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Abstract 1 

Multi-season reflectance data from radiometrically and geometrically corrected 2 

multispectral SPOT-5 images of 10-m resolution were combined with thorough field campaigns 3 

and land cover digitizing using a binary classification tree algorithm to estimate the area of 4 

marshes covered with common reeds (Phragmites australis) and submerged macrophytes 5 

(Potamogeton pectinatus, P. pusillus, Myriophyllum spicatum, Ruppia maritima, Chara sp.) over 6 

an area of 145 000 ha. Accuracy of these models was estimated by cross-validation and by 7 

calculating the percentage of correctly classified pixels on the resulting maps. Robustness of this 8 

approach was assessed by applying these models to an independent set of images using 9 

independent field data for validation. Biophysical parameters of both habitat types were used to 10 

interpret the misclassifications. The resulting trees provided a cross-validation accuracy of 98.7% 11 

for common reed and 97.4% for submerged macrophytes. Variables discriminating reed marshes 12 

from other land covers were the difference in the near-infrared band between March and June, the 13 

Optimized Soil Adjusted Vegetation Index of December, and the Normalized Difference Water 14 

Index (NDWI) of September. Submerged macrophyte beds were discriminated with the 15 

shortwave-infrared band of December, the NDWI of September, the red band of September and 16 

the Simple Ratio index of March.  Mapping validations provided accuracies of 98.6% (2005) and 17 

98.1% (2006) for common reed, and 86.7% (2005) and 85.9% (2006) for submerged 18 

macrophytes. The combination of multispectral and multisesasonal satellite data thus 19 

discriminated these wetland vegetation types efficiently. Misclassifications were partly explained 20 

by digitizing inaccuracies, and were not related to biophysical parameters for reedbeds. The 21 

classification accuracy of submerged macrophytes was influenced by the proportion of plants 22 

showing on the water surface, percent cover of submerged species, water turbidity, and salinity. 23 

Classification trees applied to time series of SPOT-5 images appear as a powerful and reliable 24 



 

 

3 

tool for monitoring wetland vegetation experiencing different hydrological regimes even with a 25 

small training sample (N = 25) when initially combined with thorough field measurements. 26 

 27 

Keywords: Camargue, classification tree, multispectral indices, multitemporal indices, 28 

Phragmites australis, remote sensing, SPOT-5, submerged macrophytes, wetland monitoring. 29 

 30 

1. Introduction 31 

 32 

Efficient, accurate and robust tools for monitoring wetlands over large areas are urgently 33 

needed following their destruction and degradation, in spite of the many services and functions 34 

they provide to human kind (Özesmi & Bauer, 2002). Accurate wetland mapping is an important 35 

tool for understanding wetland functions and monitoring their response to natural and 36 

anthropogenic actions (Baker et al, 2006). 37 

Satellite remote sensing increasingly presents many advantages for inventorying and 38 

monitoring all types of wetlands (Özesmi & Bauer, 2002). Unsupervised classification or 39 

clustering is the most commonly used digital classification to map wetlands with multispectral 40 

data, while the maximum likelihood algorithm is the most frequently used method for supervised 41 

classification. Low wetland accuracies (30 – 60%) often result from these classification methods 42 

(Özesmi, 2000; but see Macalister and Mahaxy, 2009).  Multi-temporal, multi-spectral, ancillary 43 

data or a rule-based approach are expected to provide better results than traditional image 44 

processing techniques (Özesmi & Bauer, 2002) 45 

Many wetland species have overlapping spectral reflectances at peak biomass (Schmidt & 46 

Skidmore, 2003) and aggregation of similar wetland classes are sometimes necessary to achieve 47 

better accuracies (Wright & Gallant, 2007). Hence, a multiseasonal imagery can be most useful 48 
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for distinguishing plant species within a single growing season (Ghioca-Robrecht et al., 2008), 49 

further integrating seasonal variability in water regimes and vegetation (Özesmi & Bauer, 2002). 50 

For instance, Ramsey & Laine (1997) have demonstrated that the combination of images from 51 

two seasons facilitates the segregation between emergent and floating vegetation (winter and 52 

spring), and between flooded emergent vegetation and open water (fall and winter). 53 

Multispectral data have also been used as an alternative approach for wetland plant 54 

discrimination with satellite remote sensing (Özesmi & Bauer, 2002).  Johnston & Barson (1993) 55 

observed that using simple density slicing of bands that are related to physical parameters such as 56 

vegetation indices, mid infrared and visible blue may be as effective as more complicated 57 

statistical classification. Multispectral indices (addition, subtraction, multiplication or division of 58 

pixel brightness between two bands) are also expected to improve models for wetland 59 

discrimination (Bradley & Fleishman, 2008) because they are sensitive to vegetation surface 60 

roughness, its moisture conditions and stage of development.  61 

Non-parametric classifiers such as rule-based methods are an increasingly used alternative 62 

to traditional remote sensing techniques to enhance the accuracy of wetland classification (Sader 63 

et al., 1995; Özesmi, 2000; Baker et al., 2006). Because classification trees (CTs) easily 64 

accommodate data from all measurements scales, they are useful for distinguishing spectral 65 

similarities among wetlands with ancillary environmental data (Wright & Gallant, 2007). 66 

Resampling statistical methods such as bagging (bootstrap aggregation) and boosting can 67 

improve CT accuracy, but they also make the interpretation of the results more complex 68 

(Lawrence et al., 2004). 69 

Flooded areas pose unusual challenges for field campaigns, and class imbalance in remote 70 

sensing of wetlands is a well-known problem (Wright & Gallant, 2007). Spatial studies of these 71 

ecosystems require flexible and robust analytical methods to deal with non-linear relationships, 72 
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high-order interactions, and missing data.  Despite such difficulties, methods used for mapping 73 

the distribution of wetlands should be simple to understand and easy to interpret in order to 74 

contribute to management advising. Seasonal time series of satellite multispectral data may 75 

provide, through the use of CTs, reliable, replicable and understandable tools for a wetland 76 

mapping and follow-up. The aim of this study is to evaluate the potential of CTs and 77 

multiseasonal SPOT-5 images to model the presence of dominant emergent and submerged 78 

macrophytes of Camargue marshes. The ultimate goal is to provide a re-applicable remote-79 

sensing tool for their long-term monitoring to assist management decisions that will insure a good 80 

balance between economic interests and nature conservation. 81 

 82 

2. Methods 83 

 84 

2.1. Study area 85 

The study area is the Camargue or Rhône delta covering 145 000 ha near the 86 

Mediterranean Sea in southern France (Fig. 1). The Camargue consists mainly of agricultural 87 

land (mostly rice) mixed with natural or semi-natural brackish marshes either covered with 88 

submerged marcrophytes (Potamogeton, Myriophyllum, Ruppia, Chara) or tall helophytes 89 

(mostly common reed Phragmites australis but also club-rush Bolboschoenus maritimus, 90 

Schoenoplectus littoralis, S. lacustris and cattail Typha angustifolia, T. latifolia). The climate is 91 

Mediterranean with mild and windy winters and hot and dry summers.  Mean annual rainfall over 92 

the last 30 years is 579 ± 158 (SD) mm, being concentrated in spring and autumn, with large 93 

intra- and inter-annual variations (Chauvelon, 2009). The Camargue has lost 40 000 ha of natural 94 

areas, including 33 000 ha of wetlands over the last 60 years, following the extension of 95 

agriculture, salt exploitation and industry (Tamisier & Grillas, 1994). A large part of the 96 
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remaining marshes, located on private estates, has been fragmented and intensively managed 97 

through freshwater inputs for socio-economic activities such as waterfowl hunting, reed 98 

harvesting, and cattle grazing. The increased hydroperiod of these marshes results in a loss of 99 

their Mediterranean flora and fauna, which are well adapted to summer droughts (Tamisier & 100 

Grillas, 1994). Vegetation development and density in Camargue marshes is influenced by 101 

physical factors such as salinity, water depth, and water level fluctuations, which have an effect 102 

on reflectance spectra (Silvestri et al., 2002).  103 

 104 

2.2. Habitat description 105 

In the Camargue, common reed (Phragmites australis) can form monospecific stands over 106 

large areas in shallow marshes or develop linearly along canals. Aerial stems emerge during 107 

spring and reach their maximum growth at the end of June.  The inflorescences or panicles start 108 

developing in July and turn purplish-brown with a fluffy aspect at maturation in autumn. Seeds 109 

are wind-dispersed in early winter with the panicles becoming thinner and switching to a beige 110 

colour. Leaves remain green until October and turn yellow before drying and falling down in 111 

winter. The stems then dry but stand for a few years before breaking down. In order to provide 112 

sustainable conditions for reed harvesting in winter, reedbeds are flooded from March to June, 113 

dried in summer, flooded in autumn and drained in winter for mechanical harvest (December – 114 

March). Flooding can be extended through spring or summer if waterfowl hunting occurs. The 115 

total area of reedbeds in the Camargue is estimated at about 8000 ha, of which 2000 ha is 116 

harvested every year (Mathevet & Sandoz, 1999). 117 

Beds of submerged macrophytes develop in unmanaged marshes that dry in summer as 118 

well as in marshes managed for waterfowl hunting, which are either permanently flooded with 119 

freshwater inputs or drained shortly in spring (Tamisier & Grillas, 1994).  These open marshes, 120 
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which vary in size from 0.02 ha to 250 ha, can develop dense mono- or multispecific stands of 121 

pondweeds (Potamogeton pectinatus, Potamogeton pusillus), Eurasian water milfoils 122 

(Myriophyllum spicatum) or widgeon grasses (Ruppia maritima). Some Chara spp. characteristic 123 

of unmanaged marshes can develop in spring but are generally quickly replaced by the species 124 

mentioned above that are more competitive in quasi-permanently flooded marshes. Thus, 125 

depending upon the water management and the species, submerged macrophytes develop from 126 

mid-February to late March, reaching their maximum growth in May through July. A progressive 127 

senescence starts from early winter but some plants can remain until the next spring. Water inputs 128 

generating new emergence can also be observed in autumn. Water turbidity is generally low 129 

because submerged plants limit sediment movement. A continuous surficial water flow is 130 

sometimes favoured by managers to increase marsh attractiveness to ducks. The total area of 131 

submerged macrophytes in the Camargue has not been estimated. 132 

 133 

2.3. Field sampling 134 

2.3.1. Reed and submerged macrophyte beds 135 

Physical access to many wetlands was hindered by water too shallow for boat access and 136 

by roads too bad for vehicle access. The difficulties associated with the sampling of remote 137 

flooded marshes were further hampered by land privacy. Selection of study plots was a 138 

compromise between admittance, accessibility, and getting a representative sample of the 139 

Camargue marshes based on aerial photographs and videos collected during flights by plane or 140 

ultra-light motorized engines (ULM). The number of plots surveyed was further limited by the 141 

relatively short sampling period of optimal plant growth. The training sample, collected in 2005, 142 

consisted of 46 plots of common reed and 25 plots of submerged macrophytes spread throughout 143 

the Camargue (Fig. 1). The independent validation sample of 2006 consisted of 21 sites of 144 
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common reed, and 83 sites of aquatic beds. All study plots were located in seasonal or permanent 145 

shallow marshes either covered with reed-dominated helophytes or with submerged macrophytes 146 

during some time of the year. 147 

For each habitat type, water and vegetation measures were taken within 20 X 20 m 148 

squares (i.e., four pixels of a SPOT-5 scene) of homogeneous vegetation placed within a larger 149 

homogeneous zone and located at least 70 m from the border to reduce edge effects in spectral 150 

response.. Plot size was defined in order to contain at least one pure pixel (10 X 10 m) of a 151 

SPOT-5 scene. Each sampling plot was placed in a different hydrological unit to increase 152 

structural diversity and avoid autocorrelation. They were geolocated with a GPS (Holux GR-153 

230XX) situated in the centre of the plot at three meters above ground to avoid interferences 154 

caused by high reed stems, using the average position obtained during the whole process of field 155 

data gathering (1-2 hours). Water level, plant cover and composition were estimated along two 156 

diagonals crossing the entire plot between May and July, depending upon the development of the 157 

vegetation. Common reed density was measured by counting the green and dry stems inside four 158 

quadrats of 50 X 50 cm per plot in June or July located at seven meters from the center of the plot 159 

in each cardinal direction. Homogeneity throughout the plot was visually estimated and coded 160 

from 1 to 4. Vegetation cover was evaluated with four digital pictures taken vertically from the 161 

ground level upwards in the centre of the 50-cm quadrats and processed with CANEYE (Baret & 162 

Weiss, 2004), a software that derive canopy characteristics such as LAI, fAPAR and the cover 163 

fraction with several photographs. The estimation of the canopy characteristics are based on the 164 

transmittance of light through the canopy considering the vegetation elements as opaque (Baret & 165 

Weiss, 2004). 166 

Water levels were measured at a permanent rule during vegetation sampling, as well as 167 

monthly or twice monthly at each hydrological unit sampled.   168 
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2.3.2. Other land covers 169 

Tamarisk (Tamarix gallica), riparian forest, rush, grassland, sand (dune or beach), salt 170 

pan, saline marsh (more or less covered by perennial halophytes such as Arthrocnemum spp), 171 

other forests (including pine forest), agricultural and urban areas were extracted from a vector 172 

layer created by the Réserve Nationale de Camargue from aerial photographs in 2001 provided 173 

by the Parc Naturel Régional de Camargue. Additional categories were digitized based on aerial 174 

photographs and ground or aerial (airplane and ultra-light aircrafts) surveys: sea, rice, sawgrass 175 

(Cladium mariscus), club rush (Bolboschoenus maritimus, Schoenoplectus littoralis, S. lacustris), 176 

cattails (Typha spp.), and groundsel bush (Baccharis halimifolia). In 2006, an updated land cover 177 

was available, providing details for agricultural crops. Homogenous stands of groundsel bush and 178 

cattails were unfortunately too few to be included in the validation sample. We therefore obtained 179 

a total of 640 polygons for the training sample and 587 polygons for the validation sample. 180 

 181 

2.4. Image processing 182 

The Camargue can be covered with a single SPOT-5 scene (60 X 60 km). Two seasonal 183 

time series of SPOT-5 images (SPOT/Programme ISIS. Copyright CNES) and field data sets 184 

were acquired at one year intervals for model building (2004-2005) and validation (2005-2006). 185 

Thanks to the Spot satellite programming service, scenes were acquired in late December, March, 186 

May, June, July and September (October in 2006) of both years. These dates had been selected 187 

based on vegetation phenology and seasonal water management of the targeted habitats. The 188 

programming service provided several possible images within a two-week period when 189 

meteorological conditions were not optimal. SPOT-5 has 10-m spatial resolution and four bands: 190 

B1 (green: 0.50 to 0.59 µ m), B2 (red: 0.61 to 0.68 µ m), B3 (near-infrared NIR: 0.79 to 0.89 µ 191 

m) and B4 (shortwave-infrared SWIR: 1.58 to 1.75 µ m). Spot scenes came with radiometric 192 
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correction of distortions due to differences in sensitivity of the elementary detectors of the 193 

viewing instrument that is the preprocessing level called 1A (Spot image, 2008). 194 

Scenes were radiometrically normalized using the 6S atmospheric code (Davranche et al., 195 

2009) developed by Vermote et al. (1997), and projected to Lambert conformal conic projection 196 

datum NTF (Nouvelle Triangulation Française) using a second-order transformation and nearest-197 

neighbour re-sampling. The scenes were georeferenced to a topographic map at 1:25, 000 scale.  198 

We extracted the mean reflectance value for each plot of reed and aquatic beds and each polygon 199 

of other land covers from each band of each scene using the ‘Spatial Analyst’ of ArcGis version 200 

9.2 (Environmental Systems Research Institute, Meudon, France). Using these data, we further 201 

calculated for each plot and polygon the most common multispectral indices (Table 1), and 202 

multitemporal indices corresponding to subtractions between each pair combination of dates. In 203 

the data file, these variables were labelled as follow: OSAVI_12 for the Optimized Soil Adjusted 204 

Vegetation Index of December and B3_0603 for the difference between March and June in the 205 

reflectance value of band B3. 206 

 207 

2.5. Statistical modelling and mapping 208 

2.5.1 Classification trees 209 

CT analyses based on dichotomous partitioning (Breiman et al., 1984) were performed with 210 

the Rpart (Recursive PARTitioning, Therneau & Atkinson, 1997) package in the R software 211 

using a class coded “1” for the presence of reed or submerged macrophyte beds and a class coded 212 

“0” for absence (= other land cover types detailed in 2.4.2). This method is less sensitive to data 213 

fragmentation than multivariate classification trees (Brostaux, 2005) and uses the cost-complexity 214 

parameter (cp) for pruning.  215 

For the pruning phase, we tested two cross-validation procedures CV-0SE and CV-1SE, 216 
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described by Esposito et al. (1999). Cross-validation is well suited to small samples, but can also 217 

improve results for large data sets (Breiman et al., 1984). For both methods, we used 10 cross-218 

validation subsets, which is the recommended default value by Breiman et al. (1984). The 219 

optimally pruned tree was defined with the cp providing the smallest overall classification error 220 

rate among 10 iterative runs of the algorithm. To improve classification accuracies with our 221 

unbalanced samples, the optimal prior parameter that gives the highest classification accuracy 222 

was selected using the iterative method proposed by Breiman et al. (1984).  223 

 224 

2.5.2. Map validation 225 

The equations issued from the resulting trees were applied to SPOT-5 scenes of 2005 for 226 

estimating model accuracy and to 2006 scenes for estimating model robustness. For this 227 

procedure we used the raster calculator (Spatial Analyst) of ArcGIS to create binary maps, with 1 228 

encoded for the presence of reed or aquatic beds and 0 for the presence of other land covers. 229 

Using the zonal statistics tool (Spatial Analyst) of ArcGIS, we extracted the values 1 and 0 for 230 

each class of the validation sampling. As described by Wright & Gallant (2007), overall 231 

accuracies and omission error rates were calculated using the sample error matrix, whereas the 232 

commission and overall error rates were estimated from the population error matrix given known 233 

numbers of reedbeds, aquatic beds and other land covers in the study area for each map. We 234 

further calculated the omission error rates for the different categories of the other land cover in 235 

the validation sample.  The resulting distribution maps were confronted with expert knowledge 236 

and additional field visits for interpretation of potentially misclassified areas. 237 

 238 

 239 

 240 
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2.5.3 Relevance of the models and interpretation of misclassifications 241 

To test the relevance of the variables selected in both models, their mean value and 95% 242 

confidence intervals were calculated for each class of the training and the validation samples. The 243 

binary response (0/1) for miss-classified and well-classified plots in both years was confronted to 244 

structural parameters of reed or submerged macrophytes considered individually, using the 245 

likelihood ratio test (Sokal & Rohlf, 1995) for model significance. This test is considered as more 246 

reliable than the Wald test with small samples (Harrell, 2001). The following parameters were 247 

examined for common reed: height of green stems, density of green and dry stems, dry-to-green 248 

stem ratio, diameter of green and dry stems, plot homogeneity, and percent cover of vegetation. 249 

For submerged macrophytes, the parameters used were: percent cover of the vegetation, 250 

dominant plant species, water level, water turbidity, and proportion of submerged plants showing 251 

on the water surface. For both habitats, a year variable was included as a potential parameter for 252 

misclassification. 253 

 254 

3. Results  255 

 256 

3.1. Models 257 

The resulting classification tree for common reed (Fig. 2) provided a cross-validation 258 

accuracy of 98.7% with the equation: B3_0603 ≥ 0.04897 and OSAVI_12 < 0.2467 and 259 

MNDWI_09 < -0.3834.  The resulting classification tree for submerged vegetation (Fig. 3) 260 

provided a cross-validation accuracy of 97.4% with the equation: (B4_12 < 0.05355 and 261 

NDWIF_09 < 0.2466 and B2_09 < 0.07147) or (B4_12 ≥ 0.05355 and SR_03 ≥ 0.9827). The 262 

CV-1SE pruning method offered the best results. The best prior parameter was 0.40 for the class 263 

“0” and 0.60 for the class “1” in both models.  264 
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3.3. Mapping validation 265 

The map of common reed resulted in an overall accuracy of 98.6% in 2005 and 98.1% in 266 

2006 (Table 2, Figs. 4-5). Common reed sites were incorrectly classified at 16.7% in 2005 and 267 

11.5% in 2006. Misclassifications involved mostly tamarisks on both years, as well as club rush 268 

and sunflower in 2006 (Table 3). Considering the omission error rates of both classes, the total 269 

area covered by common reed in the Camargue is estimated at 8842 ha in 2005 and 9128 ha in 270 

2006. 271 

The overall accuracy of the submerged-macrophyte map was 86.7% in 2005 and 85.9% in 272 

2006 (Table 2 & Figs. 4-5). Submerged macrophyte sites were incorrectly classified at 10.1% in 273 

2005 and 16.2% in 2006. Misclassifications involved mostly club-rush and saline marshes on 274 

both years (Table 3), leading to commission error rates of 25 to 41% higher than those of 275 

reedbeds (Table 2). Considering the omission error rates of both classes, the total area covered by 276 

submerged macrophytes in the Camargue is estimated at 29 244 ha in 2005 and 33 797 ha in 277 

2006. 278 

 279 

3.4. Robustness of the models and misclassification interpretation 280 

The variables selected in the models exhibited a similar range of variation in 2005 and 281 

2006, suggesting that our approach might be robust for inter-annual applications. The 95% 282 

confidence interval of most variables for reed and submerged macrophyte beds was far from the 283 

splitting values used for classification (Figs. 6-9). The only exceptions were the lowest values of 284 

the NDWIF in October and the highest values of the SR index in March for classifying 285 

submerged macrophytes on both years.  286 

None of the measured structural parameters of reeds could explain their misclassification, 287 

which was nevertheless associated to the year (Table 4), with a better classification in 2005 288 
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(training sample). Classification of submerged macrophytes was influenced by proportion of 289 

plants showing on the water surface, percent cover of submerged species, water turbidity, 290 

salinity, and to a lesser extent the year (Table 4). The best conditions for submerged macrophyte 291 

classification were high percentage of plant cover with low turbidity and salinity in 2005. 292 

Following the confusion with seagrass (Zostera noltii) in the Vaccarès lagoon in 2006, we further 293 

calculated the NDWIF values of September and October for presumed seagrass in the Vaccarès 294 

and observed that they were well below the minimal splitting rule (≥ 0.2466) of the CT in 295 

October (0.09 – 0.12) but not September (0.32 – 0.38).  296 

 297 

4. Discussion 298 

Although no additional environmental ancillary data or new methods to address the 299 

shortcomings of CT were used in this study, the combination of multispectral and multiseasonal 300 

remotely-sensed data provided a good discrimination of wetland vegetation. The fact that CTs 301 

can process a large amount of data without requiring a pre-selection of variables facilitates their 302 

application and allowed us to create simple models. The predictive variables involved in the 303 

models were linked to the hydrology and plant phenology known to influence the spectral 304 

responses of costal wetland vegetation (Caillaud et al., 1998). For reedbed discrimination, 305 

difference of the B3 between March and June was linked to their chlorophyll production, which 306 

is particularly high in summer and low in winter (Caillaud et al., 1998; Valta-Hulkkonen et al., 307 

2003). The OSAVI of December probably reflected the high homogeneity of dry reed stands in 308 

winter that presents a uniform reddish-brown colour. This index is recognised as a good tool for 309 

highlighting homogeneous grass or agricultural crop canopies at mid latitudes (Rondeaux et al., 310 

1996), and presents similar values for ploughed crops, rice cultivation, sand and sunflower that 311 

have a comparable uniform colour in December in the Camargue. The MNDWI provides 312 
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negative values for soil and vegetation, and positive values for water (Hanqiu, 2006). Its selection 313 

in September could be related to the specific response of panicles and/or the water inputs that 314 

decrease the near and shortwave infrared values. Because the values of MNDWI in September for 315 

reed and groundsel bush are close, a specific response of the panicles is likely to explain the 316 

selection of this variable in the model. The groundsel bush grows on dikes where water levels 317 

have no influence. Its terminal and conspicuous inflorescences are white to pale yellow in 318 

autumn, and are expected to provide a similar spectral response to that of reed inflorescences in 319 

late September. Moreover, some MNDWI values of cattail plots were also in the range of the 320 

reed values in September. When ripen in fall, the cattail inflorescences consist of golden to brown 321 

fluffy hairs attached to the tip of the shoot. 322 

Confusion between tamarisk and reed in the training sample was linked to the OSAVI of 323 

December 2004. Confusion with club-rush in 2006 was probably related to the use of an October 324 

image instead of September, the confidence interval reaching the splitting value of the MNDWI 325 

in October 2006 but not September 2005 (Figs. 6-7). Confusion between reed and agricultural 326 

crops (namely sun flower) could be related, at least partially, to the presence of reed at the edge 327 

of crops, such as revealed by our field validation in 2006. Reed also grows between rows of vines 328 

(8.1% mixed with common reed in 2006) when they are not treated with herbicides and flooded 329 

in winter, a common practice in the Camargue. 330 

For macrophyte bed discrimination, the values of B4 in December were close to those of 331 

sea, club-rush and saline marshes, which are the wettest habitats in our samples. The selection of 332 

B4 in December at the first node of the tree was most likely related to the high water levels 333 

observed in macrophyte marshes at that period, translating into the lowest mid-infrared values. 334 

The NDWIF usually classifies water in positive values and, chlorophyll a and turbid 335 

environments in negative values (McFeeters, 1996). Hence, the NDWIF discriminates aquatic 336 
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beds from open-water marshes. This index also combines information about B1 and B3 that are 337 

respectively linked to the variable density and the submersion depth of aquatic macrophytes 338 

(Lieutaud & Puech, 1996). The values for aquatic beds lie between those of open water (eg., sea) 339 

and habitats with a dense vegetation cover. Land covers presenting a mixture of water and sparse 340 

vegetation (eg., salt pans and club-rush marshes) were indeed within the same range of values 341 

than aquatic macrophytes. Pinnel (2006) observed that the spectra of submerged macrophytes in 342 

lakes were influenced by canopy structure, chlorophyll absorption, and secondarily 343 

photosynthetic pigments. B2 of SPOT-5 is a chlorophyll-absorption band important for 344 

vegetation discrimination. Hence, the new emergence of submerged macrophytes in early fall 345 

following water inputs in hunting marshes induces a particular spectral response and explains the 346 

selection of both NDWIF and B2 in September for their discrimination. The selection of the SR 347 

of March is related to one plot of the training sample that changed markedly between summer 348 

2004 and 2005, with a replacement of pondweeds by Eurasian water milfoils after a salinity 349 

decrease. This index reveals the contrast between soil and vegetation (Pearson & Miller, 1975), 350 

and its value for aquatic bed is unique compared to other land cover classes. Water levels were 351 

unusually low in winter 2004-2005, inducing a muddy aspect of the marsh with limited 352 

underwater light availability for plants. A gradual increase in water levels during February-March 353 

2005 allowed the development of Eurasian water milfoils, well adapted to rapid growth in 354 

eutrophic marshes. Hence, it appears that the SR of March permitted the selection of the few 355 

turbid, muddy marshes in winter prior to the development of aquatic vegetation. 356 

In both the training and validation samples, the predictive variables selected for 357 

discrimination of macrophyte beds did not allow their differentiation from saline and club-rush 358 

marshes. However, our training sample included predominantly permanent marshes, and 359 

misclassifications could be partly explained by the tendency of submerged plants (Chara, 360 
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Potamotegon, Ruppia) to also develop in temporary marshes assigned to the categories of club-361 

rush, saline marsh and salt pan. For instance, we observed an 80% percent cover of submerged 362 

macrophytes in some club-rush beds when they were flooded in spring. Confusion with riparian 363 

forest and tamarisk could be explained by digitizing inaccuracies.  364 

Overall accuracy, omission and commission error rates are recommended as primary 365 

measures for thematic classification accuracy (Liu et al., 2007).  Commission rates, which are 366 

useful for understanding the precision of boundaries delineation, are rarely addressed in studies 367 

of wetland classification, potentially because they are sensitive to unbalanced classes (Wright & 368 

Gallant, 2007). Rutchey & Vilcheck (1999) classified and recoded a SPOT scene that provided a 369 

commission error rate of 29% for various densities of cattail, from which an overall error rate of 370 

17% could be calculated. Using the combination of spectral bands and textural features (Landsat 371 

TM, SPOT and IRS scenes), Arzandeh & Wang (2003) could map reed stands with a minimum 372 

commission error rate of 25%. Broun de Colstoun et al. (2003) obtained a commission error rate 373 

of 10% for a wetland class using classification tree and two Landsat (ETM) scenes. Baker et al. 374 

(2006) classified wetlands with a commission error rate of 21% and 24%, using CTs alone and 375 

with a classification algorithm based on stochastic gradient boosting, respectively. When 376 

discriminating wetlands from uplands using CTs and ancillary data, Wright & Gallant (2007) 377 

obtained a minimum commission error rate of 40% with an overall error rate of 7%. Using 378 

multiseason Quickbird multispectral imagery with an unsupervised classification of eight classes, 379 

Ghioca-Robrecht et al. (2008) obtained commission error rates of 24% for common reed and 48% 380 

for cattail, from which a 24%overall error rate could be calculated. Our reedbed maps presented 381 

an overall accuracy of 99 and 98%, with a commission error of 23 and 30%, and an overall error 382 

of 2 and 2% in 2005 and 2006, respectively.  These results are amongst the most accurate for 383 

mapping wetland emergent vegetation that could be found in the literature, providing a robust 384 
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tool for reedbed monitoring and management (Story & Congalton 1986). Our estimation of total 385 

reed area in the Camargue is close to the 8000 ha estimated by Mathevet & Sandoz (1999), when 386 

taking into account the smaller geographic area considered by these authors, which would lead to 387 

8204 (2005) and 8334 (2006) ha of reedbeds using our approach. These authors used a supervised 388 

classification with the maximum-likelihood algorithm applied to a Landsat TM scene of July 389 

1995, eliminated the cropland layer from the scene following the high confusion with ricefields, 390 

and corrected the resulting map based on expert knowledge (A. Sandoz, pers. comm.). 391 

Unfortunately, the different approaches used prevent us from concluding about changes in reed 392 

area over this ten-year period.  393 

Our maps of submerged macrophytes presented an overall accuracy of 87 and 86% with a 394 

commission error of 64 and 55%, and an overall error of 13 and 14% in 2005 and 2006, 395 

respectively. These commission error rates could presumably be improved by integrating the 396 

macrophytes developing into temporarily flooded marshes currently classified as club-rush, saline 397 

marshes and salt pans. Coverage estimation of submerged macrophytes over an area comprising 398 

hundreds of marshes characterized by different abiotic and biotic conditions (water depth, 399 

salinity, hydroperiods, aquatic fauna, grazing pressure, etc) had never been done to our 400 

knowledge. Such dynamic vegetation that develops asynchronously under water is particularly 401 

difficult to monitor, whether from ground survey, aerial photographs or satellite data (Vis et al., 402 

2003; Valley et al., 2005). Estimation of the area covered by submerged macrophytes in the 403 

Camargue is a major conservation issue given the socio-economic importance of this habitat for 404 

waterfowl hunting and its vulnerability to invasive species such as the emergent plant Ludwigia 405 

spp. or the Louisiana red-swamp crayfish Procambarus clarkii. The total area of submerged 406 

macrophyte beds in the Camargue was estimated at 29 244 ha in 2005 and 33 797 ha in 2006. 407 

The 2006 increase is largely imputable to the confusion with seagrass in the Vaccarès lagoon that 408 
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represents 3101 ha in 2006. 409 

CTs have previously provided good accuracies for remote-sensing data especially with 410 

multi-date LANDSAT datasets (Brown de Colstoun et al., 2003; Baker et al., 2006). This study is 411 

original for having used higher-resolution images combined with thorough field campaigns and a 412 

wide variety of multispectral and multiseasonal indices as predictive variables. Likewise, our 413 

model performance was not influenced by reed biomass, which affects reflectance (Valta-414 

Hulkkonen et al., 2003) requiring several density classes for good classification accuracy in other 415 

studies (Maheu-Giroux & De Bois, 2005).  416 

CTs are considered as especially robust with small samples of remotely-sensed data 417 

(Tadjudin & Landgrebe, 1996). To our knowledge, the smallest sample used for testing CT 418 

reliability was fifty observations (Brostaux, 2005), and we found no study explaining the impact 419 

of an extremely rare class in an unbalanced sample. McIver & Friedl (2002) showed that prior 420 

probabilities can be a good solution for not penalizing small classes under a non-parametric 421 

classification and observed that adding a prior parameter helped to distinguish hardly separable 422 

classes of remote-sensing data, affecting only areas overlapping between two classes. Our results 423 

demonstrate that CTs used with an adjusted prior parameter provide reliable models for an 424 

unbalanced sample when the smallest class contains as few as 25 observations.  425 

Since our objective was to develop re-applicable and easy interpretable models with good 426 

accuracies, we chose to enhance the performance of CTs by cross-validation and priority 427 

probabilities that are particularly well suited for data difficult to collect. The CV-1SE pruning 428 

method makes the CT approach even more robust, under the assumption that the training sample 429 

is representative of the underlying population (Esposito et al., 1999). Cross-validation, 430 

jackknifing and bootstrapping have been widely used in estimating prediction errors in many 431 

statistical models based on regression and classification (Wintle et al., 2005). However, to ensure 432 
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that the inferred relationships are robust and the predictions reliable, models should ideally be 433 

tested on a completely independent dataset comprising ground validation data collected expressly 434 

for such purposes in areas not sampled for the original model derivation (Muller et al., 1998; 435 

Congalton & Green, 1999; Wintle et al., 2005; Thomson et al., 2007). Our models were validated 436 

with a completely independent set of images and field data, complemented with a comparative 437 

analysis of the mean reflectance (and confidence interval) of each land cover type. Model 438 

usefulness also depends on the “time-robustness” and “space-robustness” of the model itself and 439 

of its predictive variables. In Camargue marshes, the vegetation development is related to 440 

seasonal rainfall and human interventions, which are highly variable in time and space 441 

(Chauvelon, 2009). The training and validation years differed in their rainfall regime (664 mm in 442 

2005 vs 411 mm in 2006, with 72% of this difference being attributed to April-May) certainly 443 

affecting the seasonal development of marsh vegetation. In spite of these annual differences, our 444 

training sample based on a single year provided robust models, with CTs integrating different 445 

types of wetland hydrology and phenology. 446 

According to DongMei & Douglas (2002), different sampling protocols might have more 447 

impact on the resulting classification when a finer resolution is used. Additional field campaigns 448 

addressing other land use types would certainly contribute to improve the accuracy of our 449 

models. Likewise, the lack of a September image for the 2006 validation sample decreases the 450 

accuracy of our models, highlighting the importance of using pre-programmed scenes of which 451 

the date is carefully selected based on phelonogical/hydrological events. 452 

Satellite remote sensing techniques have often been criticized in the past because they 453 

lacked the necessary resolution for wetland spatial analysis (see Özesmi & Bauer, 2002). The 454 

resolution of SPOT-5 scenes provides an adequate scale for acquiring detailed field data within 455 

homogeneous stands, allowing to optimize the time spent for data collecting and to properly 456 
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locate the sampled plots on the ground and on the scenes. Remote sensing has often been seen as 457 

a complementary tool to conventional mapping techniques (Girard & Girard, 1999; Özesmi & 458 

Bauer, 2002). Our results demonstrate that it is possible with a good field campaign to avoid 459 

repeated sampling for long-term cost-efficient monitoring, with four scenes being sufficient for a 460 

follow-up of emergent and submerged macrophytes in the Camargue. A programmed SPOT-5 461 

scene costs 250 € (with ISIS funding) or 2700 € (full price ), which is less than the costs 462 

associated with a complete photographic aerial coverage, not to mention the time further required 463 

for image interpretation, digitalization and field validation. The accuracy and reliability of our 464 

models provide a vision where the roles are reversed: the field campaigns become a 465 

complementary tool in wetland monitoring using satellite remote sensing. 466 
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Table 1  

Multispectral indices used in this study. 

Indices Formula References 

SR - Simple Ratio B2/B3 Pearson & Miller, 1972  

VI - vegetation index B3/B2 Lillesand & Kiefer, 1987 

DVI - Differential Vegetation 

Index 
B3-B2 Richardson & Everitt, 1992 

MSI - Moisture Stress Index B4/B3 Hunt & Rock, 1989 

NDVI - Normalized Difference 

Vegetation Index 
(B3-B2)/(B3+B2) Rouse et al., 1973 

SAVI -  Soil Adjusted 

Vegetation Index 
1.5*(B3-B2)/(B3+B2+0.5) Huete, 1988 

OSAVI – Optimized SAVI (B3-B2)/(B3+B2+0.16) Rondeaux et. al., 1996 

NDWI – Normalized 

Difference Water Index 
(B3-B4)/(B3+B4) Gao, 1996 

NDWIF – Normalized 

Difference Water Index of Mc 

Feeters 

(B1-B3)/(B1+B3) Mc Feeters, 1996 

MNDWI – Modified 

Normalized Difference Water 

Index 

(B1-B4)/(B1+B4) Hanqiu, 2006 

DVW – Difference between 

Vegetation and Water 
NDVI - NDWI Gond et al, 2004 



 

 

29 

Table 2  

Error rates and accuracy for maps of reed and aquatic beds in 2005 and 2006. 

  Omission error (%) 
Overall 
accuracy 

(%) 

Commission error (%) Overall 
error (%) 

 Reedbeds Other land 
covers 

  Reedbeds Other land 
covers 

 

2005 16.7 1.4 98.6 22.9 1.0 2.2 

2006 11.5 1.9 98.1 29.7 0.6 2.4 

       

 Aquatic beds 
Other land 

covers 
  Aquatic beds 

Other land 
covers 

  

2005 10.1 13.3 86.7 64.2 1.0 13.1 

2006 16.2 14.1 85.9 55.4 2.5 14.4 
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Table 3  

Omission error rates (%) for reed and aquatic beds in 2005 and 2006 relative to other land cover 

types. 

  2005 2006 

Land cover types  

Map of 
common 

reed 

(Total class: 
1.4 %) 

Map of 
submerged 

macrophytes 

(Total class: 
13.3 %) 

Map of 
common 

reed 

(Total class: 
1.9 %) 

Map of 
submerged 

macrophytes 

(Total class: 
14.1 %)  

Sea 6362 0.0 0.0 0.0 0.1 

Submerged macrophytes 99 0.0  0.0  

Common reed 30  0.0  0.0 

Tamarisk 1264 18.8 1.0 16.1 9.1 

Riparian forest 8822 8.8 0.4 1.4 6.9 

Sawgrass 93 0.0 0.0 0.0 0.0 

Rush 6236 0.5 0.8 2.1 2.1 

Grassland 8631 0.7 0.1 0.6 0.3 

Sand 5370 0.1 2.5 0.5 1.1 

Saline marsh  98047 0.0 26.4 0.0 24.1 

Salt pan  42248 1.5 5.3 0.9 13.0 

Urban 6669 4.5 0.0 4.7 0.0 
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Table 3. continued 

Club rush 9 0.0 44.4 30.0 77.8 

Other forests 3017 1.0 0.0 0.7 2.9 

Sunflower 1709   23.2 0.0 

Wheat 1241   5.4 0.0 

Orchard 2319   0.0 0.0 

Rape 1359   0.0 0.0 

Vines 1395   8.4 0.0 

Market gardening 611   3.8 0.0 

Fallow land 2468   0.2 0.0 

Corn 2031   0.2 0.0 

Ploughed crop 746   13.5 0.0 

Meadow 498   0.0 0.0 

Rice 13278   7.8 0.0 

All crops 27655 3.1 1.4 6.3 0.0 
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Table 4  

Contribution of plant structure and hydrology to habitat misclassification (Likelihood-ratio test). 

Structural parameters 
Difference 
of scaled 
deviances 

df P 

Common reed    

 Height of green stems 0.0885 1 0.766 

 Density of green stems 0.0705 1 0.791 

 Density of dry stems 0.3918 1 0.531 

 Ratio dry/green stems 0.8777 1 0.349 

 Diameter of green stems 0.2088 1 0.648 

 Diameter of dry stems 0.0026 1 0.960 

 Homogeneity 0.0230 1 0.879 

 Vegetation cover rate 0.7578 1 0.384 

 Year 6.2118 1 0.013 

Submerged macrophytes    

 Percent cover of submerged species 15.083 1 0.0001 

 Water level 0.446 1 0.504 

 Salinity 11.015 1 0.001 

 Water turbidity 11.186 1 0.001 

 Proportion of plants showing on the water surface 17.174 1 3.411 

 Submerged species 0.83 1 0.362 

 Year 6.175 1 0.013 
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Fig. 1. Distribution of the 175 study plots (training and validation samples) of reeds and 

submerged macrophytes in the Camargue. 
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Fig. 2. Optimal tree for common reed classification. Presence of common reed = 1, presence of 

other land covers = 0. The number of sites assigned to 0 (on the left ) and 1 (on the right)  is 

indicated below each end node. 
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Fig. 3. Optimal tree for the classification of submerged macrophytes. Presence of submerged 

macrophytes = 1, presence of other land covers = 0. The number of sites assigned to 1 and 0 (1/0) 

is indicated for each terminal node. 
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Fig. 4. Distribution map of common reed and submerged macrophytes in the Camargue in 2005. 

 



 

 

37 

 

 

 

 

 

 

 

Fig. 5. Distribution map of common reed and submerged macrophytes in the Camargue in 2006. 
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Fig. 6. Mean values and confidence intervals (95%) of each predictive variable in the reedbed 

model for each land cover class of the training sample (2005). 
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Fig. 7. Mean values and confidence intervals (95%) of each predictitive variable in the reedbed 

model for each land cover class in the validation sample (2006)  

 

 

 

 



 

 

40 

 

 

 

 

 

 

Fig. 8. Mean values and confidence intervals (95%) of each predictive variable in the aquatic bed 

model for each land cover class in the training sample (2005).  
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Fig. 9. Mean values and confidence intervals (95%) of each predictive variable in the aquatic-bed 

model for each land cover class in the validation sample (2006). 

 


