 1 0.766
Density of green stems 0.0705 1 0791
Density of dry stems 0.3918 1 0.531
Ratio dry/green stems 0.8777 1 0.349
Diameter of green stems 0.2088 1 0.648
Diameter of dry stems 0.0026 1 0.960
Homogeneity 0.0230 1 0.879
Vegetation cover rate 0.7578 1 0.384
Year 6.2118 1 0.013
Submerged macrophytes
Percent cover of submerged species 15.083 1 0.0001
Water level 0.446 1 0.504
Salinity 11.015 1 0.001
Water turbidity 11.186 1 0.001
Proportion of plants showing on the water surface 17.174 1 3411
Submerged species 0.83 1 0.362

Year 6.175 1 0.013
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Fig. 1. Distribution of the 175 study plots (training avalidation samples) of reeds and

submerged macrophytes in the Camargue
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B3_0603 < 0.04897
I

OSAVI_12 = 0.2467

544/0

MNDWI_09 2 - 0.3834

80/0

o] 1]

39/0 9/46

Fig. 2. Optimal tree for common reed classification. Pneseof common reed = 1, presence of
other land covers = 0. The number of sites assigm@don the left ) and 1 (on the right) is

indicated below each end node.
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B4_12 2 0.05355
I

SR_03 < 0.9827 NDWIF_09 2 0.2466
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585/0 /1 73/0

9]

16/0 10/24

Fig. 3 Optimal tree for the classification of submergeacrophytes. Presence of submerged
macrophytes = 1, presence of other land coversTH@® number of sites assigned to 1 and 0 (1/0)

is indicated for each terminal node.



36

Saintes Marie

de la mer
- Submerged macrophytes
I common reed
[ ] others
o s 10 Km Mediterranean sea
T Y T

Fig. 4. Distribution map of common reed and submerged ampdmytes in the Camargue in 2005.
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Fig. 5. Distribution map of common reed and submerged apdmytes in the Camargue in 2006.
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Fig. 6. Mean values and confidence intervals (98%#@ach predictive variable in the reedbed

model for each land cover class of the training@ar(2005).
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model for each land cover class in the validatiamgle (2006).



