
HAL Id: hal-00692464
https://hal.science/hal-00692464v3

Submitted on 23 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Non-Heuristic Reduction Method For Graph Cut
Optimization

François Malgouyres, Nicolas Lermé

To cite this version:
François Malgouyres, Nicolas Lermé. A Non-Heuristic Reduction Method For Graph Cut Optimiza-
tion. 2012. �hal-00692464v3�

https://hal.science/hal-00692464v3
https://hal.archives-ouvertes.fr

A Non-Heuristic Reduction Method For Graph

Cut Optimization

F. Malgouyres∗, N. Lermé †

January 23, 2014

Abstract

Graph cuts optimization permits to minimize some Markov Random
Fields (MRF) by computing a minimum cut (min-cut) in a relevant graph.
Graph-cuts are very efficient and are now a well established field of re-
search. However, due to the large amount of memory required for storing
the graph, there application remains limited to the minimization of MRF
involving a relatively small number of variables. An existing strategy to
reduce the graph size restricts the graph construction to a subgraph, called
reduced graph, whose nodes satisfy a predefined local condition. The test
of the condition is evaluated on the fly during the graph construction. In
this manner, the nodes of the reduced graph are typically located in a
thin band surrounding the min-cut.

In this paper, we propose a local test similar to the already existing
tests for reducing large graphs. The advantage of the proposed condition
is that we are able to provide theoretical guarantee that the min-cut in
the reduced graph permits to construct a global minimizer of the MRF.
This is a significant advantage over the already existing strategies.

Once the theoretical guarantees are established, we present numerical
experiments in the context of image segmentation. They confirm that the
min-cut in the reduced graph provide a global minimum of the MRF and
show empirically that the new test leads to memory gains similar to ones
obtained with the existing heuristic test.

Keywords: discrete optimization, graph cuts, segmentation, Markov Ran-
dom Fields.

AMS classification: 68U10, 94A08, 62M40, 90C27.

∗F. Malgouyres works at the IMT, CNRS UMR 5219, Université de Toulouse, 118 route
de Narbonne, F-31062 Toulouse Cedex 9, France. E-mail: francois.malgouyres@math.univ-
toulouse.fr

†N. Lermé works at the Institut Supérieur d’Électronique de Paris, 21 rue d’Assas, 75006
Paris, France. E-mail: nicolas.lerme@isep.fr

1

1 Introduction

The introduction of efficient combinatorial optimization tools based on min-cut
/ max-flow has deeply modified the landscape of computer vision. Indeed, a
wide spectrum of ill-posed problems such as segmentation, restoration or dense
field estimation are solved by minimizing a MRF involving a large number of
variables. These minimization problems can be solved with a moderate empirical
complexity using graph cuts. As a consequence, graph cuts have increased the
quality and the quantity of low-level analysis tools.

Although graph cuts had a limited impact during one decade, they become
more attractive thanks to a fast max-flow algorithm [2] and efficient heuristics
for multi-labels problems [3].

In parallel, technological advances have both increased the amount and the
diversity of the data to process. Processing and analyzing these data amounts to
solve large scale optimization problems. Despite their ability to provide a global
minimizer at a small computational cost, graph cuts sometimes fail to solve such
problems because of their memory requirement. This is due to the fact that the
graphs in which the max-flow is computed usually contains as many nodes as
the number of pixels and as many edges as the number of neighboring pixels in
the image.

An example of a reduction strategy designed to solve a graph cutting problem
(its purpose is not to save memory) is presented in [6]. It contracts the edges
passing a given test. However, it requires to build the entire graph and is
not applicable in the context we have in mind. The same idea has been also
published in [18].

To our best knowledge, this problem seems to be first addressed in the
context of image segmentation in [14]. The heuristic strategy adopted in this
paper computes a graph cut in a graph built from a pre-segmentation. While
this approach greatly increases the performance of standard graph cuts, the
results (in particular, the regularity of the boundaries of the segments) depend
on the algorithm used for computing the pre-segmentation and better results
are obtained when over-segmentation occurs.

Band-based heuristic methods have also been proposed in [15, 19, 7]. A
low-resolution version of the image is first segmented. Then, the solution is
propagated to the finer resolution level by restricting the construction of the
graph to a narrow band surrounding the interpolated foreground/background
interface at that resolution. Although this strategy clearly improves the perfor-
mance of standard graph cuts, it is less accurate to segment thin structures like
blood vessels or filaments. Notice that this problem is notably reduced in [19]
but still present for non-contrasted details. Also, the multi-scale strategy de-
veloped in [15, 19] applies to different MRF than the strategy proposed in the
current paper. In [7], smaller graphs are obtained by associating an uncertainty
measure to each pixel.

Other non-heuristic methods have been investigated (see [9, 5, 20]). In [9],
binary energy functions designed for the shape fitting problem are minimized
with graph cuts. The graph is restricted to a narrow band which evolves in order

2

to ensure the optimality on the solution. More precisely, one makes the band
evolve around the boundary of the object/segment to delineate by expanding
it when the min-cut touches band’s boundary. This process is iterated until
the band no longer evolves. When it is properly initialized, this method finds a
global minimizer.

In [5], a parallel max-flow algorithm yielding a near-linear speedup with
the number of processors is presented. While this method achieves good per-
formance on large scale problems, the algorithm is relatively sensitive to the
available amount of physical memory and remains less efficient on small graphs.

In [20], the problem is decomposed into small sub-problems. The sub-
problems are solved independently. The boundary conditions of the sub-problem
are enforced using Lagrange multipliers and guarantee the global optimality of
the solution. The Lagrange multipliers are iteratively updated according to the
results of the adjacent sub-problems until convergence to a global solution.

Finally, another band-based method was proposed for reducing graphs in bi-
nary image segmentation [12], a preliminary version had been published in [11].
The graph is progressively built by only adding the nodes which satisfy a local
test. In the manner of previous band-based methods, the graph nodes are typi-
cally located in a narrow band surrounding the boundary of the segment/object.
This method is able to segment large volumes of data when standard graph cuts
fail while providing very accurate or exact results. When the reduction is sig-
nificant, the time for reducing the graph is compensated by the gain obtained
thanks to the non-allocation of the useless nodes and the gain in the computa-
tion of the min-cut in a smaller graph. It is empirically observed in [12] that the
value of the max-flow in the reduced graph is equal to the value of the max-flow
in the original graph. However, there is no formal proof of this statement. This
strategy has been applied to an energy model designed for interactive 3D tumor
segmentation in Computerized Tomography (CT) images in [13]. An alternative
heuristic permitting to reduce graphs whose nodes linked to the source and the
sink are intertwined (e.g. when segmenting noisy images) has been proposed
in [10].

In this paper, we pursue the work of [12] and propose a local test (similar
to the test in [12]) to reduce these graphs by discarding a large amount of
nodes during the graph construction. While the cost for evaluating this test
is slightly larger compared to the test in [12], we give a formal proof that any
node satisfying the new local test can be safely removed without modifying the
max-flow value. The strategy therefore preserves the optimality of the solution.
The main result of the current paper has already been announced in [16].

The rest of this document is organized as follows. In Section 2, we first
define some notations about flows and cuts. We then present, in Section 3,
the new local test for reducing the graph as well as the main theorem of this
paper. It states that, despite the reduction of the graph, the min-cut in the
reduced graph corresponds to a global minimum of the MRF. The proof of this
theorem is detailed in the next sections. In Section 6, the theorem is completed
with some experiments in the context of image segmentation. They empirically
validate the theorem and show that the new test permits to obtain significant

3

memory gains.

2 Framework and notations

We consider a set of pixels P ⊂ Z
d, for a positive integer d. We consider two

terminal nodes s and t and the set of nodes V = P ∪ {s, t}. We also consider a
set of directed edges E ⊂ (V × V) such that (V , E) is a simple directed graph.
We distinguish the edges involving a terminal node, which are called "t-links",
and those only involving pixels, which we call "n-links". We also assume that
for every p ∈ P ,

(p, s) 6∈ E and (t, p) 6∈ E . (1)

We denote the neighbors of any node p ∈ V by

NE(p) = {q ∈ V , (p, q) ∈ E or (q, p) ∈ E}.

We define the capacities as a mapping c : (V × V) → R
+ and denote the

capacity of any couple (p, q) ∈ (V × V) by cp,q ≥ 0. For simplicity, we have
defined c for any (p, q) ∈ (V × V), however we always have

cp,q = 0, when (p, q) 6∈ E . (2)

We assume, without loss of generality (see [8]), that the capacities are such
that for every p ∈ P

cs,p 6= 0 ⇒ cp,t = 0. (3)

We therefore summarize the capacities of the t-links and set for all p ∈ P

cp = cs,p − cp,t. (4)

For any S ⊂ P , we denote the value of the s-t cut (S ∪ {s}, (P \ S) ∪ {t}) in G
by valG (S). We remind that

valG (S) =
∑

p∈S∪{s}
q 6∈S∪{s}

cp,q.

We also define flows as any mapping f : (V × V) → R
+ satisfying the capacity

constraints
0 ≤ fp,q ≤ cp,q , for all (p, q) ∈ (V × V), (5)

and the flow conservation
∑

q∈NE (p)

fq,p =
∑

q∈NE (p)

fp,q , for all p ∈ V . (6)

As usual, the value1 of the flow f in G is defined by

valG (f) =
∑

p∈NE (t)

fp,t. (7)

1Notice that we use the same notation for the value of a flow and the value of a s-t cut in
G. This abuse of notation will never be ambiguous once in context.

4

As for capacities, we summarize the flow passing through the t-linked and set
for all p ∈ P

fp = fs,p − fp,t. (8)

We call max-flow any solution f∗ of the linear program
{

maxf valG (f) ,
under the constraints (5) and (6).

As is well known (see [4]), the value of the max-flow is equal to the value of the
min-cut:valG (f∗) = minS⊂P valG (S).

Throughout the paper, we consider a fixed graph G = (V , E , c), with V , E
and c as above.

Before going ahead, let us remind the reasons motivating the study of these
graph problem. When minimizing a pairwise MRF of the form

E(u) = β
∑

p∈P

Ep(up) +
∑

(p,q)∈(P×P)

Ep,q(up, uq), β ∈ R
+, (9)

among u ∈ {0, 1}P and when the terms Ep,q(.) are submodular, [8] proves that
(9) can be globally minimized. The proof provides the construction of a graph
G, similar to the graph considered in the current paper, and a constant K ∈ R

such that for any S ⊂ P , we have

valG (S) = E(uS) +K, (10)

where uS ∈ {0, 1}P is defined by

uS
p =

{

0 if p 6∈ S

1 if p ∈ S
, ∀p ∈ P . (11)

Since (11) makes a one to one correspondence between cuts in G and {0, 1}P ,
(10) guarantees that a min-cut in G corresponds to a global minimizer of (9).
The latter can therefore be efficiently computed with a max-flow algorithm
such as described in [2]. The graph constructed in [8] and [2] satisfies all the
hypotheses made in this paper.

Finally, all along this paper, we also denote B ⊂ Z
d and denote

Bp = {p+ q, q ∈ B}. (12)

In practice, we typically think of Bp as a ball centered at p.
We also use, throughout the paper, the convention that the empty sum is

null:
∑

n∈∅ an = 0, whatever (an)n∈N ∈ R
N.

3 Main result of the paper

Theorem 1 Let G be the graph defined in Section 2, let B ⊂ Z
d and p ∈ P

satisfy
(NE(p) ∩ P) ⊂ Bp, (13)

5

and










either
(

∀q ∈ Bp, cq ≥
∑

q′∈NE(q)
q′ 6∈Bp

cq,q′
)

,

or
(

∀q ∈ Bp, cq ≤ −
∑

q′∈NE (q)
q′ 6∈Bp

cq′,q
)

.
(14)

Then, there exists a max-flow f in G such that

∀q ∈ NE(p), fp,q = fq,p = 0. (15)

As a consequence, removing the node p from the graph G does not modify its
max-flow value.

Notice first that if the first condition of (14) holds, we have for all q ∈ Bp:
cq ≥ 0. Indeed, for all q ∈ Bp, cq ≥

∑

q′∈NE(q)
q′ 6∈Bp

cq,q′ ≥ 0. Similarly, cq ≤ 0, for

all q ∈ Bp, if the second condition of (14) holds.
Notice also that the test (14) concerns Bp. Said differently, if (14) holds for

p it also holds for any q ∈ Bp such that (NE(q) ∩ P) ⊂ Bp (we just translate
B). As a consequence, all the nodes in the interior of Bp (i.e. those satisfying
(NE(q) ∩ P) ⊂ Bp) can be removed from the graph.

The proof of this theorem is contained in Section 4 and Section 5. For
simplicity, we only prove the theorem when the node p satisfies the first condition
of (14).

The statement for the second condition of (14) is easily deduced from the
other statement by considering a graph G′ = (V , E ′, c′), whose edges are such
that

for all (q′, q) ∈ (P × P) , (q, q′) ∈ E ′ ⇐⇒ (q′, q) ∈ E

and
(s, q) ∈ E ′ ⇐⇒ (q, t) ∈ E and (q, t) ∈ E ′ ⇐⇒ (s, q) ∈ E ;

and whose capacities are such that

c′q,q′ = cq′,q , ∀(q, q′); and c′s,q = cq,t and c′q,t = cs,q , ∀q ∈ P .

Any pixel p ∈ P satisfying the second condition of (14) in G, satisfies the first
condition of (14) in G′ and there exists a max-flow f ′ in G′ such that

∀q ∈ NE′(p), f ′
p,q = f ′

q,p = 0.

It is not difficult to check that the mapping f : V × V −→ R defined by

fq′,q = f ′
q,q′ , ∀(q, q′) ∈ P × P , and fq,t = f ′

s,q and fs,q = f ′
q,t , ∀q ∈ P ,

is a max-flow in G and satisfies (15).
In the current paper, we propose to use the Theorem 1 to build a simple

algorithm which permits to avoid the construction of useless nodes. The test
(14) is computed, with a preset B, on the fly during the graph construction.
Although the test is different the rest of the algorithm is similar to the one

6

described in [12] and the reader can find algorithmic details in the latter paper.
The above theorem guarantees indeed that, if the node satisfies (14), it is not
useful to the max-flow evaluation and can be removed without alteration of the
max-flow value. We can compute the max-flow in the subgraph of G reduced to
V \ {p} and extend the flow with zeros, using (15), to obtain a max-flow f in G.
This permits to deduce the min-cut in the non-reduced graph from the min-cut
in the reduced graph.

In practice, if the graph G is obtained using the construction in [8], we deduce
the minimizer u∗ ∈ {0, 1}P of (9), from the min-cut

(

S ∪ {s} ,
(

(P \ {p}) \ S
)

∪ {t}
)

,

of the reduced graph (i.e. S ⊂ (P \ {p}) has been computed in the reduced
graph) using:

u∗
r =



























1 , if r = p and ∀q ∈ Bp, cq ≥
∑

q′∈NE (q)
q′ 6∈Bp

cq,q′ ,

0 , if r = p and ∀q ∈ Bp, cq ≤ −
∑

q′∈NE(q)
q′ 6∈Bp

cq′,q,

1 , if r 6= p and r ∈ S,

0 , if r 6= p and r 6∈ S.

(16)

Finally, many different algorithmic strategies exploiting Theorem 1 could
be proposed. The one proposed in this paper uses a fixed set B and might be
improved in many regards. In particular, Theorem 1 allows to search for large
sets Bp satisfying (14). This should lead to better reduction performances. In
this regards, it is interesting to note that when (14) holds for two sets Bp and
B′

q it necessarily holds for the union of these sets Bp ∪B′
q.

4 Avoiding useless traversing flow

Before going ahead, we give few preliminaries.
First, notice that, (2) and (5) guarantee that

fp,q = 0, for any (p, q) 6∈ E . (17)

Moreover, as is well known (and can easily be shown by induction on the
cardinality of S), for any flow f and any S ⊂ V the flow entering S is equal to
the flow exiting S:

∑

p∈S
q 6∈S

fq,p =
∑

p∈S
q 6∈S

fp,q. (18)

Considering (3), (5) and (8), we can rewrite (18) and obtain that

for any S ⊂ P ,
∑

p∈S

fp +
∑

p∈S
q∈V\S

(fq,p − fp,q) = 0. (19)

7

Also, we denote a walk of positive length l ∈ N by p0 − p1 − . . .− pl, where
pi ∈ V , for all i ∈ {0, . . . , l}, and (pi, pi+1) ∈ E , for all i ∈ {0, . . . , l − 1}. We
also remind that a closed walk is such that p0 = pl. Moreover, a simple walk
is such that pi 6= pj , for all (i, j) ∈ {0, . . . , l − 1}2 satisfying i 6= j and pi 6= pl,
for all i ∈ {1, . . . , l− 1}. We denote by W (p, q) the set containing all the walks
starting at p ∈ V and ending at q ∈ V .

Finally, we remind a known result (see [17]). It says that there is a max-flow
without circulations.

Proposition 1 Let G be the graph defined in Section 2. There exists a max-flow
f in G satisfying







for any positive l ∈ N and any closed walk p0 − p1 − . . .− pl
of length l in G,there exists i ∈ {0, . . . , l − 1} such that
fpi,pi+1

≤ fpi+1,pi
.

(20)

Throughout the remaining of this section, we consider a graph G as con-
structed in Section 2 and a max-flow f in G satisfying (20). We also consider
p ∈ P such that

∀q ∈ Bp, fq ≥ 0,

where Bp is defined in (12).
The purpose of the remaining of this section is to establish a sufficient con-

dition so-that f can be modified in such a way that

fp,q ≥ fq,p, for all q ∈ NE(p).

In words, the node p sends more flow to its neighbors than it can receive from
them.

In order to do so, our strategy consists in modifying the max-flow f in G
in such a way that it satisfies this property. The modification of f is done by
constructing a graph G′ and combining f with a max-flow f ′ in G′. Heuristically,
the construction of G′ permits to redirect (and avoid) the flow traversing p in
the grid E ∩ (P × P) (see Figure 1).

In order to construct G′, we first consider

Σi(p) = {q ∈ P , ∃p0 − . . .− pl ∈ W (q, p) such that

∀i ∈ {0, . . . , l − 1}, fpi,pi+1
> fpi+1,pi

},

and

Σo(p) = {q ∈ Bp, ∃p0 − . . .− pl ∈ W (p, q) such that

∀i ∈ {0, . . . , l − 1}, fpi,pi+1
> fpi+1,pi

}.

Let us first notice that, since f satisfies (20),

∀q ∈ (Σi(p) ∩NE(p)) , fq,p ≥ fp,q (21)

8

q+ q−

p

Σo(p)

Σi(p)

Bp

Figure 1: Example of configuration for Σo(p) (in yellow), Σi(p) (in green), Bp

(the square). The arrows represent the direction of the flow on two walks in
W (q−, p) and W (p, q+). We know that some flow goes from q− ∈ Σi(p) to
q+ ∈ Σo(p) and traverses p. This is the flow we are redirecting in this section.
A (too) simplistic solution for avoiding the traversing flow would be to increase
fq+ (i.e. fs,q+), and decrease fq− (i.e. fs,q−) in order to reduce the flow on the
walk described by the arrows.

and
∀q ∈ (Σo(p) ∩ NE(p)) , fp,q ≥ fq,p. (22)

Similarly, since f satisfies (20), we have

Σi(p) ∩ Σo(p) = ∅. (23)

Moreover,
p 6∈ Σi(p) and p 6∈ Σo(p).

For simplicity, we denote

Σ− = Σi(p) and Σ+ = Σo(p) ∪ {p}.

Examples of sets Σ+ and Σ− are drawn on Figure 1.
Also, since f satisfies (20), we have

∀q ∈ Σ−, ∀q′ ∈ Σ+, fq,q′ ≥ fq′,q. (24)

Otherwise, we could easily build a closed walk contradicting (20).
We also denote

P ′ = Σ− ∪ Σ+ , V ′ = P ′ ∪ {s, t} (25)

and construct the graph
G′ = (V ′, E ′, c′) ,

9

where E ′ and c′ are defined below. We set

E ′ = E ′
t ∪ (E ′

n ∩ ET), (26)

where ET = {(q, q′), such that (q′, q) ∈ E} and with

E ′
t = {(q, t), with q ∈ Σ− such that fq ≥ 0}

⋃

(

{s} × Σ+
)

(27)

and
E ′
n =

(

Σ+ × Σ+
)

⋃

(

(Σ− ∪ {p})× (Σ− ∪ {p})
)

. (28)

The capacities c′, on the t-links, are defined by

c′q,t = fq , for q ∈ Σ− such that fq ≥ 0, (29)

c′s,q = cq − fq , for q ∈ Σ+, (30)

and those on the n-links are defined by

c′q,q′ =

{

fq′,q − fq,q′ , if fq′,q > fq,q′

0 , otherwise
, for (q, q′) ∈ (E ′

n ∩ ET). (31)

Notice that there exist some nodes in Σ− which are linked to no terminals.
As in Section 2, we artificially extend all the capacities c′ and set

c′q,q′ = 0, for all (q, q′) ∈ ((V ′ × V ′) \ E ′) .

Notice that, in the graph G′ all the flow sent by s goes in Σ+ and all the
flow arriving at t comes from Σ−. Moreover, all the edges between Σ+ and Σ−

contain p. The rest of the section will permit to establish that when p satisfies
the conditions of Theorem 1, Σ+ is a min-cut in G′. We will then be able to use
a max-flow in G′ to modify f in such a way that

∀q ∈ P ∩ NE(p), fp,q ≥ fq,p = 0.

In order to do so, we denote, for any S ⊂ P ′, the value of the s-t cut
(S ∪ {s}, (P ′ \ S) ∪ {t}) in G′ by

valG′ (S) =
∑

q∈(S∪{s})
q′ 6∈(S∪{s})

c′q,q′ .

Using (29), (30) and (31), we find

valG′ (S) = E1 + E2 + E3,

where we write

E1 =
∑

q∈(Σ+\S)

c′s,q , E2 =
∑

q∈(Σ−∩S)

c′q,t and E3 =
∑

q∈S

q′∈(P′\S)

c′q,q′ . (32)

10

In particular, using (23) and (25), we have

valG′

(

Σ+
)

=
∑

q∈Σ+

q′∈Σ−

c′q,q′ ,

which, using (28), (23) becomes

valG′

(

Σ+
)

=
∑

q∈Σ−

c′p,q.

Finally, we obtain using (31) and (21)

valG′

(

Σ+
)

=
∑

q∈Σ−

(fq,p − fp,q). (33)

The following proposition has the most technical proof of the paper but will
later provide a condition implying that Σ+ is a min-cut in G′.

Proposition 2 Let G′ be the graph constructed in Section 4. For any S ⊂ P ′,

valG′ (S) ≥ valG′

(

Σ+
)

+
∑

q∈Σ+\(S∪{p})



cq +
∑

q′∈P\Σ+

(fq′,q − fq,q′)



 . (34)

Proof. Let us first decompose E3 according to

E3 = E′
1 + E′

2 + E′
3 + E′

4,

with

E′
1 =

∑

q∈(S∩Σ+)

q′∈(Σ+\S)

c′q,q′ , E′
2 =

∑

q∈(S∩Σ+)

q′∈(Σ−\S)

c′q,q′

E′
3 =

∑

q∈(S∩Σ−)

q′∈(Σ+\S)

c′q,q′ , E′
4 =

∑

q∈(S∩Σ−)

q′∈(Σ−\S)

c′q,q′

We rewrite, using (31),

E′
1 =

∑

q∈(S∩Σ+)

q′∈(Σ+\S)
fq′,q>fq,q′

(fq′,q − fq,q′), E
′
2 =

∑

q∈(S∩Σ+)

q′∈(Σ−\S)
(q,q′)∈E′,fq′ ,q>fq,q′

(fq′,q − fq,q′) (35)

E′
3 =

∑

q∈(S∩Σ−)

q′∈(Σ+\S)
(q,q′)∈E′,fq′ ,q>fq,q′

c′q,q′ , E
′
4 =

∑

q∈(S∩Σ−)

q′∈(Σ−\S)
fq′ ,q>fq,q′

(fq′,q − fq,q′) (36)

11

Using (28) and (23), then (31) and (21), we immediately find that

E′
2 =

{ ∑

q∈(Σ−\S)(fq,p − fp,q) , if p ∈ S

0 , otherwise,
and E′

3 = 0. (37)

Moreover, since the total amount of flow entering and exiting (S ∩ Σ−) are
equal, we have (see (19))

∑

q∈(S∩Σ−)
fq≥0

fq +
∑

q∈(S∩Σ−)
fq<0

fq +
∑

q∈(S∩Σ−)

q′ 6∈(S∩Σ−)

(fq′,q − fq,q′) = 0

Moreover, if we decompose the last term and reorganize the equation we obtain

∑

q∈(S∩Σ−)
fq≥0

fq +
∑

q∈(S∩Σ−)

q′∈(Σ−\S)

(fq′,q − fq,q′) = −
∑

q∈(S∩Σ−)
fq<0

fq −
∑

q∈(S∩Σ−)

q′∈Σ+

(fq′,q − fq,q′)

Together with the definition of E2 in (32), (29) and the definition of E′
4 in (36)

this leads to

E2 + E′
4 ≥

∑

q∈(S∩Σ−)
fq≥0

fq +
∑

q∈(S∩Σ−)

q′∈(Σ−\S)

(fq′,q − fq,q′)

= −
∑

q∈(S∩Σ−)
fq<0

fq −
∑

q∈(S∩Σ−)

q′∈Σ+

(fq′,q − fq,q′)

≥
∑

q∈(S∩Σ−)

(fq,p − fp,q) +
∑

q∈(S∩Σ−)

q′∈(Σ+\{p})

(fq,q′ − fq′,q).

Then, using (24), we immediately obtain

E2 + E′
4 ≥

∑

q∈(S∩Σ−)

(fq,p − fp,q).

Together with (37) and (33), this leads to the following intermediate result:

E2 + E′
2 + E′

3 + E′
4 ≥

{

valG′ (Σ+) , if p ∈ S
∑

q∈(S∩Σ−)(fq,p − fp,q) , otherwise.
(38)

In order to finish the proof, let us first notice that using the definition of E1

in (32), (30) and the definition of E′
1 in (35)

E1 + E′
1 ≥

∑

q∈(Σ+\S)

(cq − fq) +
∑

q∈(S∩Σ+)

q′∈(Σ+\S)

(fq′,q − fq,q′) (39)

12

Expressing that the total amount of flow entering and exiting (Σ+\S) are equal,
we have (see (19))

∑

q∈(Σ+\S)

fq +
∑

q∈(Σ+\S)

q′∈(Σ+∩S)

(fq′,q − fq,q′) +
∑

q∈(Σ+\S)

q′∈P\Σ+

(fq′,q − fq,q′) = 0.

Together with (39), this guarantees that

E1 + E′
1 ≥

∑

q∈(Σ+\S)

cq +
∑

q∈(Σ+\S)

q′∈P\Σ+

(fq′,q − fq,q′),

≥
∑

q∈(Σ+\S)



cq +
∑

q′∈P\Σ+

(fq′,q − fq,q′)



 (40)

When p ∈ S, by combining the latter result with (38), we immediately get (34).
If p 6∈ S, (40) can be rewritten using (33)

E1 + E′
1 ≥

∑

q∈(Σ+\(S∪{p}))



cq +
∑

q′∈P\Σ+

(fq′,q − fq,q′)



+ cp + valG′

(

Σ+
)

.

Since cp ≥ 0, and (38) and (21) guarantee that E2 + E′
2 + E′

3 + E′
4 ≥ 0 , this

ensures that (34) holds even when p 6∈ S and concludes the proof. �

All along the remaining of this Section, we consider a max-flow f ′ in G′.
Notice also that G′ satisfies analogues of (1) and (3). Therefore, as in Section
2, we denote

f ′
q = f ′

s,q − f ′
q,t,

for all q ∈ P ′. We also artificially extend the flow f ′ and set

f ′
q = 0, for all q 6∈ P ′

and
f ′
q,q′ = 0, for all (q, q′) ∈ ((V ′ × V ′) \ E ′) .

We are now going to combine f and f ′ in order to build a mapping f ′′ : E → R

which will turn out to be a max-flow in G such that

f ′′
p,q ≥ f ′′

q,p = 0 , ∀q ∈ NE(p).

Let us begin with the definition of f ′′. We distinguish in the definition the
different possible configuration for edges of E .

f ′′
q,q′ =

{

fq,q′ − fq′,q , if fq,q′ ≥ fq′,q
0 , otherwise,

, for (q, q′) 6∈ E ′ (41)

13

{

f ′′
s,q = 0 and f ′′

q,t = −fq , for q ∈ P ′ such that fq < 0
f ′′
s,q = fq + f ′

q and f ′′
q,t = 0 , for q ∈ P ′ such that fq ≥ 0

(42)

f ′′
q′,q =

{

fq′,q − fq,q′ − f ′
q,q′ , if fq′,q > fq,q′ ,

0 , otherwise
, for (q′, q) ∈ P ′2 ∩ ET . (43)

The equations (41), (42) and (43) permit to define f ′′
q,q′ for all (q, q′) ∈ E

and (again) we extend f ′′ outside E and set

f ′′
q,q′ = 0, for all (q, q′) ∈ ((V × V) \ E) .

We again summarizes the capacities of the t-links using

f ′′
q = f ′′

s,q − f ′′
q,t , ∀q ∈ P .

Notice that, since f ′
q = 0 for all q 6∈ P ′ as well as for q ∈ P ′ such that fq < 0

(see (29) and (30)), we always have, according to (41) and (42),

f ′′
q = fq + f ′

q , ∀q ∈ P . (44)

Proposition 3 The mapping f ′′ : (V × V) → R is a max-flow in G.

Proof. Let us first show that f ′′ satisfies the capacity constraints. Let (q′, q) ∈ E .
We distinguish below the different configuration for (q′, q).

• If (q′, q) 6∈ E ′ and using (41) we either have

0 ≤ f ′′
q′,q = fq′,q − fq,q′ ≤ cq′,q,

or
0 ≤ f ′′

q′,q = 0 ≤ cq′,q.

• If q′ ∈ Σ− and q = s or t:

– If moreover fq′ < 0, then using (42), 0 ≤ f ′′
s,q′ = 0 ≤ cs,q′ and

0 ≤ f ′′
q′,t = fq′,t ≤ cq′,t.

– If fq′ ≥ 0, then using (42) and (29), we find that 0 ≤ f ′′
s,q′ = fs,q′ −

f ′
q′,t ≤ cs,q′ and 0 ≤ f ′′

q′,t = 0 ≤ cq′,t.

• If q′ ∈ Σ+ and q = s or t: since q′ ∈ Bp, we necessarily have fq′ ≥ 0,
then using (42) and (30), we have 0 ≤ f ′′

s,q′ = fs,q′ + f ′
s,q′ ≤ cs,q′ and

0 ≤ f ′′
q′,t = 0 ≤ cq′,t.

• If (q′, q) ∈ (P ′ × P ′):

– If moreover fq′,q ≤ fq,q′ , then (43) guarantees 0 ≤ f ′′
q′,q = 0 ≤ cq′,q.

– If fq′,q > fq,q′ , using (31), we have

0 ≤ f ′
q,q′ ≤ c′q,q′ = fq′,q − fq,q′ ,

and finally (43) guarantees that

0 ≤ f ′′
q′,q = fq′,q − fq,q′ − f ′

q,q′ ≤ cq′,q.

14

Let us now prove the flow conservation. Let q ∈ P . We distinguish below the
different possible position for q.

• If q 6∈ P ′, then for any q′ ∈ NE(q) the definition of E ′ given in (26), (27)
and (28) guarantees that both (q, q′) and (q′, q) 6∈ E ′. Using (41), we
obtain f ′′

q,q′ − f ′′
q′,q = fq,q′ − fq′,q, for all q′ ∈ NE(q), and therefore

∑

q′∈NE (q)

(

f ′′
q′,q − f ′′

q,q′

)

=
∑

q′∈NE (q)

(fq′,q − fq,q′) = 0.

• If q ∈ P ′, the flow conservation constraint given by (19) for f and f ′ at q

can be decomposed to provide

fq +
∑

q′∈P∩NE(q)
q′ 6∈NE′ (q)

(fq′,q − fq,q′) +
∑

q′∈P∩NE′ (q)
fq′ ,q>fq,q′

(fq′,q − fq,q′)

+
∑

q′∈P∩NE′(q)
fq′,q≤fq,q′

(fq′,q − fq,q′) = 0

and
f ′
q +

∑

q′∈P∩N
E′ (q)

fq′ ,q>fq,q′

(0− f ′
q,q′) +

∑

q′∈P∩N
E′ (q)

fq′ ,q≤fq,q′

(f ′
q′,q − 0) = 0.

Summing these equalities and using (44), (41) and (43), we obtain

f ′′
q +

∑

q′∈P∩NE(q)
q′ 6∈N

E′ (q)

(f ′′
q′,q − f ′′

q,q′) +
∑

q′∈P∩NE′(q)
fq′,q>fq,q′

(f ′′
q′,q − f ′′

q,q′)

+
∑

q′∈P∩NE′(q)
fq′,q≤fq,q′

(f ′′
q′,q − f ′′

q,q′) = 0.

The latter corresponds to flow conservation constraint (19) at the node q

for f ′′.

Altogether, we now know that f ′′ is a flow. We still need to show that it is
a max-flow. The latter property is in fact trivially obtained since (42) and (41)
guarantee that f ′′

q,t = fq,t, for all q ∈ P . Therefore, the value of f ′′ is equal to
the value of f. Since f is a max-flow, this value is maximal and f ′′ is a max-flow.
�

Proposition 4 If Σ+ is a min-cut in the graph G′ defined in Section 4, then
the max-flow f ′′ is such that

∀q ∈ P ∩NE(p), f ′′
q,p = 0.

15

As a consequence,
∀q ∈ P ∩NE(p), f ′′

p,q ≥ f ′′
q,p.

Proof. Since f ′ is a max-flow in G′ and Σ+ is a min-cut in G′, Ford-Fulkerson
theorem guarantees that they have the same value. We therefore have

valG′ (f ′) = valG′

(

Σ+
)

=
∑

q′∈Σ+

q 6∈Σ+

(q′,q)∈E′

c′q′,q

=
∑

q∈Σ−

c′p,q (45)

Moreover, since f ′ is a flow, the total amount of flow entering and exiting
Σ+ are equal. Therefore, we have (see (19))

∑

q∈Σ+

f ′
q +

∑

q′∈Σ+

q 6∈Σ+

q∈NE′ (q′)

(f ′
q,q′ − f ′

q′,q) = 0.

Together with (7), (27) and (28), this guarantees that

valG′ (f ′) =
∑

q∈Σ−

fq≥0

f ′
q =

∑

q∈Σ−

(f ′
p,q − f ′

q,p),

Since the amounts of flow entering and exiting Σ− are equal. Combined with
(45), this provides

∑

q∈Σ−

c′p,q =
∑

q∈Σ−

f ′
p,q −

∑

q∈Σ−

f ′
q,p. (46)

As a consequence,
∑

q∈Σ−

f ′
q,p =

∑

q∈Σ−

(f ′
p,q − c′p,q) ≤ 0.

However, since for all q ∈ Σ−, f ′
q,p ≥ 0, we finally obtain that

∀q ∈ Σ−, f ′
q,p = 0.

Using (46) again, (21) and (31), this provides

∀q ∈ Σ−, f ′
p,q = c′p,q = fq,p − fp,q.

Therefore, using (21) and (43),

∀q ∈ Σ−, f ′′
q,p = 0. (47)

Moreover, using (22) and (43), we also have

∀q ∈ (Σ+ ∩ NE(p)), f
′′
q,p = 0. (48)

16

Combining this result with (47), we obtain

∀q ∈
(

Σ+ ∪Σ−
)

∩ NE(p), f ′′
q,p = 0. (49)

Now, if q ∈ NE(p) \ (Σ
+ ∪Σ−), the definitions of Σ+ and Σ− imply that neces-

sarily fp,q = fq,p. The definition of E ′ also guarantees that (p, q) and (q, p) 6∈ E ′.
Together, with (41), we finally obtain that

∀q ∈ NE(p) \
(

Σ+ ∪ Σ−
)

, f ′′
p,q = f ′′

q,p = 0.

Together with (49), this concludes the proof. �

Proposition 5 Let G be the graph defined in Section 2, let B satisfy (13) and
let us assume that p ∈ P is such that

∀q ∈ Bp, cq ≥
∑

q′∈P∩NE(q)
q′∈P\Bp

cq,q′ , (50)

then, there exists a max-flow f in G such that

∀q ∈ P ∩ NE(p), fp,q ≥ fq,p = 0. (51)

Proof. This is a straightforward consequence of Proposition 3, Proposition 2
and Proposition 4.

Indeed, if (50) holds, we know that for any max-flow f in G as in Proposition
1 and any S ⊂ P ′

∑

q∈Σ+\(S∪{p})



cq +
∑

q′∈P\Σ+

(fq′,q − fq,q′)



 ≥

∑

q∈Σ+\(S∪{p})



cq +
∑

q′∈P\Bp

(fq′,q − fq,q′)



 ≥ 0,

since for all q′ ∈ Bp \Σ+, fq′,q − fq,q′ ≥ 0. Therefore, Proposition 2 guarantees
that Σ+ is a min-cut in G′. Then, Proposition 3 guarantees that f ′′ is a max-
flow in G and Proposition 4 guarantees that f ′′ satisfies (51). �

5 A useless nodes

Throughout this section, we consider a graph G as constructed in Section 2,
a set B satisfying (13), a pixel p ∈ P satisfying (50) and a max-flow f in G
satisfying (51).

17

The purpose of this section is to modify f so-that it remains a max-flow in
G and satisfies

∀q ∈ NE(p), fp,q = fq,p = 0.

The latter obviously implies that the node p is useless when computing the
max-flow in G.

Notice that, since the flow f satisfies (51), the only flow entering p comes
from the source s. Therefore, in this section, we want to decrease fs (i.e. fs,p).
However, since the flow fs entering p contributes to the flow exiting Bp, we need
to compensate fs by increasing fq (i.e. fs,q), for q ∈ Bp. Similarly to Section
4, this intuitive (and too simplistic) strategy is strengthened by considering a
max-flow f ′ is an appropriate graph G′.

Since the method for modifying f is analogous to the one used in Section
4, we chose to use the same notations for the objects playing the same role.
Beware not to confuse their definition.

First, we denote

P ′ = Bp ,Σ+ = Bp \ {p} and Σ− = {p}. (52)

In order to modify f, we build a graph G′ = (P ′, E ′, c′) where E ′and c′ are
defined below. We consider







E ′ = E ′
t ∪ E ′

n

where E ′
t = ({s} × Σ+)

⋃

{(p, t)}
and E ′

n = (E ∩ (Σ+ × Σ+))
⋃

((NE (p) ∩ Σ+)× Σ−) .
(53)

We define the capacities c′ by

c′q,q′ = cq,q′ − fq,q′ + fq′,q, ∀(q, q
′) ∈

(

E ∩
(

Σ+ × Σ+
))

(54)

c′q,p = fp,q , ∀q ∈ (NE (p) ∩ Σ+) (55)

c′s,q = cq − fq , ∀q ∈ Σ+ (56)

c′p,t = fp (57)

As usual, in order to simplify the notations, we artificially set

c′q,q′ = 0 , ∀(q, q′) ∈ (P ′ × P ′) \ E ′, (58)

and we write
c′q = c′s,q − c′q,t , ∀q ∈ P ′. (59)

Notice first that, for any S ⊂ P ′, the value of the s-t cut ((S ∪ {s}), (P ′ \
S) ∪ {t}) in G′ depends on whether p ∈ S or p 6∈ S. If p ∈ S, we have

valG′ (S) = c′p,t +
∑

q∈(Σ+\S)

c′q +
∑

q∈S

q′∈(P′\S)

c′q,q′ .

Therefore, we trivially have using (54)-(59)

valG′ (S) ≥ c′p,t = fp , if p ∈ S. (60)

18

Moreover, for any S ⊂ P ′, the value of the s-t cut ((S ∪ {s}), (P ′ \ S)∪ {t})
in G′ is given by

valG′ (S) =
∑

q∈(Σ+\S)

c′q +
∑

q∈S

q′∈(P′\S)

c′q,q′ , if p 6∈ S. (61)

In particular, if S = Σ+, we obtain using (55), the conservation of the flow f at
p and (51) that

valG′

(

Σ+
)

=
∑

q∈(Σ+∩NE′ (p))

c′q,p,

=
∑

q∈(Σ+∩NE (p))

fp,q,

= fp . (62)

The following proposition will later give a sufficient condition for Σ+ to be
a min-cut in G′.

Proposition 6 Let G′ be the graph constructed in Section 5. For any S ⊂ P ′,

• if p 6∈ S

valG′ (S) = valG′

(

Σ+
)

+
∑

q∈S

q′∈(Σ+\S)

cq,q′+
∑

q∈(Σ+\S)



cq +
∑

q′∈P\P′

(fq′,q − fq,q′)



 ,

(63)

• if p ∈ S

valG′ (S) ≥ valG′

(

Σ+
)

. (64)

Proof. Notice first that, if p ∈ S, (64) is a straightforward consequence of (60)
and (62). Let us assume from now on that p 6∈ S.

Since f is a flow, the total amount of flow entering and exiting (P ′ \ S) are
equal (see (19)) and therefore, using (52)

fp +
∑

q∈(Σ+\S)

fq +
∑

q∈(P′\S)
q′∈P\(P′\S)

(fq′,q − fq,q′) = 0.

Using (62), (56) and (59), we obtain

valG′

(

Σ+
)

+
∑

q∈(Σ+\S)

(cq − c′q) +
∑

q∈(P′\S)
q′∈P\(P′\S)

(fq′,q − fq,q′) = 0.

Combined with (61), this becomes

valG′ (S) = valG′

(

Σ+
)

+
∑

q∈(Σ+\S)

cq +
∑

q∈(P′\S)
q′∈P\(P′\S)

(fq′,q − fq,q′) +
∑

q∈S

q′∈(P′\S)

c′q,q′ .

(65)

19

We now decompose the last term of the above equation using (54), (55) and
(51) and write

∑

q∈S

q′∈(P′\S)

c′q,q′ =
∑

q∈S

q′∈(Σ+\S)

(cq,q′ − fq,q′ + fq′,q) +
∑

q∈S

fp,q,

=
∑

q∈S

q′∈(Σ+\S)

cq,q′ −
∑

q′∈S

q∈(Σ+\S)

(fq′,q − fq,q′) +
∑

q′∈S

(fp,q′ − fq′,p),

=
∑

q∈S

q′∈(Σ+\S)

cq,q′ −
∑

q∈(P′\S)
q′∈S

(fq′,q − fq,q′).

Combining the latter with (65), we finally obtain

valG′ (S) = valG′

(

Σ+
)

+
∑

q∈(Σ+\S)

cq +
∑

q∈S

q′∈(Σ+\S)

cq,q′ +
∑

q∈(P′\S)
q′∈P\P′

(fq′,q − fq,q′).

Using (13), we remark that for any q′ 6∈ P \ P ′, we have q′ 6∈ NE(p) and we can
finally deduce that (63) holds for all S ⊂ P ′ such that p 6∈ S. �

As in Section 4, we will from now on consider a max-flow f ′ in the graph G′

built in the current section. We also artificially extend the flow f ′ and set

f ′
q,q′ = 0, for all (q, q′) ∈ ((V ′ × V ′) \ E ′) . (66)

Once again, the graph G′ satisfies analogues of (1) and (3), therefore, as usual,
we denote for simplicity

f ′
q = f ′

s,q − f ′
q,t , ∀q ∈ P ′. (67)

We are now going to combine f and f ′ in order to build a mapping f ′′ : E → R

which will turn out to be a max-flow in G such that

f ′′
p,q = f ′′

q,p = 0 , ∀q ∈ NE(p).

As for G′ and f ′, beware that the mapping f ′′ is different in Section 4 and in
the current section.

Let us begin with the definition of f ′′. We distinguish below the different
possible configurations for the elements of E .

f ′′
q = fq ∀q 6∈ P ′, (68)

f ′′
q,q′ = fq,q′ ∀(q, q′) ∈ E , with q 6∈ P ′ or q′ 6∈ P ′(69)

f ′′
q = fq + f ′

q ∀q ∈ P ′, (70)

20

and for (q, q′) ∈
(

E ∩ (Σ+)2
)

f ′′
q,q′ =

{

(fq,q′ + f ′
q,q′)− (fq′,q + f ′

q′,q) if fq,q′ + f ′
q,q′ ≥ fq′,q + f ′

q′,q

0 if fq,q′ + f ′
q,q′ < fq′,q + f ′

q′,q
(71)

and

f ′′
p,q = fp,q − f ′

q,p ∀q ∈ (P ′ ∩ NE(p)) (72)

f ′′
q,p = 0 ∀q ∈ (P ′ ∩ NE(p)) (73)

We also define

f ′′
s,q = max(f ′′

q , 0) and f ′′
q,t = max(−f ′′

q , 0) , ∀q ∈ P . (74)

Notice that the equation (68)-(74) permit to define f ′′
q,q′ for all (q, q′) ∈ E . Once

again, we extend f ′′ outside E and set

f ′′
q,q′ = 0, for all (q, q′) ∈ ((V × V) \ E) .

The following proposition holds.

Proposition 7 The mapping f ′′ : (V × V) → R is max-flow in G.

Proof. Notice first that, if f ′′ is a flow in G it is necessarily a max-flow since,
according to (50), (NE (t) ∩ P ′) = ∅ and therefore, using (68), we always have
f ′′
q,t = fq,t, for all q ∈ NE(t). Therefore, we have valG (f ′′) = valG (f) and, if f ′′

is a flow in G, f ′′ is necessarily a max-flow in G.
In order to show that f ′′ is a flow we first show that it satisfies the capac-

ity constraints. Let (q, q′) ∈ E . We distinguish below the different possible
configurations for the elements of (q, q′).

• If q = s and q′ 6∈ Bp or if q 6∈ Bp and q′ = t, using (68) and (74), we know
that

0 ≤ f ′′
q,q′ = fq,q′ ≤ cq,q′ and 0 ≤ f ′′

q′,q = fq′,q ≤ cq′,q.

• If q 6∈ Bp or q′ 6∈ Bp, using (69), we obtain again

0 ≤ f ′′
q,q′ = fq,q′ ≤ cq,q′ .

• If q = s and q′ ∈ Σ+, using (70) and (56), we get

0 ≤ f ′′
q,q′ = fs,q′ + f ′

s,q′ ≤ cq,q′ .

• If q = s and q′ = p, using (70) and (57), we get

0 ≤ f ′′
q,q′ = fs,p − f ′

p,t ≤ cq,q′ .

21

• If (q, q′) ∈ (Σ+)2 and fq,q′ + f ′
q,q′ ≥ fq′,q + f ′

q′,q, using (71) and (54), we
obtain

0 ≤ f ′′
q,q′ = fq,q′ + f ′

q,q′ − fq′,q − f ′
q′,q ≤ cq,q′ − f ′

q′,q ≤ cq,q′ .

• If (q, q′) ∈ (Σ+)2 and fq,q′ + f ′
q,q′ < fq′,q + f ′

q′,q, using (71), we trivially
have

0 ≤ f ′′
q,q′ = 0 ≤ cq,q′ .

• If q = p and q′ ∈ (Bp ∩ NE(p)), using (72) and (55), we get

0 ≤ f ′′
q,q′ = fp,q′ − f ′

q′,p ≤ cq,q′ .

• If q ∈ (Bp ∩ NE(p)) and q′ = p, then (73) trivially guarantees that

0 ≤ f ′′
q,q′ = 0 ≤ cq,q′ .

In order to show the flow conservation constraints, we consider, from now
on, q ∈ P . We distinguish below the different possible position for q.

• If q ∈ P \ P ′, we have, using (68) and (69), we have f ′′
q,q′ = fq,q′ and

f ′′
q′,q = fq′,q, for all q′ ∈ NE(q). Therefore,

∑

q′∈NE(q)

f ′′
q′,q =

∑

q′∈NE (q)

fq′,q =
∑

q′∈NE (q)

fq,q′ =
∑

q′∈NE(q)

f ′′
q,q′ .

• If q ∈ Σ+, expressing that the two flows f and f ′ are conserved at q, we
obtain using (17) and (51)

fq +
∑

q′∈(P∩NE(q))
q′∈P\P′

(fq′,q − fq,q′) +
∑

q′∈(P∩NE(q))

q′∈Σ+

(fq′,q − fq,q′) + fp,q = 0

and
f ′
q +

∑

q′∈(P∩NE(q))

q′∈Σ+

(f ′
q′,q − f ′

q,q′) − f ′
q,p = 0.

Summing those inequalities and using (69)-(73), we obtain

f ′′
q +

∑

q′∈(P∩NE(q))
q′∈P\P′

(f ′′
q′,q−f ′′

q,q′)+
∑

q′∈(P∩NE (q))

q′∈Σ+

(f ′′
q′,q−f ′′

q,q′)+(f ′′
p,q−f ′′

q,p) = 0.

The latter expresses that f ′′ is conserved at the node q.

22

• If q = p, then using (70), (72) and (73) as well as (13) and (57), we obtain

∑

q′∈NE(p)

(f ′′
q′,p − f ′′

p,q′) = fs,p − f ′
p,t −

∑

q′∈(P′∩NE (p))

(fp,q′ − f ′
q′,p).

Using that fp,t = 0 (see (50), (4) and (3)), f ′
s,p = 0 (see (53) and (58)),

fq′,p = 0 (see (51)) and f ′
p,q′ = 0 (see (53) and (58)), we obtain

∑

q′∈NE (p)

(f ′′
q′,p − f ′′

p,q′) = (fs,p − fp,t) + (f ′
s,p − f ′

p,t)

−
∑

q′∈(P′∩NE(p))

[

(fp,q′ − fq′,p) + (f ′
p,q′ − f ′

q′,p)
]

. (75)

Simplifying, we finally obtain

∑

q′∈NE(p)

(f ′′
q′,p − f ′′

p,q′) =
∑

q′∈NE (p)

(fq′,p − fp,q′) +
∑

q′∈NE(p)

(f ′
q′,p − f ′

p,q′),

= 0,

since the two flows f and f ′ are conserved at p.

This concludes the proof. �

Proposition 8 If Σ+ is a min-cut in the graph G′ defined in Section 5, then
the max-flow f ′′ is such that

∀q ∈ NE(p), f ′′
q,p = f ′′

p,q = 0.

As a consequence, removing the node p from the graph G does not modify its
maximal flow value.

Proof. If Σ+ is a min-cut in the graph G′ defined in Section 5, then Ford-
Fulkerson theorem, (62) and (53) guarantee that

fp = valG′

(

Σ+
)

= valG′ (f ′) = f ′
p,t.

Using (70), (67) and (66) this yields

f ′′
p = fp − f ′

p,t = 0,

which, using (74), provides
f ′′
s,p = f ′′

p,t = 0.

Together with (73), this guarantees that

for all q ∈ NE(p), f ′′
q,p = 0. (76)

23

Expressing the flow conservation constraint at p for f ′′, we deduce from (76)
that

∑

q∈NE (p)

f ′′
p,q =

∑

q∈NE (p)

f ′′
q,p = 0,

which guarantees that

for all q ∈ NE(p), f ′′
p,q = 0,

since f ′′
p,q ≥ 0, for all q ∈ NE(p).

Together with (76), this concludes the proof. �

We can now conclude with the following proposition.

Proposition 9 Let G be the graph defined in Section 2, let B ⊂ P and p ∈ P
satisfy (13) and (50). Then, there exists a max-flow f in G such that

∀q ∈ NE(p), fp,q = fq,p = 0. (77)

As a consequence, removing the node p from the graph G does not modify its
maximal flow value.

Proof. This is a straightforward consequence of Proposition 5, Proposition 6,
Proposition 7 and Proposition 8.

Indeed, if (50) holds, we know that there is max-flow f in G satisfying (51).
Therefore, using the notations of Section 5, we know that for any S ⊂ P ′ such
that p 6∈ S

∑

q∈Σ+\S



cq +
∑

q′∈P\P′

(fq′,q − fq,q′)



 ≥ 0.

Therefore, for G′ as defined in Section 5, Proposition 6 guarantees that for any
S ⊂ P ′

valG′ (S) ≥ valG′

(

Σ+
)

,

and therefore Σ+ is a min-cut in G′. Then, Proposition 7 guarantees that f ′′ is
a max-flow in G and Proposition 8 guarantees that f ′′ satisfies (77). �

6 Numerical experiments

6.1 Experimental Framework

In this section, we consider a simple algorithm exploiting Theorem 1. For a
fixed neighborhood B = {−1, 0, 1}2, it consists in testing during the graph
construction whether a node satisfies (14) or not. If the node satisfies the test,
the result at the corresponding pixel is assigned according to (16); if the node

24

does not satisfy the test, it is constructed and added to the graph that will be
sent to a max-flow algorithm. Of course, more sophisticated algorithms could
be investigated. The aim of the proposed experiments is to illustrate when such
a simple application of Theorem 1 actually permits to reduce the graph size.

We will also compare the ability of this simple algorithm to a similar al-
gorithm which uses the test proposed in [12] (see below). More precisely, we
compare the ability of these algorithms to yield to small reduced graph. The
size of the reduced graph is measured by the relative reduced graph size, as
defined by

ρ =
♯V∗

♯V
× 100, (78)

where ♯ stand for the cardinality and V∗ denote the set of useful nodes actually
present in the reduced graph. We also provide the difference between the relative
reduced graph size obtained with the test (14) and the test proposed in [12]. In
words, if the test (14) yield to larger reduced graph than the test proposed in
[12] when ∆ρ > 0 and conversely.

Let us remind that the test proposed in [12] takes the form:

{

either
(

∀q ∈ Bp, cq ≥
Per(Bp)

Area(Bp)−1

)

,

or
(

∀q ∈ Bp, cq ≤ − Per(Bp)
Area(Bp)−1

)

,
(79)

where

Per(Bp) = max

(

♯{(q, q′) ∈ E , q ∈ Bp, q
′ ∈ P \Bp},

♯{(q′, q) ∈ E , q ∈ Bp, q
′ ∈ P \Bp}

)

,

is the perimeter of Bp and

Area(Bp) =
∑

q∈Bp

|cq|,

is its area. Moreover, when using this test, we consider several neighborhoods
B = {−r, . . . , 0, . . . , r}2, with r ∈ {1, . . . , 5} and take the value r providing the
smallest reduced graph. This is a significant advantage in favor of this method.

Notice that we do not investigate computational speed since it strongly de-
pends on the quality of the algorithm exploiting Theorem 1 and its implemen-
tation. For the algorithm investigated in the current experiments, we remark
that the test requires few computations. Therefore, the computation time may
increase when the reduction strategy fails. However, the computations required
by the test do not depend on the pixel location and the overall complexity for
performing all the tests is linear with respect to the size of V . This grows less
rapidly than the resolution of the max-flow. Its worst-case complexity is in-
deed bounded from below by O(♯V .♯E). Therefore, we expect the algorithm to

25

require smaller computational time than the straightforward max-flow compu-
tation when the reduction is significant. This phenomenon has already been
observed in [12].

The graph-cut problems used for the experiments aim at solving the inter-
active image segmentation model described in [1]. More precisely, we consider
an input image (Ip)p∈P mapping each pixel p ∈ P to a color vector Ip ∈ [0, 1]c,
where c = 1 for grayscale images and c = 3 for color images. The segmentation
method finds, among u ∈ {0, 1}P , a minimizer of the MRF defined by

E(u) = β
∑

p∈P

Ep(up) +
∑

(p,q)∈(E)

Ep,q(up, uq),

where P denotes the pixels, E corresponds to the 8-connectivity for 2D images
and the 26-connectivity for 3D images. The unary terms Ep(.) is defined at any
pixel p ∈ P by

{

Ep(1) = −log P(Ip | p ∈ O),
Ep(0) = −log P(Ip | p ∈ B).

(80)

where O and B denote respectively the object and background and P() is the
density of the distribution of the colors for the object or the background. These
densities are estimated, using normalized histograms, from objects and back-
ground seeds provided by the user.

Moreover, for any pixel pair (p, q) ∈ E , the interaction term Ep,q(.) corre-
sponds to a contrast-sensitive Ising model

Ep,q(up, uq) =

{

0 if up = uq,
1

‖p−q‖2
exp

(

− ‖Ip−Iq‖
2
2

2σ2

)

otherwise,
(81)

where ‖.‖2 denotes the Euclidean norm (either in R
d or R

c) and σ is a param-
eter. As an illustration, when the intensities Ip and Iq in (81) appear in the
same range, we have ‖Ip − Iq‖2 ≪ σ. This leads to a large cost and therefore
discourages any cut between p and q. The opposite situation is also valid when
the nodes p and q are located on both sides of a contour of the input image I.
In such a case, the cost of a cut separating p and q is almost equal to 0.

The images used for the experiments are those already used in [12]. For
each image, the seeds and the model parameters are tuned to obtain a good
segmentation of the object (see Figure 2, where some images, seeds and seg-
mentations are displayed). Using these seeds and these parameters, a reference
segmentation is computed with standard graph-cut, without reduction (SGC).
Afterwards, a second segmentation is computed, for the same seeds and pa-
rameters, when the graph is reduced with the test (14). A third segmentation
is computed for the test (79), for the best value of r. The values ρ and ∆ρ

(see above) are then computed. We also provide some values for the memory
consumption. They are simply obtained by a straightforward closed-form ex-
pression involving the number of nodes and edges and the sizes required for
representing these structures.

Finally, the experiments are performed on a computer with 2Gb of RAM.
The max-flow algorithm used for the experiments is the one described in [2].

26

"zen-garden-c" (90.24%) "fluo-cell-c" (5.88%) "ct-thorax"
β = 4× 10−6 β = 2 (17.30%) β = 20

Figure 2: Seeds (top row), segmentations (middle row) and reduced graphs (bot-
tom row) for a subset of images of Table 1. Reduced graphs are superimposed
in yellow to the original image. Relative reduced graph sizes as well as β values
are indicated below each image.

6.2 Experimental results

The results of these experiments are summarized in Table 1 and illustrated in
Figure 2.

In Table 1 we see that, as expected, both tests (79) and (14) permit to use
less memory than SGC. Moreover, when SGC fails to segment large 2D+t and
3D volumes, the algorithm using test (14) requires less memory and still succeeds
to segment them. In Table 1, we also observe that the reduction strategy based
on the test (14) is often as efficient as the one based on the test (79). It is
however sometimes significantly less efficient than the reduction strategy based
on the test (79). Taking a closer look at our experiments, this happens when the
amount of regularization is relatively large (i.e. β is small). Indeed, in such a
situation, the test (79) might remain true for small values of β, when the size of

27

Image Size SGC Test (14) ρ (%) ∆ρ (%)
zen-garden-c 481 ×321 22.90MB 22.90MB 90.24 -0.51
red-flowers-c 481 ×321 22.90MB 10.40MB 46.26 22.96

book 3012 ×2048 917.26MB 78.95MB 7.91 -0.27
cells-z 512 ×512 38.91MB 23.39MB 61.65 12.74

interview-man2-c 426 ×240 ×180 7.55GB (*) 228.44MB 3.21 0.0
plane-take-off-c 492 ×276 ×180 10.03GB (*) 532MB 6.09 -0.11

fluo-cell-c 478 ×396 ×121 9.39GB (*) 514MB 5.88 0.0

ct-thorax 245 ×245 ×151 3.71GB (*) 771MB 17.30 0.0
cells 230 ×230 ×57 1.23GB 771MB 59.38 8.0
brain 181 ×217 ×181 2.91GB (*) 771MB 24.22 -0.16

Table 1: The memory required by SGC and the graph-cut using reduced graph
with the test (14) are compared when segmenting 2D (top rows), 2D+t (middle
rows) and 3D (bottom rows) images. Color images names are suffixed by "c".
(*) means that SGC fail to segment the image due to a too large memory usage.

B increases. This does not occur with the test (14). However, when the amount
of regularization is of moderate level, the memory gains are almost identical.

In a similar manner to the test (79), one can indeed observe in Figure 2
that, with the test (14), the reduced graphs have a larger size when β is small.
This corresponds to a MRF in which the interaction term dominates. This is
not surprising since the capacities cq of the t-links are proportional to β. The
test (14) is more often satisfied when β is large and conversely. The situation
where β need to be small are typical of noisy images and segmentation problems
involving object and background sharing similar colors (see Figure 3). In such
a situation, many nodes inside Bp are connected to different terminals. The
ideal situation in which the test permits to reduce the memory requirement
therefore consists of graphs with large area of nodes linked to the same terminal
and separated by rough borders (see images "fluo-cell-c" and "ct-thorax" in
Figure 2).

Finally, as anticipated by Theorem 1, the value of the min-cut of all the
reduced graphs, when using the test (14), are identical to the one of the entire
graph. In fact, the cut/segmentation are even identical. More surprisingly,
although there does not exist any theorem supporting this property, this is also
the case for the results obtained with the test (79).

References

[1] Y. Boykov and M-P. Jolly. Interactive graph cuts for optimal boundary and
region segmentation of objects in N-D images. In International Conference
on Computer Vision, volume 1, pages 105–112, 2001.

[2] Y. Boykov and V. Kolmogorov. An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision. IEEE Trans-
actions on Pattern Analysis And Machine Intelligence, 26(9):1124–1137,
2004.

28

β = 4× 10−6 (90.2%)

β = 0.25 (75.2%)

β = 0.4 (56.9%)

β = 0.7 (33.6%)

β = 4 (19.9%)

Figure 3: Influence of the parameter β on the relative reduced graph size ρ for
the image "zen-garden-c". The segmentations (left column) and reduced graphs
(in yellow, right column) are superimposed on the original image. For each value
of β, the relative reduced graph size is indicated between parenthesis. In these
experiments, the same seeds are used as in Table 1. We remind that smaller
values of ρ means smaller memory consumption.

29

[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimiza-
tion via graph cuts. In International Conference on Computer Vision,
volume 1, pages 377–384, 1999.

[4] G.B. Dantzig and D.R. Fulkerson. On the max-flow min-cut theorems of
networks. Annals of Mathematics Study, 38:215–221, 1956.

[5] A. Delong and Y. Boykov. A scalable graph-cut algorithm for N-D grids. In
Conference on Computer Vision and Pattern Recognition, pages 1–8, 2008.

[6] K. Hogstedt, D. Kimelman, V.T. Rajan, T. Roth, and M. Wegman. Graph
cutting algorithms for distributed applications partitioning. ACM SIG-
METRICS Performance Evaluation Review, 28(4):27–29, March 2001.

[7] P. Kohli, V. Lempitsky, and C. Rother. Uncertainty driven multi-scale
energy optimization. In Symposium of the German Association for Pattern
Recognition (DAGM), pages 242–251, 2010.

[8] V. Kolmogorov and R. Zabih. What energy functions can be minimized
via graph cuts? IEEE Transactions on Pattern Analysis And Machine
Intelligence, 26(2):147–159, 2004.

[9] V. Lempitsky and Y. Boykov. Global optimization for shape fitting. In
Conference on Computer Vision and Pattern Recognition, pages 1–8, 2007.

[10] N. Lermé and F. Malgouyres. Simultaneous segmentation and filtering via
reduced graph cuts. In Advanced Concepts for Intelligent Vision Systems,
pages 201–212, 2012.

[11] N. Lermé, F. Malgouyres, and L. Létocart. Reducing graphs in graph
cut segmentation. In International Conference on Image Processing, pages
3045–3048, September 2010.

[12] N. Lermé, F. Malgouyres, and L. Létocart. A reduction method for graph
cut optimization. Pattern Analysis and Applications, To appear with full
reference (published online), 2013.

[13] N. Lermé, F. Malgouyres, and J.-M. Rocchisani. Fast and memory efficient
segmentation of lung tumors using graph cuts. In MICCAI, Third Inter-
national Workshop on Pulmonary Image Analysis, pages 9–20, September
2010.

[14] Y. Li, J. Sun, CK. Tang, and HY. Shum. Lazy Snapping. ACM Transac-
tions on Graphics, 23(3):303–308, 2004.

[15] H. Lombaert, Y.Y. Sun, L. Grady, and C.Y. Xu. A multilevel banded graph
cuts method for fast image segmentation. In International Conference on
Computer Vision, volume 1, pages 259–265, 2005.

30

[16] F. Malgouyres and N. Lermé. Non-heuristic reduction of the graph in graph-
cut optimization. In NCMIP, IOP science, Journal of physics: Conference
Series, volume 386, page 012002, 2012.

[17] A.K. Ravindra, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[18] B. Scheuermann and B. Rosenhahn. Slimcuts: Graph cuts for high reso-
lution images using graph reduction. In Energy Minimization Methods in
Computer Vision and Pattern Recognition, volume 6819 of Lecture Notes
in Computer Science, pages 219–232. Springer, 2011.

[19] A.K. Sinop and L. Grady. Accurate banded graph cut segmentation of
thin structures using laplacian pyramids. In Medical Image Computing and
Computer Assisted Intervention, volume 2, pages 896–903, 2006.

[20] P. Strandmark and F. Kahl. Parallel and distributed graph cuts by dual de-
composition. In Conference on Computer Vision and Pattern Recognition,
pages 2085–2092, 2010.

31

