
HAL Id: hal-00692515
https://hal.science/hal-00692515v1

Submitted on 20 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A ”minimal disruption” skeleton experiment: seamless
map & reduce embedding in OCaml

Marco Danelutto, Roberto Di Cosmo

To cite this version:
Marco Danelutto, Roberto Di Cosmo. A ”minimal disruption” skeleton experiment: seamless map &
reduce embedding in OCaml. International Conference on Computational Science, Jun 2012, Omaha,
United States. pp.1837-1846, �10.1016/j.procs.2012.04.202�. �hal-00692515�

https://hal.science/hal-00692515v1
https://hal.archives-ouvertes.fr

A “minimal disruption” skeleton experiment:

seamless map & reduce embedding in OCaml 1

Marco Danelutto2 Roberto Di Cosmo3

Article originally appeared in International Conference on
Computational Science, ICCS 2012; published version available as

http://dx.doi.org/10.1016/j.procs.2012.04.202

Abstract

We discuss the implementation of a minimalist parallel library in
OCaml. The library provides parallel map and fold (reduce) higher order
functions and targets standard cache coherent shared memory multi-cores.
Our Parmap.parmap and Parmap.parfold functions may be used to seam-
lessly replace OCaml List map and fold standard functions preserving
their full functional semantics while achieving nearly optimal speedup on
standard multi-core architectures. We discuss the design of the Parmap

module, the main implementation features and we present some exper-
imental results assessing the efficiency of the Parmap parallel functions.
Overall, Parmap represents a perfect incarnation of the “propagate the
concept with minimal disruption” principle introduced in Cole’s algorith-
mic skeleton manifesto.

Keywords: structured parallel programming; algorithmic skeletons; map; re-
duce

1 Introduction

Multi-cores with some kind of shared memory subsystem constitute the de facto
standard computing elements in a wide range of systems, from mobile phones
and tablets to workstations and servers, up to high end parallel computer sys-
tems. However, the development of efficient applications for these inherently
parallel systems still requires a consistent design and programming effort. Clas-
sical programming techniques exploiting threads and the associated coopera-
tion and synchronization machinery represent a kind of “assembly level parallel

1This work has been partially supported by EU FP7 STREP Project ParaPhrase, and
partially performed at IRILL, http://www.irill.org.

2Dept. Computer Science, Univ. of Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy;
marcod@di.unipi.it

3Univ Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126, CNRS, INRIA Paris-
Rocquencourt, F-75205 Paris, France; roberto@dicosmo.org

1

http://www.irill.org

language” for multi-cores, and inherit all the problems of low level languages:
writing efficient multithreaded code is difficult and error prone, debugging and
maintenance are even more problematic. The adoption of slightly higher level
programming paradigms such as OpenMP improves programmer productivity
with respect to plain Pthreads, but still requires a consistent expertise to tune
all the available parameters in such a way that good efficiency is achieved.

Several authors suggested to fill the evident gap between programmability
and available parallelism in multi-cores with different kinds of structured pro-
gramming models: parallel design patterns [1] as in [2, 3] or algorithmic skeletons
[4] as in [5, 6, 7, 8, 9], just to name a few examples. Algorithmic skeletons, in par-
ticular, promise to raise the level of abstraction provided to parallel application
programmers by making available mechanisms—language constructs, objects,
components or plain library calls—that completely encapsulate and manage a
parallelism exploitation pattern. The application programmer writing a parallel
application is therefore only left with the duty of picking up and instantiating
the proper (composition of) skeletons modelling the parallelism at hand from a
library of predefined, optimized and, possibly, portable algorithmic skeletons.

The price to pay with algorithmic skeletons is the necessity for the program-
mers to “learn” new concepts—the algorithmic skeleton (parallel) semantics—in
order to be able to write parallel applications.

Actually, the “four principles which we believe should guide the future design
and the development of skeletal programming systems” stated in Cole’s “skele-
ton manifesto” [4] included the principle stated as “propagate the concept with
minimal conceptual disruption”. In other words, the principle states algorith-
mic skeletons should be introduced in such a way that programmers are not
required to do things far from their normal programming activity or requiring
brand new knowledge and competences.

In this work, we present an experiment aiming at providing parallel algorith-
mic skeletons to OCaml programmers fully respecting Cole’s minimal disruption
principle: we provide a lightweight OCaml library that presents to the OCaml
programmer a simple replacement of the basic operations on lists provided by
the standard library, namely List.map and List.fold right/ List.fold left

that implement the now well known map and reduce paradigm1. Our replace-
ment functions implement the map and fold operations in parallel, using the
existing cores of the processor at hand, in a very efficient and clean way.

The advantage is twofold: on the one hand, OCaml programs with heavy-
weight map, reduce, and map–reduce computations may be seamlessly im-
proved by just changing the name of the library calls used, e.g. invoking our
Parmap.parmap instead of the classic List.map one; on the other hand, a simple
speedup model is exposed to the OCaml programmers–use Parmap calls any time
you want to improve independent data parallel or reduce style computation ex-
ecution times–that may be taken into account when designing new complex and
time consuming applications with many items to be processed independently.

1this is the reason why we’ll use the terms fold and reduce basically as synonyms from now
on

2

The rest of this paper outlines the Parmap design issues and choices (Sec. 2),
provides a detailed description of its current implementation (Sec. 3), reports
several experimental results assessing its feasibility and efficiency (Sec. 4) and
finally discusses the relevant related work (Sec. 5).

2 Parmap design

Suitable strategies for the parallel computation of map and reduce are well
known. The computation of a map requires applying the same function to all
the elements in a list:

map f [x1; . . . ;xk] = [f x1; . . . ; f xk]

In a pure map, all the (f xi) computations are independent and therefore any
partition of the result list may be computed in parallel. The result of a reduce ⊕
applied to a list is

reduce ⊕ [x1; . . . ;xk] = x1 ⊕ . . .⊕ xk

The ⊕ function is required to be associative and commutative. If we imagine the
reduce computation as a tree of ⊕ applications, any sub tree rooted at a node at
level j may be computed in parallel and the partial results of the computations
of the sub trees may be then “summed up” with a sequential application of ⊕
to compute the final reduce result.

The idea of Parmap is to exploit the cores available on modern architectures
to compute in parallel maps and reduces (folds) using the following steps:

Step 1 The input list is split into a number of partitions which may be
specified by the programmer or default to the number of available cores.

Step 2 Each partition is independently computed. In case of a map, each
element xi is transformed using the “worker” function f into (f xi). In
case of a reduce, the partition elements xj , . . . , xj+k are summed up using
the worker function ⊕ into xj ⊕ . . .⊕ xj+k.

Step 3 The partial results are combined into the final result. This happens
sequentially. In case of a map, the sub lists are appended; in case of a
reduce, the partial results are summed up using again the ⊕ function.

As far as reduce is concerned, this computing schema corresponds to first com-
puting in parallel all the yj defined as

y1 = x1⊕. . .⊕xn1
y2 = xn1+1⊕. . .⊕xn2

. . . yk−1 = xnk+1⊕. . .⊕xn

that is the reduces computed on the k different partitions, and then computing
sequentially the final result

y1 ⊕ y2 ⊕ . . .⊕ yk−1

3

Therefore steps 1 and 3 should be performed as fast as possible as they represent
the “serial fraction” of the algorithm and it is their duration that will eventually
limit the final speedup according to the well known Amdahl law. Sec. 3 will
detail the steps performed in these two phases to minimize the overheads.

As far as the user interface of Parmap is concerned, we chose to implement
the “minimal disruption” principle by providing a Parmap through a standard
OCaml module with an interface as close as possible to that of the List module.
The List module provides the map and fold_right functions with the following
signatures:

L i s t .map : (’ a −> ’ b) −> ’ a l i s t −> ’ b l i s t
L i s t . f o l d r i g h t : (’ a −> ’ b −> ’ b) −> ’ a l i s t −> ’ b −> ’ b

The signature of the corresponding Parmap functions is instead:

type ’ a sequence = L o f ’ a l i s t | A of ’ a array

va l parmap : ? ncores : i n t −> ? chunks ize : i n t −>
(’ a −> ’ b) −> ’ a sequence −> ’ b l i s t

va l p a r f o l d : ? ncores : i n t −> ? chunks ize : i n t −>
(’ a −> ’ b −> ’ b) −> ’ a sequence −> ’ b −> (’ b−>’b

−>’b) −> ’ b

If we disregard the optional parameters, the signature of the List.map is the
same of the signature of Parmap.parmap, but for the fact the “collection” pro-
cessed is not an ’a list but rather it is an ’a sequence. We used the ’a

sequence to uniformly support the possibility to process both lists and arrays.
The optional parameter ncores has been included to control the number of

cores to be used, while the chunksize parameter has been included to control
the parallelism grain. In order to get a parallel version on n cores of a program
with a computationally expensive

l e t r e s = L i s t .map f l

it is therefore sufficient to change the code into

l e t r e s = Parmap . parmap ˜ ncores : n f (Parmap . L l)

This will run achieving a speedup very close to the number of cores on the target
architecture2 (see Sec. 4).

The Parmap.parfold has a signature which is the same one of the List.fold right

but for: i) the optional parameters (that can be obviously omitted), ii) the ’a

sequence used instead of the ’a list, for the very same reasons discussed for
the map, and iii) the additional “combine” operator with type ’b -> ’b -> ’b.
This last parameter is the only one real, significant difference with the List.fold right.
It has been introduced to be able to specify two different ⊕ operators: one for

2Of course, this is true if the whole computation of the program is represented by the
res map. If more computations are performed, these will be not affected by the Parmap and
therefore the overall speedup will be smaller according to the Amdhal law.

4

the reduce computed in parallel on the different partitions (this is the first
’a -> ’b -> ’b parameter) and one for the reduce operator needed to accu-
mulate sequentially the final parfold result out of the partial reduce results
computed on the different partitions (the last ’b -> ’b -> ’b) parameter).
This may be useful in some particular cases. However, if the user wants to
parallelize an expression such as

(L i s t . f o l d r i g h t op lus l i s t o p l u s z e r o)

it is sufficient to substitute it by the expression

(Parmap . p a r f o l d oplus (Parmap . L l i s t) o p l u s z e r o
oplus)

It’s worth mentioning that when it is used without the load balancing op-
timization described in section 3.1, Parmap.parfold actually does not require
that the ⊕ operator(s) be commutative: in that case, the fold computed in par-
allel on the different partitions are internally sequential, and composed in the
same order, so commutativity is not used (lines 25-29 of Figure 1).

When the load balancing optimization is used, however, commutativity is
required, as usual in the implementations of fold operations that seek to achive
performance using asynchronous mechanisms that force out-of-order evaluation
on the elements of the input data.

3 Parmap implementation

The first choice we had to make when implementing Parmap was between the
two main mechanisms available to run in parallel the workers of the second step:
processes or threads. Although threads are normally the standard choice on
multi-core architectures, we were forced to use processes because in the current
implementation of OCaml, all threads are run concurrently on the same core,
so no speedup can be achieved using threads.

Our process-based implementation requires some additional effort for step 1
and 3, but also provides an interesting encapsulation of side effects: they are
not propagated to the global state when the results are built after computing a
map, thus enforcing the embarrassingly parallel pattern modelled by this kind
of map.

Having chosen processes as the way of implementing step 2, we moved on to
implement step 1 and 3, trying to minimize their overhead to maximize speedup.
Figure 1 shows the essential parts of the OCaml code used for the simplest form
of implementation of our library.

Step 1 In step 1, (lines 3 to 9 in the code) a number of processes is forked
according to a user provided parameter3.

3In the real implementation, this defaults to the number of cores in the target architecture
(derived through proper library calls).

5

Step 2 After the fork, each child process (lines 11 to 16 in the code) inherits
the state of the parent automatically, so it can determine the interval lo...hi
of the data it must handle, by using the local value of the i index (lines 11 to
13). The computation is then performed in line 14 on the specified segments
using the function compute that is built out of the user function according to
the operation to perform (map, reduce or map/reduce). Finally, in line 15, the
result is marshalled into a shared memory area associated to a file descriptor
indexed by i.

Step 3 After all the children have finished (line 21), the parent collects the
list of the results from the children by unmarshaling the data contained in the
shared memory areas associated to each child (lines 25-17), and combines them
in line 29 using a function combine that is also built out of the user function
according to the operation to perform (map, reduce or map/reduce).

This schema allows to provide Parmap functions processing either lists or
arrays, and this is the reason why in Sec. 2 the Parmap signature exports the ’a

sequence type definition and all generic Parmap entries accept ’a sequences.
As already stated, step 1 and step 3 represent the serial parts of our imple-

mentation, and they should be carefully optimized in order to be able to achieve
suitable speedups. Step 1 mainly relies on the fact that the fork is very efficient
and in modern operating system manages to copy on demand the pages that are
written to by the child process. This means that in our case–child process read
their own data partition and actually only write the results of the computation
on the input partition–the overhead paid is fairly negligible. We made some
experiments aimed at measuring the overhead incurred in the fork phase of
the child processes. The time in between the start of the Parmam.parmap call
and the start of the activities of the forked child processes is of the order of
milliseconds (5-25 msecs). It’s worth to point out that this time includes all the
setup activities needed to prepare the communication channels in between the
forking process and the forked child processes, which includes quite a number
of system calls. We also measured the time between the end of the parallel
partition processing and the end of the Parmap.parmap call, that is the time
needed to implement Step 3 in the schema detailed above. In our experiments,
using the machines detailed in Sec. 4, we verified that Step 3 takes milliseconds
to complete too (2-3 msecs). At the end of Sec. 4 we will comment more on the
impact of such “serial fraction” times.

3.1 Load balancing and other optimizations

The simple implementation described above has one major drawback: it does
not allow the grain of the parallel computation to be specified. Indeed, we
can only use it with a number of chunks equal to the number of cores (the
chunksize is computed in line 4 from the length of the sequence). If the chunks
are big and their computation cost is non homogeneous, this can severely hinder
performance.

6

1 l e t simplemapper ncores compute opid a l combine =
2 (∗ i n i t task parameters ∗)
3 l e t ln = Array . l ength a l in
4 l e t chunks ize = ln / ncores in
5 (∗ c r e a t e d e s c r i p t o r s to mmap ∗)
6 l e t f d a r r=Array . i n i t ncores (fun −> tempfd ()) in
7 (∗ spawn c h i l d r e n ∗)
8 f o r i = 0 to ncores−1 do
9 match Unix . f o rk () with

10 0 −> (∗ c h i l d r e n code : compute on the chunk ∗)
11 (l e t l o=i ∗ chunks ize in
12 l e t h i=i f i=ncores−1 then ln−1
13 e l s e (i +1)∗ chunksize−1 in
14 l e t v = compute a l l o h i opid in
15 marshal f d a r r . (i) v ;
16 e x i t 0)
17 | −1 −> f a i l w i t h ”Fork e r r o r ”
18 | pid −> ()
19 done ;
20 (∗ wait f o r a l l c h i l d r e n ∗)
21 f o r i = 0 to ncores−1 do ignore (Unix . wait ()) done ;
22 (∗ read in a l l data ∗)
23 l e t r e s = r e f [] in
24 (∗ accumulate the r e s u l t s in the r i g h t order ∗)
25 f o r i = 0 to ncores−1 do
26 r e s := ((unmarshal f d a r r . ((ncores −1)− i)) : ’ d) : : ! r e s ;
27 done ;
28 (∗ combine a l l r e s u l t s ∗)
29 combine ! r e s ; ;

Figure 1: Simple implementation of the distribution, fork, and recollection
phases in Parmap

This is why the library also contains a more sophisticated implementation
that refines simplemapper using a bidirectional channel between the main pro-
cess and the children. Each child requests (the index of) a chunk, performs the
computation and accumulates the result locally, and repeats this cycle until the
parent signals that the computation is complete; at that point, it returns the re-
sult in the shared memory area, exactly as in the case of the simplemapper func-
tion above. This algorithm corresponds to the well known on demand schema
for process farms, that achieves automatic load balancing [5]. It is used when-
ever the chunksize specified by the user forces more than one chunk on a core.

The implementation of the Parmap exported functions can then be written
as follows, where mapper calls either the simplemapper shown above, or the on-

7

demand implementation we just described, according to the value of chunksize

l e t parmap ? ncores ? chunks ize (f : ’ a −> ’ b) (s : ’ a sequence) : ’
b l i s t=

l e t a l = match s with A a l −> a l | L l −> Array . o f l i s t l
in

l e t compute a l l o h i prev ious exc hand l e r =
l e t f ’ j = f (Array . u n s a f e g e t a l (l o+j)) in
l e t r e c aux acc =

func t i on 0 −> (f ’ 0) : : acc
| n −> aux ((f ’ n) : : acc) (n−1)

in aux prev ious (hi−l o)
in
mapper ncores ˜ chunks ize compute [] a l (fun r −> L i s t .

concat r)

We also considered the issue of the kernel scheduler moving some of the
processes in charge of computing in parallel Parmap chunks from one core to
another. As different core groups usually share cache levels, if the process is
moved to a different group of cores cache usage turns out to be inefficient.
Parmap therefore implements process pinning. The processes created to process
Parmap partitions are forced to be executed on exactly one core among those
available. This mechanisms lowers the number of cache faults, and therefore
improves the general efficiency of Parmap (see Sec. 4).

3.2 Special optimizations for manipulating arrays of floats

Another performance bottleneck comes from the need to perform marshaling
and unmarshaling of the results between the parent and the children processes:
when using a strongly and statically typed programming language, like OCaml,
this operation is unavoidable unless one knows the precise type of the return
data, and its exact size.

But there is one important situation in which we actually know the size
and the type of the result: the mapping of a floating point operation on large
arrays of floats. This particular configuration is common enough in numerical
code to deserve a special treatment, and our library provides a highly optimised
function array float parmap that avoids the marshalling overhead completely. We
highlight here these optimisations.

To understand the efficiency issues involved when parallelizing a map com-
putation on a large array of floats, it is useful to examine the different steps
that an implementation of a parallel map function may need to perform.

1. create an array to hold the result of the computation. This operation in-
volves an initialisation phase and can be expensive: on an Intel i7, creating
an array of 10 million floats takes 50 milliseconds;

2. create a shared memory area for returning the result;

8

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

#cores

2x AMD Opteron 6186
2x Intel Xeon E5520

Ideal speedup

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

#cores

chuncksize=50

chuncksize=100

chuncksize=150

chuncksize=200

Ideal

Figure 2: Sample Parmap speedup (left: Parmap with no optional parameters,
right: with different chunksize values)

3. copy the result array to the shared memory area;

4. perform the computation in the children writing the result in the shared
memory area;

5. copy the result back to the OCaml array;

Steps 1, 2 and 4 are unavoidable: the return array and the a shared
memory area for returning the result must be created (one might merge these
two operations into one, but without a significant cost saving), and of course
one needs to perform the required computation. On the other side, steps 3
and/or 5 may be omitted depending on what the user wants to do with the
result:

• using precise knowledge on the layout of arrays of floats in OCaml, one
can access the shared memory area as if it was an array of floats, without
need to copy the result array into this area (this is what our code does);

• it may be safe to leave the result in the shared memory area, to be reused
by later calls, but for this one needs to give up the benefit of automatic
garbage collection on the result array, as the content of the shared memory
area is not garbage collected (we decided agains this solution in our code).

The array float parmap function in our library performs only the steps 1, 2,
4 and 5. These optimizations allow to reduce the overhead of the parallel map
operation quite significantly with respect to the stock implementation of parmap

on arrays.
It is also possible for the user to share the steps 1, 2 among subsequent calls

to array float parmap by preallocating the result array and the shared memory
buffer, and passing them as optional parameters; this may save a significant
amount of time if the array is very large and the operation is repeated frequently.

9

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

#cores

integer computation
float computation

Ideal speedup

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

#cores

Tseq=0.55s
Tseq=5.5s
Tseq=55s

Ideal speedup

Figure 3: Parmap speedup (int vs floating point computations on Intel Xeon
E5520) (left) and effect of grain (on AMD Opteron) (right)

4 Experiments

We run a number of experiments aimed at validating the Parmap design. Ac-
tually, these experiments contributed to understanding the reason of different
overheads in the first Parmap versions and to understanding which were the
most effective ways to get rid of them. It’s worth pointing out that our Parmap
library has been published quite early as open source: as a consequence, we
received comments and suggestions from different OCaml parallel programmers
that helped improve the efficiency of Parmap.

The experiments have been run on several different architectures, including
Intel i3 and i7 CPUs and more aggressive dual Xeon E5520 (8 cores in total)
and dual AMD Opteron 6176 (24 cores in total) CPUs. All the results reported
in this Section have been achieved using synthetic applications.

Fig. 2 shows speedups achieved when computing a map with a simple syn-
thetic worker function on integers in an application made of a single map call.
The plot on the left shows speedup obtained just by changing a map f l with
a Parmap.map f (Parmap.L l). The plot on the right shows slightly better
results in the execution of the same application on the AMD Opteron. It is re-
lated to the very same application where we manually specified a chunksize for
the Parmap. As evidenced by the different curves, however, finding the correct
chunksize value is not in general an easy task.

Typical speedups do not change significantly in case computations performed
floating point operations are considered, although in this case hyper threading
on Xeon is less effective, due to the scarce duplication of floating point resources.
Fig. 3 left shows the speedup of an application with the same structure of the
one used in Fig. 2 but using a floating point number crunching worker function.

The amount of computation performed on the single item is anyway signif-
icant, as shown in Fig. 3 right: the higher the amount of time spent in the

10

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

#cores

fold (Tseq=11.6s)
Ideal

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

#cores

list parmap
array parmap

Ideal

Figure 4: Sample parfold speedup (left) and comparison lists vs. arrays (right)
(AMD Opteron 6176 x2)

computation of the single element, the better the speedup, as expected. In this
case the processing of the whole list (20K elements) requires a sequential time as
shown in the legend. Therefore the time spent in computing the single element
is in the three cases 27.5µsecs, 270.5µsecs and 2.75msecs, respectively. This
latter value leads to almost linear speedup.

These performance figures may be better appreciated if we take into ac-
count the overheads measured for the Parmap.parmap serial fraction discussed
in Sec. 3. With times spent in the serial fraction of the algorithm in the range of
milliseconds, it is clear that we can only obtain good speedups when the overall
amount of time spent in the sequential computation makes these milliseconds
negligible. Amdahl law states the maximum speedup we can achieve is 1

f , with f
representing the serial fraction of the algorithm. Therefore, to achieve a speedup
of n–the parallelism degree of our architecture–we should have a serial fraction
smaller than 1

n . In our case, this means that when our sequential time is in the
range of half a second (Tseq = 0.55secs in the right plot of Fig. 3) and consid-
ered the serial overhead (Step 1 plus Step 3) exceeds the tens of milliseconds,
we will definitely not be able to achieve the expected speedup values on the 24
core architecture.

Parmap.parfold behaviour is not different from the one demonstrated by the
Parmap. Fig. 4 (left) shows the speedups achieved on the AMD 6176 Opteron
architecture when parallelizing a program made of a single fold call by sub-
stituting the List.fold right with a Parmap.parfold without any optional
parameters. Speedups do not change when using Parmap functions operating
on arrays, instead of lists (see Fig. 4 right), as expected.

Fig. 5 shows the effects of thread pinning. The left plot is relative to the
application running sequentially in 55 secs. These application scales pretty
decently on the 24 core architecture. In this case the effect of pinning is ev-
ident. The right plot is instead relative to the synthetic application running
sequentially in about 5.5 seconds. In that case, as evidenced also in Fig. 3 the
application efficiency is much lower. In these cases pinning actually do not add

11

any kind of benefit, although it does not even introduce any sensible additional
overhead.

Since we are proposing a “minimalistic” parallel skeleton library for Ocaml,
we were more interested in demonstrating the different features of the library
rather than showing speedups achieved in real applications, that almost never
turn out to be just a single call to a map or to a reduce function. This is why all
the experiments whose results have been discussed in this Section are relative
to execution of synthetic benchmarks, and not real applications.

The actual speedup measured running real applications with calls to Parmap

functions will be greatly affected by the particular mix of Parmap and non
Parmap code and could be hardly used to evaluate the efficiency of the Parmap

implementation. Nevertheless, based on the feedback we received from actual
users of the library, we can say that real applications actually benefit from the
usage of Parmap proportionally to the amount of time spent in the map or fold
call in the sequential execution, as expected.

5 Related work

Several attempts have been made to provide parallel libraries according to
the “minimal disruption” principle. SkeTo [10] implements a data parallel
only skeleton library in C/C++. The data parallel skeletons are implemented
through library functions that are seamlessly called within user sequential code,
much in the style of our Parmap. This framework can be hardly compared with
Parmap, due to the fact the programs are written in imperative style. STAPL
[11] is a C++ library providing “parallel containers” with adaptive implemen-
tation of standard parallel algorithms that can be used on both multi-cores and
distributed architectures. The “minimal disruption” problem is addressed here
by providing container classes and algorithms as much as possible close to the
one in the standard C++ library.

Other functional programming frameworks based on the concept of algorith-
mic skeletons have been designed in the past. OCamlP3l [12] used a quite dif-
ferent template based implementation and targets TPC/IP POSIX distributed
architectures. It requires a substantially different programming style with re-
spect to the one guaranteed by Parmap. The same remark apply to the Functory
system [13], which is quite similar in spirit to OCamlP3l. Parallel Haskell [14]
and Erlang [15] both provide nice parallel programming frameworks targeting
multi-cores and distributed architectures. Parallel Haskell, in particular, pro-
vides suitable ways to define skeletons by specifying parallel evaluation strategies
for higher order functions modelling the skeleton functional semantics. Although
specifying a parallel evaluation strategy only requires minimal syntactic modi-
fications to the sequential code, it actually requires some extra knowledge from
the programmer with respect to the kind of knowledge required to the Parmap

programmer. In particular, the Haskell programmers are required to figure out
which is the better parallel strategy to use among the ones available, whereas
the Parmap programmer is just required to substitute a function call and all the

12

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 8 10 12 14 16 18 20 22 24

#cores

Pinned
Unpinned

Ideal

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 8 10 12 14 16 18 20 22 24

#cores

Pinned
Unpinned

Ideal

Figure 5: Effect of pinning: speedup in case of coarse grain/scalable (left) vs.
finer grain/non scalable (right) applications (AMD Opteron 6176 x2)

details related to the parallel implementation are transparently handled by the
Parmap implementation. While the Haskell approach may support more gen-
eral parallel patterns, our approach supports a smoother integration within the
“normal” (sequential) programming style of programmers.

Map and reduce have been considered as convenient structured parallel pro-
gramming constructs since a very long time. Backus individuated them as
convenient higher order functions in his Turing award lecture [16]. Although
not explicitly targeting parallel execution, the algebra of programs defined in
Backus’s masterpiece have been used by a number of researchers to support de-
velopment of frameworks providing parallel map and reduce. Bird and Meertens
elaborated a complete theory supporting concepts related to parallel execution
of map and reduce in the ’80 [17]. This theory has been used in SkeTo to apply
automatic program transformations improving program performance and, al-
though never mentioned in their papers, is the reason of the success of Google’s
mapreduce [18].

6 Conclusions

Parmap is a minimalistic library allowing to exploit multi-core architecture for
OCaml programs. It has been designed with the goal of providing parallel
map and reduce to OCaml programmers in a fairly natural way, such that the
“minimal disruption” principle stated by Cole in his skeleton manifesto paper
is enforced. In fact, in order to use Parmap, it is sufficient to substitute the
calls to List functions with calls to the equivalent Parmap functions. The clean
and efficient implementation of Parmap is such that nearly optimal speedups
are achieved on state-of-the-art multi-core architectures when suitable grain
computations are parallelized. The full source code of the Parmap library is
available under the LGPL licence from http://gitorious.org/parmap, and is
now also incorporated in the GODI installation system for OCaml librairies.

13

http://gitorious.org/parmap

The authors would like to thank Paul Vernaza, François Berenger and Pierre
Chambart for stimulating discussions about Parmap, Jérôme Vouillon for his
contributions to the code that greatly improved its efficiency, Pietro Abate for
help with the build system, and Jérôme Maloberti for creating the package for
the GODI OCaml distribution system.

References

References

[1] T. Mattson, B. Sanders, B. Massingill, Patterns for parallel programming,
Addison-Wesley Professional, 2004.

[2] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatow-
icz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, K. Yelick,
A view of the parallel computing landscape, Commun. ACM 52 (10) (2009)
56–67.

[3] D. Goswami, A. Singh, B. R. Preiss, From design patterns to parallel ar-
chitecture skeletons, Journal of Parallel and Distributed Computing 62 (4)
(2002) 669–695.

[4] M. Cole, Bringing skeletons out of the closet: A pragmatic manifesto for
skeletal parallel programming, Parallel Computing 30 (3) (2004) 389–406.

[5] M. Aldinucci, M. Danelutto, P. Dazzi, Muskel: an expandable skeleton
environment, Scalable Computing: Practice and Experience 8 (4) (2007)
325–341.

[6] P. Ciechanowicz, H. Kuchen, Enhancing Muesli’s Data Parallel Skeletons
for Multi-Core Computer Architectures, in: Proc. of the 10th Intl. Con-
ference on High Performance Computing and Communications (HPCC),
IEEE, Los Alamitos, CA, USA, 2010, pp. 108–113.

[7] R. Di Cosmo, Z. Li, S. Pelagatti, P. Weis, Skeletal parallel programming
with ocamlp3l 2.0, Parallel Processing Letters 18 (1) (2008) 149–164.

[8] J. Enmyren, C. W. Kessler, SkePU: A Multi-Backend Skeleton Program-
ming Library for Multi-GPU Systems, in: HLPP 10: Proceedings of the
fourth international workshop on High-level parallel programming and ap-
plications, 2010, pp. 5–14, baltimore, Maryland, USA.

[9] M. Leyton, J. M. Piquer, Skandium: Multi-core programming with algo-
rithmic skeletons, in: Proc. of Intl. Euromicro PDP 2010: Parallel Dis-
tributed and network-based Processing, IEEE, Pisa, Italy, 2010, pp. 289–
296.

14

[10] H. Tanno, H. Iwasaki, Parallel skeletons for variable-length lists in sketo
skeleton library, in: Proceedings of the 15th International Euro-Par Con-
ference on Parallel Processing, Euro-Par ’09, Springer-Verlag, Berlin, Hei-
delberg, 2009, pp. 666–677.

[11] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Amato, L. Rauch-
werger, A framework for adaptive algorithm selection in stapl, in: Proceed-
ings of the tenth ACM SIGPLAN symposium on Principles and practice of
parallel programming, PPoPP ’05, ACM, New York, NY, USA, 2005, pp.
277–288.

[12] M. Danelutto, R. Di Cosmo, X. Leroy, S. Pelagatti, Parallel functional
programming with skeletons: the OCamlP3L experiment, in: Proceedings
ACM workshop on ML and its applications, Cornell University, 1998.

[13] J.-C. Filliâtre, K. Kalyanasundaram, Functory: A Distributed Comput-
ing Library for Objective Caml, in: Trends in Functional Programming,
Madrid, Spain, 2011.

[14] P. W. Trinder, R. F. Loidl, Hans-WolfgangPointon, Parallel and distributed
Haskells, Journal of Functional Programming 12 (4&5) (2002) 469–510.

[15] F. Cesarini, S. Thompson, Erlang programming: a concurrent approach to
software development, OŔeilly Media, 2009.

[16] J. W. Backus, Can programming be liberated from the von neumann style?
a functional style and its algebra of programs, Commun. ACM 21 (8) (1978)
613–641.

[17] D. B. Skillicorn, The Bird-Meertens formalism as a parallel model, in:
Software for Parallel Computation, volume 106 of NATO ASI Series F,
Springer, 1993, pp. 120–133.

[18] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large
clusters, Commun. ACM 51 (2008) 107–113.

15

	Introduction
	Parmap design
	Parmap implementation
	Load balancing and other optimizations
	Special optimizations for manipulating arrays of floats

	Experiments
	Related work
	Conclusions

