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RADIOMETRIC NORMALIZATION OF SPOT-5 SCENES:  

6S ATMOSPHERIC MODEL VS. PSEUDO-INVARIANT FEATURES 

 

 

Short title: Radiometric normalization of SPOT-5 scenes 

 

Description: The 6S code provides a significantly lower radiometric variation (2.8%) 

than the use of pseudo-invariant features (4.1%), which remains a valid approach with 

only a few carefully selected invariant sectors. 

 

Abstract 

 

We compared the efficiency and robustness of two radiometric correction techniques 

applied to six SPOT-5 scenes used for assessing environmental changes of Camargue 

wetlands: the 6S atmospheric model and 86 pseudo-invariant features (PIFs) found in 

deep water, pine trees, roofs and sand. The few PIFs were selected subjectively 

following the low number of potentially invariant sectors available on the scenes. Both 

approaches provided a similar radiometric variation (6S =4.3%; PIFs = 4.0%). The latter 

increased from water to pine trees, to roofs and sand, with five reference points per 

feature being identified as cost effective. The withdrawing of variant features among the 

PIFs across dates or points caused a significant decrease in radiometric variation, 

especially with 6S (6S = 2.8%, PIFs = 3.4%). As many as 31 point per type of PIFs 

would be necessary to provide a radiometric variation that is not significantly different 

from that obtained with 6S, whereas nearly 300 and 4000 points per feature would be 

required to provide similar or better results than the 6S code, respectively. Use of a few 

PIFs remains a valid approach, as long as the invariant sectors cover a wide range of 
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brightness and are represented by objects of which the radiometric variation has 

preliminarily been tested.  

 

Keywords: 6S atmospheric model, pseudo-invariant features, radiometric normalization, 

SPOT-5 scenes, wetland monitoring, Camargue, FRANCE 

 

 

Introduction 

 

The Camargue or Rhône Delta in southern France includes 90 000 ha of natural 

habitats, mostly temporary marshes used for various traditional and socio-economic 

activities (waterfowl hunting, reed harvesting, cattle grazing) of which the hydrological 

functioning is increasingly man-made to improve economic yield (Mathevet, 2004). The 

input of freshwater in these brackish marshes and the modification of their hydroperiod 

through the year influence their floristic composition and vegetation biomass, justifying 

a follow up of their management and health state (Tamisier and Grillas, 1994). Two 

third of these marshes are located outside protected areas on relatively small private 

estates. This fragmented configuration within a large geographical area makes 

monitoring based on repeated ground measures difficult. The potentialities of remotely 

sensed imagery for monitoring the environmental changes of these marshes are being 

assessed with time series of SPOT-5 scenes, which provide a multispectral mode with 

four bands: green (B1: 0.50 – 0.59 µm) , red (B2: 0.61 – 0.68 µm), near infrared (B3: 

0.79 – 0.89 µm), and short-wave infrared (SWIR: 1.58 – 1.75 µm). The first three bands 

yield a 10-m resolution, and the SWIR band can be resampled to 10 m from the original 

20-m resolution (SPOT Image, 2005). The analysis of multitemporal images requires a 

calibration of their digital counts to common reference values, because their radiometry 

is affected by solar illumination angles, view angles, atmospheric conditions, 
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reflectance anisotropy, and sensor calibration trends, all of which potentially vary across 

images (Lillesand and Kiefer, 2000; Schott, 2007). 

Among the several methods of radiometric normalization available (see Furby and 

Campbell, 2001 for a review) is the use of pseudo-invariant features (PIFs) (Schott et 

al., 1988, Caselles and Lopez Garcia, 1989; Eckhardt et al., 1990; Paolini et al., 2006; 

Schroeder et al., 2006). This relative approach does not eliminate the effect of the 

atmosphere, but allows one to calibrate all images to a similar atmospheric state from 

one image used as a reference. Features presumed to have constant reflectance over time 

are manually or statistically selected on the image to cover the full range of spectral 

brightness values. It does not require data other than the image itself, but the reference 

image (date) must be selected carefully to maximise the constancy of the corrections. It 

should (i) be cloud-free; (ii) have a relatively clear atmosphere; (iii) contain data within 

the storage format range for all bands; (iv) represent a time of year appropriate for the 

application; and (v) have the best possible dynamic range (Furby and Campbell, 2001). 

A small look angle will further minimize the amount of atmospheric attenuation and 

haze on the image (Eckhardt et al., 1990). Size of invariant targets should be adapted to 

the ground resolution of the sensor and cover several pixels to avoid mixed-pixels 

effects (Schott et al., 1988). According to Eckhardt et al. (1990), the PIFs should (i) be 

approximately located at the same elevation so that the thickness of the atmosphere over 

each target is similar; (ii) contain only minimal amounts of vegetation to reduce change 

in spectral reflectance over time; (iii) be located in relatively flat areas so that changes 

in sun angle between images will produce the same proportional increases or decreases 

in insolation; (iv) not exhibit changes in their spatial pattern, and (v) have a wide range 

of brightness values for the regression model to be reliable. Although the type of 

invariants targets and the number of points used will affect the accuracy of the 

normalization, these limitations have rarely been quantitatively addressed. 



 

 

4 

4 

Application of a radiative transfer model based on generalised atmospheric 

conditions is another approach for radiance normalization (Richter, 1990; Tanré et al., 

1990; Rahman and Dedieu, 1994; Vermote et al., 1997). These numerical atmospheric 

transmission codes provide an absolute correction, but generally require measurements 

of atmospheric constituents to be taken simultaneously with the acquisition of the 

image. Although originally difficult to apply by the non-physicist geographers, these 

codes have been simplified in their application (Richter, 1990; Rahman and Dedieu, 

1994; Kergomard, 2000). Moran et al. (1992) tested atmospheric correction procedures 

under a variety of atmospheric conditions including radiative transfer codes like the 

Simulation of the Satellite Signal in the Solar Spectrum or 5S (Tanré et al., 1990), and 

concluded that they were successful in reducing the error of reflectance estimation even 

when they were used with estimates of atmospheric correction instead of the 

atmospheric optical depth measurements on the site. The Second Simulation of the 

Satellite Signal in the Solar Spectrum (6S) is an improved version of 5S, developed by 

the Laboratoire d'Optique Atmosphérique (Université des Sciences et Technologies de 

Lille, France). This widely used atmospheric radiative transfer code, developed by 

Vermote et al. (1997), predicts the sensor signal assuming cloudless atmosphere, taking 

into account the main atmospheric effects (gaseous absorption by water vapour, carbon 

dioxide, oxygen and ozone; scattering by molecules and aerosols). 

Here we compare the efficiency and reliability of two radiometric correction 

techniques applied to SPOT-5 scenes. The first one provides an absolute correction 

through the application of the atmospheric model 6S, the other consists of a relative 

calibration based on the use of PIFs.  Accuracy of each technique is compared through 

the mean variation in reflectance of selected pseudo-invariant features observed after 

image normalization. We further address how the type of invariant targets and the 

number of points used affect the accuracy of the normalization with the PIF approach. 
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Study site 

 

The Camargue is a flat delta (maximum terrain elevation = 7 m) located near the 

Mediterranean Sea experiencing a Mediterranean climate with mild and windy winters 

and hot and dry summers. Six SPOT-5 scenes were programmed and acquired through 

funds provided by the Centre National d’Études Spatiales (CNES) in December 2004, 

March, May, June, July and September 2005 covering all the study area. For all images, 

the view angle was comprised between - 25º and + 25º (generally around 8º) and the 

cloud percentage below 20%. The scenes were centred on the Vaccarès lagoon and 

included some deep sea in their southernmost part (Fig. 1). Landcover consists mainly 

of agricultural land and natural or semi-natural marshes along with three small towns, 

three villages and part of an industrial zone. 

 

Methods 

 

The 6S Atmospheric model 
 

The absolute atmospheric corrections were performed according to the method 

described in Kergomard (2000) originally applied to the 5S model (Tanré et al., 1990). 

Digital numbers were first converted to physical values according to the linear 

transformation:  

radiance=DN/G 

where DN is the Digital Numbers and G the absolute calibration gain of the sensor 

given by SPOT scene for each band. Geometrical conditions are automatically 

calculated by 6S based on the date, time, longitude and latitude of the scene. Spectral 

conditions are estimated based on the type of satellite, the sensor and the band to be 

corrected. We selected lambertian as type of surface. Atmospheric conditions were 

estimated from the atmospheric profile, the aerosol model, and the visibility. After an 
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exploratory analysis of the data, we selected “maritime” as aerosol model and “mid 

latitude summer” as atmospheric profile for all images, independently from the wind 

direction. Visibility was derived from 6S computer iterations assuming that the 

reflectance in the SWIR band in clear deep water was equal to zero (Kergomard, 2000). 

We selected one pixel exhibiting the lowest digital counts located 10 km from the coast 

in clear and deep sea, and ran the model with different values of visibility until 

obtaining an atmospheric reflectance equal to the one exhibited by this pixel in the MIR 

band. These values of visibility were calculated for each image and further integrated in 

the 6S code for assessing the atmospheric conditions of each date. The images were 

then corrected with the parameters “xa”, “xb” and “xc” given in the 6S User Guide 

(2006). These parameters represent the ratio of total upward and downward flux in the 

atmosphere, the path radiance, and the spherical albedo of the atmosphere, respectively.  

For each pixel in the input image, linearly interpolated values of xa, xb and xc are 

calculated for the actual view zenith angle of that pixel, and the reflectance is calculated 

using the formulae:  

y= xa*(measured radiance)-xb 

atmospherically corrected reflectance  = y/(1+xc*y) 

 

Pseudo-Invariant Features (PIFs) 
 

The number of PIFs used in radiometric correction studies vary from a few dozens 

(Eckhart et al. 1990; Schroeder et al., 2006) to several hundreds (Over et al., 2003; 

Janzen et al., 2006; Galiatsatos et al., 2007). In this study, only four types of invariant 

features covering at least 2x2 pixels and providing a number of independent replicates 

sufficient for statistical analyses were available on all images (Fig. 1). These were roofs 

(n = 24), sand (n = 10), water in abandoned quarry, littoral and deep sea (n = 36), and 

pine trees (n = 16). These PIFs covered the whole range of brightness of the four bands 

on the reference scene (Fig. 2). For image normalization, we applied the equation of the 

linear regression between the digital counts of the PIFs from the reference image and 



 

 

7 

7 

those from the image to be corrected after geometric rectification. We used the 

December image normalized with the 6S atmospheric model as a reference for 

comparing the radiometric variation obtained with both approaches.  By doing so we 

eliminated, rather than levelled off, the atmospheric effects on all images to avoid that 

the normalized invariant points exhibit a lower variation only due to the systematic loss 

of signal related to the atmospheric conditions of each image.  

 

Estimation of radiometric variation 
 

Radiometric variation was estimated using the 86 points of pseudo-invariant features, 

except when comparing the PIF and 6S-code techniques. In this latter case, we used half 

of the PIF points for normalization and the other half for comparison, to avoid biased 

estimation. The radiometric variation corresponds to the Euclidian distance (Legendre 

and Legendre, 1998) between the mean radiometric value and the radiometric value at 

time j of each point i with the equation: 
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where B1, B2, B3 and B4 represent the four spectral bands of SPOT 5. The mean 

Euclidian distance, which should be theoretically equal to zero if the normalization was 

perfect and the pseudo-invariant features truly invariant, further provides a radiometric 

variation that is comparable among points from different types of features or dates. 

Paired t-tests and t-tests were used to compare radiometric variation of two series of 

identical or independent points, respectively. For multiple comparisons, we used 

ANOVA (F) followed by Scheffe post-hoc tests when statistically significant (p < 0.05) 

(Sokal and Rholf, 1995). 

 

Comparison of 6S and PIF techniques based on simulations 
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Using the radiometric variation of all PIFs, we run 100 permutations with one to ten 

points from each type of PIF, totalling 1000 permutations. For each set of permutations, 

we calculated the accuracy of the estimation using the mean radiometric variation with 

the minimum-maximum range values. The number of PIFs required to reach a 

radiometric variation comparable to that of 6S was extrapolated from a power curve. 

 

Results 

 

Overall, normalization using either PIFs (4.0%) or the 6S model (4.3%) provided 

similar results in radiometric variation (Fig. 3, paired-t = 1.4; df = 43; p = 0.17). 

However, radiometric variation differed according to the type of features used (F = 

30.9; df = 3, 173; p <0.0001), in a similar way with both normalization techniques (F = 

3.26; df = 1, 173; p = 0.07).  Deep water and pine trees were the least variant, roofs 

were more variant with large differences observed among points from the same image, 

whereas the sand showed the highest variation among dates with the least variation 

among points from a same date (Fig. 4). 

 

Variation in PIF radiometry over time 
 

Radiometric variation in points from a same type of feature is shown for each scene in 

figure 5. Although deep water varied little over the year, significant differences 

occurred among dates (F = 5.67; df = 5; 138; p < 0.0001), with March differing from all 

other dates except June. The longer confidence interval observed in March and June 

further suggests a higher variation among points for these two dates. Actually, only the 

points located in deep sea differed in March (0.151 vs. 0.013; t = -19.58; df = 34; p < 

0.0001), whereas only the points located in the littoral zone differed in June (0.065 vs. 

0.018; t = 5.55; df = 34; p < 0.0001). Pine trees also showed a significant radiometric 

variation across dates (F = 26.09; df: 5, 108; p < 0.0001), with higher values in 
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December and May, but little variation among points from the same image (Fig. 5). 

Roofs were the most variable feature (F = 7.68; df = 5, 210; p < 0.0001), with March 

being significantly different from all other months. The longer confidence intervals 

observed for all dates are mostly due to the small roofs (mean: 4828 m², range: 1110 - 

12753 m²), which showed a higher radiometric variation than larger roofs (8.6% vs. 

3.5%; t = 3.71; df = 22; p = 0.001).  Sand showed a low radiometric variation except in 

July and September when values were significantly higher (F = 7442.21; df = 5, 54; p < 

0.0001), primarily in the B3 and B4 bands. In spite of these large seasonal differences, 

very little variation was observed among points from a same date for any date. The 

withdrawing of the “variant” features (deep water in March and littoral water in June, 

pine trees in December and May, little roofs, and sand in July and September) allowed 

to decrease the overall radiometric variation (PIFs = 3.4%; 6S = 2.9%), with the 6S 

model providing a significantly lower variation (paired-t = -4.74; df = 36; p < 0.0001) 

than the PIF approach (Fig. 6).  

 

Effect of the number of points and features with the PIF technique 
 

The importance of using several types of PIFs for image normalization is illustrated in 

figure 7.  Using just one type of feature resulted in a significant increase of radiometric 

variation in all cases (t-tests; p < 0.0001), with variable results pending upon the type of 

PIFs used. For instance, reflectance normalization based on roofs only provides the 

lowest radiometric variation in other features, although roofs were the most variant 

PIFs. In contrast, reflectance normalization using sand provides the highest radiometric 

variation in other features, although sand showed the lowest variation among points 

from a same date. To determine the optimal number of points that should be used for 

each type of invariant features, we compared the maximal radiometric variation 

obtained from the permutations with the original radiometric mean (4.0%) used as a 

threshold value. From this, it appears that five points per PIF types provide a cost-
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effective estimation of radiometric variation (Fig. 8). However, as many as 31 points 

per feature would be necessary to provide a radiometric variation that is not 

significantly different from that obtained with 6S, whereas 292 and 3846 points per 

feature would be required to provide similar or better results than the 6S code, 

respectively. 

 

Discussion and conclusion 

 

Models for atmospheric corrections generally use a specific language, an unfriendly 

interface, and require measurements of atmospheric parameters at the time of image 

acquisition. In contrast, the 6S model is relatively user-friendly and all the information 

required to perform the corrections are provided with the image with the exception of 

visibility, which can be deduced from a single pixel of known radiometry. Although we 

did not use these options, 6S offers the possibility to account for target elevation and to 

integrate non-lambertian surface conditions, as well as more absorbing species and 

successive order of scattering (SOS) algorithm, all of which are of particular interest for 

environmental monitoring (Vermote et al., 1997). Kergomard (2000) selected the 

aerosol type based on wind direction. However, based on the radiometry of invariant 

features, 6S provided a better normalization of the Camargue images when the aerosol 

model was set at maritime even under north-blowing wind conditions. Likewise, 

selecting a “mid latitude summer” atmospheric profile, even for the December image, 

provided a better fit for the Camargue, even though Kergomard (2000) found that the 

atmospheric profiles had a limited impact on his results. Hence, in further 6S 

applications we recommend testing the effects of different inputs on the radiometric 

values of a few invariant features to identify the most appropriate atmospheric 

conditions for each date and region. 
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Our analyses first revealed a similar accuracy in radiometric normalization using 

either the 6S code or PIFs. Because PIFs are not totally invariant, and that these 

variations are taken into account with the PIF but not the 6S approach, radiometric 

variation was originally slightly lower with the corrections based on PIFs. However, 

when the most variant PIFs are withdrawn, the 6S model becomes significantly more 

accurate. The variations observed in the PIFs selected were related to various factors 

depending upon the type of features. For instance, radiometric variations in the sea are 

probably related to increased water turbidity through alluvia brought by the Rhone 

River near the coast and to variation in wave height in deep sea. Radiometric variation 

in pine trees is probably associated with needle production in June and their drying out 

in December, whereas those observed with sand are presumably related to their 

humidity content. Human constructions such as roofs can also be used, but in this study 

only roofs larger than 15 000 m2 or 12 x 12 pixels were relatively invariant.  This study 

and others (Du et al., 2002; Furby and Campbell, 2001) have demonstrated the 

importance of using different types of features covering the full range of brigthness. Our 

results additionally showed that at least five different objects per type of feature should 

be used. These objects should be selected carefully, as a large number of presumably 

invariant points were tested preliminarily and eliminated in this study. Yet, systematic 

variation in all objects of a same feature will be difficult to detect, especially when only 

two images are being used.  

Regardless of the method involved, some radiometric variation remains, which 

can be due to several factors (Du et al., 2002), including the differing view angles 

(Moran et al, 1990) and degradation of optical sensor (Bannari et al, 1999) at the 

satellite level. Additionally, geometric corrections can create residual errors. With the 

6S code, using a single reference point on the image can provide inconsistency in 

radiometry due to a spatial variation of aerosols causing heterogeneous atmospheric 

effects across the image. Several methods exist to estimate the accuracy of the 
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radiometric normalization, making comparisons difficult (Moran et al., 1992; Chavez, 

1996, Heo and FitzHugh, 2000; Song et al., 2001, Schroeder et al., 2006). Du et al. 

(2002) obtained a mean error of 1.1% by band, which is comparable to our results with 

6S (0.7%) and PIFs (1.0%). Although the use of 6S provides more accurate results, this 

study shows that the use of PIFs remains a valid approach, as long as the invariant 

targets are selected carefully and empirically tested for their radiometric variation. 
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Figure Captions 

 

Fig. 1. SPOT-5 scene showing the location of the pseudoinvariant points. 

 

Fig.2. Proportion of pixels across the reflectance range of each band with distinction of those 

used as pseudoinvariant features (PIFs). 

 

Fig. 3. Radiometric variation (% reflectance) of pseudoinvariant features (PIFs) normalized 

with the 6S atmospheric model and the PIF approaches (mean with 95% confidence interval). 

 

Fig. 4. Radiometric variation (% reflectance) for each type of pseudoinvariant feature when 

normalized with the 6S atmospheric model and the PIF approaches (mean with 95% 

confidence interval). 

 

Fig. 5. Radiometric variation (% reflectance) for each type of pseudoinvariant features over 

time (mean with 95% confidence interval). 

 

Fig. 6. Radiometric variation (% reflectance) of pseudoinvariant features normalized with the 

6S atmospheric model and the PIF approaches when the variant features are excluded (mean 

with 95% confidence interval). 

 

Fig. 7. Radiometric variation (% reflectance) when a single feature is used for radiometric 

normalization (mean with 95% confidence interval). 

 

Fig. 8. Mean radiometric variation with minimum-maximum range values according to the 

number of points used from each type of PIFS based on permutations. 
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