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RADIOMETRIC NORMALIZATION OF SPOT-5 SCENES:
6SATMOSPHERIC MODEL VS. PSEUDO-INVARIANT FEATURES

Short title: Radiometric normalization of SPOT-5 scenes

Description: The 6S code provides a significantly lower radebnc variation (2.8%)
than the use of pseudo-invariant features (4.1%iclwremains a valid approach with

only a few carefully selected invariant sectors.

Abstract

We compared the efficiency and robustness of twlmraetric correction techniques
applied to six SPOT-5 scenes used for assessingamental changes of Camargue
wetlands: the 6S atmospheric model and 86 pseudotamt features (PIFs) found in
deep water, pine trees, roofs and sand. The few Wéfe selected subjectively
following the low number of potentially invarianécors available on the scenes. Both
approaches provided a similar radiometric varia{@® =4.3%; PIFs = 4.0%). The latter
increased from water to pine trees, to roofs and saith five reference points per
feature being identified as cost effective. Thenadiawing of variant features among the
PIFs across dates or points caused a significamédse in radiometric variation,
especially with 6S (6S = 2.8%, PIFs = 3.4%). As ynas 31 point per type of PIFs
would be necessary to provide a radiometric vanathat is not significantly different
from that obtained with 6S, whereas nearly 30040@D points per feature would be
required to provide similar or better results thiae 6S code, respectively. Use of a few

PIFs remains a valid approach, as long as theianvasectors cover a wide range of



brightness and are represented by objects of vihelhadiometric variation has

preliminarily been tested.

Keywords: 6S atmospheric model, pseudo-invariaatiies, radiometric normalization,

SPOT-5 scenes, wetland monitoring, Camargue, FRANCE

I ntroduction

The Camargue or Rhéne Delta in southern Francades|90 000 ha of natural
habitats, mostly temporary marshes used for vati@aktional and socio-economic
activities (waterfowl hunting, reed harvesting tieagjrazing) of which the hydrological
functioning is increasingly man-made to improveremuic yield (Mathevet, 2004). The
input of freshwater in these brackish marshes hadrodification of their hydroperiod
through the year influence their floristic compmsitand vegetation biomass, justifying
a follow up of their management and health stager(i§ier and Grillas, 1994). Two
third of these marshes are located outside pratestsas on relatively small private
estates. This fragmented configuration within géageographical area makes
monitoring based on repeated ground measuresudiffithe potentialities of remotely
sensed imagery for monitoring the environmentahgea of these marshes are being
assessed with time series of SPOT-5 scenes, whiefide a multispectral mode with
four bands: green (B1: 0.50 — 0.59 um) , red (B&16- 0.68 um), near infrared (B3:
0.79 — 0.89 um), and short-wave infrared (SWIR8ER..75 um). The first three bands
yield a 10-m resolution, and the SWIR band canesampled to 10 m from the original
20-m resolution (SPOT Image, 2005). The analysimuatitemporal images requires a
calibration of their digital counts to common refiece values, because their radiometry

is affected by solar illumination angles, view agglatmospheric conditions,



reflectance anisotropy, and sensor calibratiordseall of which potentially vary across
images (Lillesand and Kiefer, 2000; Schott, 2007).

Among the several methods of radiometric normabraavailable (see Furby and
Campbell, 2001 for a review) is the use of pseun@iiant features (PIFs) (Schott et
al., 1988, Caselles and Lopez Garcia, 1989; Ecklearal., 1990; Paolini et al., 2006;
Schroeder et al., 2006). This relative approacts st eliminate the effect of the
atmosphere, but allows one to calibrate all imagessimilar atmospheric state from
one image used as a reference. Features presurhadg@onstant reflectance over time
are manually or statistically selected on the im@ageover the full range of spectral
brightness values. It does not require data ottaar the image itself, but the reference
image (date) must be selected carefully to maxitthieeconstancy of the corrections. It
should (i) be cloud-free; (ii) have a relativelgal atmosphere; (iii) contain data within
the storage format range for all bands; (iv) repnés time of year appropriate for the
application; and (v) have the best possible dynaamge (Furby and Campbell, 2001).
A small look angle will further minimize the amouwftatmospheric attenuation and
haze on the image (Eckhardt et al., 1990). Sidzewairiant targets should be adapted to
the ground resolution of the sensor and cover sépetels to avoid mixed-pixels
effects (Schott et al., 1988). According to Eckhadal. (1990), the PIFs should (i) be
approximately located at the same elevation sotligathickness of the atmosphere over
each target is similar; (ii) contain only minimahaunts of vegetation to reduce change
in spectral reflectance over time; (iii) be locatedelatively flat areas so that changes
in sun angle between images will produce the saimgoptional increases or decreases
in insolation; (iv) not exhibit changes in theiasil pattern, and (v) have a wide range
of brightness values for the regression model teebable. Although the type of
invariants targets and the number of points usddaffect the accuracy of the

normalization, these limitations have rarely beearitatively addressed.



Application of a radiative transfer model basedyeneralised atmospheric
conditions is another approach for radiance nomatibn (Richter, 1990; Tanré et al.,
1990; Rahman and Dedieu, 1994; Vermote et al., 19%&se numerical atmospheric
transmission codes provide an absolute corredbiohgenerally require measurements
of atmospheric constituents to be taken simultasigonith the acquisition of the
image. Although originally difficult to apply by ¢hnon-physicist geographers, these
codes have been simplified in their applicatiorc{f®er, 1990; Rahman and Dedieu,
1994; Kergomard, 2000). Moran et al. (1992) testieaospheric correction procedures
under a variety of atmospheric conditions includiadiative transfer codes like the
Simulation of the Satellite Signal in the Solar &pem or 5S (Tanré et al., 1990), and
concluded that they were successful in reducingethe of reflectance estimation even
when they were used with estimates of atmospheriection instead of the
atmospheric optical depth measurements on thel$ieeSecond Simulation of the
Satellite Signal in the Solar Spectrum (6S) israproved version of 5S, developed by
the Laboratoire d'Optique Atmosphérique (Univerdi#g Sciences et Technologies de
Lille, France). This widely used atmospheric rag@transfer code, developed by
Vermote et al. (1997), predicts the sensor sigsstiiaming cloudless atmosphere, taking
into account the main atmospheric effects (gasabasrption by water vapour, carbon
dioxide, oxygen and ozone; scattering by molecatesaerosols).

Here we compare the efficiency and reliabilitywbtradiometric correction
techniques applied to SPOT-5 scenes. The firspoovides an absolute correction
through the application of the atmospheric modeltB& other consists of a relative
calibration based on the use of PIFs. Accuraaach technique is compared through
the mean variation in reflectance of selected psemdariant features observed after
image normalization. We further address how the tyinvariant targets and the

number of points used affect the accuracy of threnabzation with the PIF approach.



Study site

The Camargue is a flat delta (maximum terrain dlewa= 7 m) located near the
Mediterranean Sea experiencing a Mediterranearatdinvith mild and windy winters
and hot and dry summers. Six SPOT-5 scenes wegegmomned and acquired through
funds provided by the Centre National d’Etudes @i (CNES) in December 2004,
March, May, June, July and September 2005 covetlinye study area. For all images,
the view angle was comprised between - 25° anc®{g&merally around 8°) and the
cloud percentage below 20%. The scenes were cemtrdte Vaccares lagoon and
included some deep sea in their southernmost iyt 1). Landcover consists mainly
of agricultural land and natural or semi-naturafrshas along with three small towns,

three villages and part of an industrial zone.

M ethods

The 6S Atmospheric model

The absolute atmospheric corrections were performeedrding to the method
described in Kergomard (2000) originally appliedhie 5S model (Tanré et al., 1990).
Digital numbers were first converted to physicdues according to the linear

transformation:
radiance=DN/G

where DN is the Digital Numbers and G the absatalédration gain of the sensor
given by SPOT scene for each band. Geometricalitonsl are automatically
calculated by 6S based on the date, time, longi&undiglatitude of the scene. Spectral
conditions are estimated based on the type oflisatéhe sensor and the band to be
corrected. We selected lambertian as type of serfatnospheric conditions were

estimated from the atmospheric profile, the aerosmdel, and the visibility. After an



exploratory analysis of the data, we selected “timag’ as aerosol model and “mid
latitude summer” as atmospheric profile for all ges, independently from the wind
direction. Visibility was derived from 6S computtarations assuming that the
reflectance in the SWIR band in clear deep watex @gpual to zero (Kergomard, 2000).
We selected one pixel exhibiting the lowest digitalints located 10 km from the coast
in clear and deep sea, and ran the model withrdittevalues of visibility until

obtaining an atmospheric reflectance equal to tieeexhibited by this pixel in the MIR
band. These values of visibility were calculateddach image and further integrated in
the 6S code for assessing the atmospheric conglitbeach date. The images were

then corrected with the parameters “xa”, “xb” amd™given in the 6S User Guide
(2006). These parameters represent the ratio @fuptvard and downward flux in the
atmosphere, the path radiance, and the sphertpad@lof the atmosphere, respectively.
For each pixel in the input image, linearly intdgted values of xa, xb and xc are
calculated for the actual view zenith angle of iiael, and the reflectance is calculated

using the formulae:
y= xa*(measured radiance)-xb
atmospherically corrected reflectance = y/(1+xc*y)

Pseudo-I nvariant Features (Pl Fs)

The number of PIFs used in radiometric correctioilies vary from a few dozens
(Eckhart et al. 1990; Schroeder et al., 2006) vese hundreds (Over et al., 2003;
Janzen et al., 2006; Galiatsatos et al., 200 thignstudy, only four types of invariant
features covering at least 2x2 pixels and providgimypmber of independent replicates
sufficient for statistical analyses were availadneall images (Fig. 1). These were roofs
(n = 24), sand (n = 10), water in abandoned quéttgtal and deep sea (n = 36), and
pine trees (n = 16). These PIFs covered the wlamige of brightness of the four bands
on the reference scene (Fig. 2). For image noratadia, we applied the equation of the

linear regression between the digital counts ofRttes from the reference image and



those from the image to be corrected after geomeddtification. We used the
December image normalized with the 6S atmospheoitainas a reference for
comparing the radiometric variation obtained witiihbapproaches. By doing so we
eliminated, rather than levelled off, the atmospheffects on all images to avoid that
the normalized invariant points exhibit a lowerigtion only due to the systematic loss

of signal related to the atmospheric conditionsaxfh image.

Estimation of radiometric variation

Radiometric variation was estimated using the 86tp@f pseudo-invariant features,
except when comparing the PIF and 6S-code techsidiu¢his latter case, we used half
of the PIF points for normalization and the othalf For comparison, to avoid biased
estimation. The radiometric variation corresporadthe Euclidian distance (Legendre
and Legendre, 1998) between the mean radiometiie \&nd the radiometric value at

time] of each point with the equation:

> (B, -BL ) + (B2, -B2 f + (B3, - B3/ + (B4, - Ba/f

where B1, B2, B3 and B4 represent the four spebtaatls of SPOT 5. The mean
Euclidian distance, which should be theoreticatijya to zero if the normalization was
perfect and the pseudo-invariant features trulaiiant, further provides a radiometric
variation that is comparable among points fromedéht types of features or dates.
Pairedt-tests and-tests were used to compare radiometric variatidwo series of
identical or independent points, respectively. faoitiple comparisons, we used
ANOVA (F) followed by Scheffe post-hoc tests wheatistically significantp < 0.05)
(Sokal and Rholf, 1995).

Comparison of 6S and PIF techniques based on simulations



Using the radiometric variation of all PIFs, we 00 permutations with one to ten
points from each type of PIF, totalling 1000 peratioins. For each set of permutations,
we calculated the accuracy of the estimation uiisgnean radiometric variation with
the minimum-maximum range values. The number o Péguired to reach a

radiometric variation comparable to that of 6S weisapolated from a power curve.

Results

Overall, normalization using either PIFs (4.0%}twr 6S model (4.3%) provided
similar results in radiometric variation (Fig. 3igedt = 1.4;df =43;p = 0.17).
However, radiometric variation differed accordinghe type of features usdd £
30.9;df = 3, 173;p <0.0001), in a similar way with both normalizatimchniquesK =
3.26;df =1, 173;p = 0.07). Deep water and pine trees were the \e@a&nt, roofs
were more variant with large differences observadrgg points from the same image,
whereas the sand showed the highest variation achateg with the least variation

among points from a same date (Fig. 4).

Variation in PIF radiometry over time

Radiometric variation in points from a same typéeature is shown for each scene in
figure 5. Although deep water varied little ovee tyear, significant differences
occurred among dateB € 5.67;df = 5; 138;p < 0.0001), with March differing from all
other dates except June. The longer confidenceraltebserved in March and June
further suggests a higher variation among pointstfese two dates. Actually, only the
points located in deep sea differed in March (0M$5D.013;t =-19.58;df = 34;p <
0.0001), whereas only the points located in thertd zone differed in June (0.06&
0.018;t = 5.55;df = 34;p < 0.0001). Pine trees also showed a significatibraetric
variation across dateB £ 26.09;df: 5, 108;p < 0.0001), with higher values in



December and May, but little variation among pofndsn the same image (Fig. 5).
Roofs were the most variable featulFex(7.68;df = 5, 210;p < 0.0001), with March
being significantly different from all other monthEhe longer confidence intervals
observed for all dates are mostly due to the sroafs (mean: 4828 mz2, range: 1110 -
12753 m?), which showed a higher radiometric vammathan larger roofs (8.6%s.
3.5%;t = 3.71;df = 22;p = 0.001). Sand showed a low radiometric variaéroept in
July and September when values were significangjlgdr & = 7442.21df = 5, 54;p <
0.0001), primarily in the B3 and B4 bands. In spit¢hese large seasonal differences,
very little variation was observed among pointsrfra same date for any date. The
withdrawing of the “variant” features (deep watemMarch and littoral water in June,
pine trees in December and May, little roofs, asdldsin July and September) allowed
to decrease the overall radiometric variation (RiIRs4%; 6S = 2.9%), with the 6S
model providing a significantly lower variation {ped+ = -4.74;df = 36;p < 0.0001)
than the PIF approach (Fig. 6).

Effect of the number of points and features with the PIF technique

The importance of using several types of PIFsrftage normalization is illustrated in
figure 7. Using just one type of feature resulted significant increase of radiometric
variation in all cased-{ests;p < 0.0001), with variable results pending uponttipe of
PIFs used. For instance, reflectance normalizdtas®d on roofs only provides the
lowest radiometric variation in other featureshaltgh roofs were the most variant
PIFs. In contrast, reflectance normalization usagd provides the highest radiometric
variation in other features, although sand showeddwest variation among points
from a same date. To determine the optimal numbpoiats that should be used for
each type of invariant features, we compared thamrel radiometric variation
obtained from the permutations with the originalioaetric mean (4.0%) used as a

threshold value. From this, it appears that fivenfsoper PIF types provide a cost-
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effective estimation of radiometric variation (F&). However, as many as 31 points
per feature would be necessary to provide a raditenariation that is not
significantly different from that obtained with 68hereas 292 and 3846 points per
feature would be required to provide similar ortéetesults than the 6S code,

respectively.

Discussion and conclusion

Models for atmospheric corrections generally uspexific language, an unfriendly
interface, and require measurements of atmospparameters at the time of image
acquisition. In contrast, the 6S model is relagwgder-friendly and all the information
required to perform the corrections are providetih\the image with the exception of
visibility, which can be deduced from a single pi@Eknown radiometry. Although we
did not use these options, 6S offers the possitidilaccount for target elevation and to
integrate non-lambertian surface conditions, a$ ageimore absorbing species and
successive order of scattering (SOS) algorithngfalthich are of particular interest for
environmental monitoring (Vermote et al., 1997)rd¢c@mard (2000) selected the
aerosol type based on wind direction. However, hasethe radiometry of invariant
features, 6S provided a better normalization ofGaenargue images when the aerosol
model was set at maritime even under north-blowiitgl conditions. Likewise,
selecting a “mid latitude summer” atmospheric gegpfeven for the December image,
provided a better fit for the Camargue, even thokigigomard (2000) found that the
atmospheric profiles had a limited impact on h&utes. Hence, in further 6S
applications we recommend testing the effects iémint inputs on the radiometric
values of a few invariant features to identify thest appropriate atmospheric

conditions for each date and region.
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Our analyses first revealed a similar accuracydiametric normalization using
either the 6S code or PIFs. Because PIFs are tatifytmvariant, and that these
variations are taken into account with the PIFrmitthe 6S approach, radiometric
variation was originally slightly lower with the wections based on PIFs. However,
when the most variant PIFs are withdrawn, the 68ahbecomes significantly more
accurate. The variations observed in the PIFs wglatere related to various factors
depending upon the type of features. For instarackometric variations in the sea are
probably related to increased water turbidity tigfoalluvia brought by the Rhone
River near the coast and to variation in wave haigkeep sea. Radiometric variation
in pine trees is probably associated with needdeyoction in June and their drying out
in December, whereas those observed with sandresarpably related to their
humidity content. Human constructions such as roafsalso be used, but in this study
only roofs larger than 15 000°rar 12 x 12 pixels were relatively invariant. Tkisidy
and others (Du et al., 2002; Furby and Campbe0120ave demonstrated the
importance of using different types of featuresazow the full range of brigthness. Our
results additionally showed that at least fiveatiint objects per type of feature should
be used. These objects should be selected caredslly large number of presumably
invariant points were tested preliminarily and efided in this study. Yet, systematic
variation in all objects of a same feature willdb#icult to detect, especially when only
two images are being used.

Regardless of the method involved, some radiomedni@tion remains, which
can be due to several factors (Du et al., 2002)udhing the differing view angles
(Moran et al, 1990) and degradation of optical se(Bannari et al, 1999) at the
satellite level. Additionally, geometric correct®nan create residual errors. With the
6S code, using a single reference point on the éeag provide inconsistency in
radiometry due to a spatial variation of aerosalssing heterogeneous atmospheric

effects across the image. Several methods exestimate the accuracy of the
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radiometric normalization, making comparisons difft (Moran et al., 1992; Chavez,
1996, Heo and FitzHugh, 2000; Song et al., 200hrdader et al., 2006). Du et al.
(2002) obtained a mean error of 1.1% by band, wisicdomparable to our results with
6S (0.7%) and PIFs (1.0%). Although the use of &¥ides more accurate results, this
study shows that the use of PIFs remains a validoggh, as long as the invariant

targets are selected carefully and empiricallye$or their radiometric variation.
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Figure Captions

Fig. 1. SPOT-5 scene showing the location of the pseudoiant points.

Fig.2. Proportion of pixels across the reflectance rarfggaoh band with distinction of those

used as pseudoinvariant features (PIFs).

Fig. 3. Radiometric variation (% reflectance) of pseudanmant features (PIFs) normalized

with the 6S atmospheric model and the PIF appraaghean with 95% confidence interval).

Fig. 4. Radiometric variation (% reflectance) for eachetyh pseudoinvariant feature when
normalized with the 6S atmospheric model and tlreaPproaches (mean with 95%

confidence interval).

Fig. 5. Radiometric variation (% reflectance) for eachetyh pseudoinvariant features over

time (mean with 95% confidence interval).
Fig. 6. Radiometric variation (% reflectance) of pseudanmant features normalized with the
6S atmospheric model and the PIF approaches wieeratiant features are excluded (mean

with 95% confidence interval).

Fig. 7. Radiometric variation (% reflectance) when a ®rfghture is used for radiometric

normalization (mean with 95% confidence interval).

Fig. 8. Mean radiometric variation with minimum-maximunmge values according to the

number of points used from each type of PIFS basgaermutations.
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