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A Non-Heuristic Reduction Method For Graph

Cut Optimization

F. Malgouyres∗, N. Lermé †

April 30, 2012

Abstract

Graph cuts optimization is now well established for their efficiency
but remains limited to the minimization of some Markov Random Fields
(MRF) over a small number of variables due to the large memory require-
ment for storing the graphs. An existing strategy to reduce the graph size
consists in testing every node and to create the node satisfying a given
local condition. The remaining nodes are typically located in a thin band
around the object to segment. However, there does not exists any theoret-
ical guarantee that this strategy permits to construct a global minimizer
of the MRF.

In this paper, we propose a local test similar to already existing test for
reducing these graphs. A large part of this paper consists in proving that
any node satisfying this new test can be safely removed from the non-
reduced graph without modifying its max-flow value. The constructed
solution is therefore guanranteed to be a global minimizer of the MRF.

Afterwards, we present numerical experiments for segmenting grayscale
and color images which confirm this property while globally having mem-
ory gains similar to ones obtained with the previous existing local test.

keywords: discrete optimization, graph cuts, segmentation, denoising
AMS classification: 68U10, 94A08, 62M40, 90C27

1 Introduction

The introduction of efficient combinatorial optimization tools based on minimum
cuts (min-cut) / maximum flow (max-flow) have deeply modified the landscape
of computer vision. Indeed, a wide spectrum of ill-posed problems such as
segmentation, restoration or dense field estimation are solved by minimizing
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a functional involving a large number of variables. The latter minimization
problems can be solved with a moderate empirical complexity using graph cuts.
As a consequence, graph cuts have increased the quality and the quantity of
low-level analysis tools.

Although graph cuts stayed behind the scene during one decade, they become
more attractive thanks to a fast max-flow algorithm [2] and efficient heuristics
for multi-labels problems [3].

In parallel, technological advances have both exploded the amount and the
diversity of data to process. Processing and analyzing these data amounts to
solve large scale optimization problems. Despite a low running time and good
convergence properties, graph cuts sometimes fail to solve such problems due
to their memory requirements. This is due to the fact the graphs in which the
max-flow is computed usually contains as many vortex as the number of pixels
and as many edges as the number of neighboring pixels in the image. This
problem has been recently addressed by heuristics (see [12, 13, 14, 8]) and exact
methods (see [10, 6, 15]).

To our best knowledge, this problem seems to be first tackled in [12]. The
strategy adopted is to compute a graph cut in a graph built from a pre-segmentation.
While this approach greatly increases the performance of standard graph cuts,
the results depend on the algorithm used for computing the pre-segmentation
and better results are obtained when over-segmentation occurs.

Band-based methods have also been proposed in [13, 14, 8]. A low-resolution
version of the image is first segmented. Then, the solution is propagated to the
finer resolution by only building the graph in a narrow band surrounding the
interpolated foreground/background interface at that resolution. Although this
strategy clearly improves the performance of standard graph cuts, it is less accu-
rate to segment thin structures like blood vessels or filaments. Notice that this
problem is notably reduced in [14] but still present for low-contrasted details.
In [8], smaller graphs are obtained by associating an uncertainty measure to
each pixel.

Exact methods have been also investigated (see [10, 6, 15]). In [10], binary
energy functions are minimized for the shape fitting problem with graph cuts
in a narrow band while ensuring the optimality on the solution. One makes a
band evolve around the object to delineate by expanding it when the min-cut
touches its boundary. This process is iterated until the band no longer evolves.
Although the algorithm generally converges in few iterations, an initialization
scheme still needs to be designed for pixel classification problems.

In [6], a parallel max-flow algorithm yielding a near-linear speedup with
the number of processors is presented. While this method achieves good per-
formance on large scale problems, the algorithm is relatively sensitive to the
available amount of physical memory and remains less efficient on small graphs.

In [15], the problem is decomposed into optimizable sub-problems, solved in-
dependently and updated according to the results of the adjacent problems [15].
This process is iterated until convergence and optimality is guaranteed by La-
grangian decomposition.

Another band-based method was proposed for reducing graphs in binary
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image segmentation [11]. The graph is progressively built by only adding nodes
which satisfy a local test. In the manner of previous band-based methods,
the graph nodes are typically located in a narrow band surrounding the object
edges to segment. This method is able to segment large volumes when standard
graph cuts fail while keeping low pixel error. The time for reducing the graph is
sometimes compensated by the gain obtained thanks to the non-allocation of the
useless nodes and the gain in the computation of the min-cut in a smaller graph.
It is empirically observed in [11] that the value of the max-flow in the reduced
graph is equal to the value of the max-flow in the original graph. However, there
is no formal proof of this statement.

In this paper, we pursue the work of [11] and propose a local test (similar to
the test in [11]) to reduce these graphs by discarding a large amount of nodes
during the graph construction. While the cost for evaluating this test is slightly
higher compared to [11], we give a formal proof that any node satisfying the new
local test can be safely removed without modifying the max-flow value, keeping
in this way the optimality on the solution.

The rest of this document is organized as follows. We first define some
notations about flows and cuts in Section 2, present the new local test for
reducing the graph as well as the main theorem of this paper in Section 3. The
proof of this theorem is detailed in the next sections. This work is completed
with experiments for segmenting large grayscale and color images in Section 7.

2 Notations and preliminaries

We consider a set of pixels P ⊂ Z
d, for a positive integer d. We consider two

terminal nodes s and t and the set of nodes

V = P ∪ {s, t}.

We consider a set of directed edges E ⊂ (V × V) such that (V , E) is a simple
directed graph. We also assume that for every p ∈ P ,

(p, s) 6∈ E and (t, p) 6∈ E . (1)

We denote the neighbors of any node p ∈ V by

σE (p) = {q ∈ V , (p, q) ∈ E or (q, p) ∈ E}.

We denote a walk of positive length l ∈ N by p0 − p1 − . . .− pl, where pi ∈ V ,
for all i ∈ {0, . . . , l}, and (pi, pi+1) ∈ E , for all i ∈ {0, . . . , l − 1}. We also
remind that a closed walk is such that p0 = pl. Moreover, a simple walk is such
that pi 6= pj, for all (i, j) ∈ {0, . . . , l − 1}2 satisfying i 6= j and pl 6= pj , for
all j ∈ {1, . . . , l − 1}. We denote by W (p, q) the set containing all the walks
starting at p ∈ V and ending at q ∈ V .

We define the capacities as a mapping c : (V × V) → R
+ and denote the

capacity of any couple (p, q) ∈ (V × V) by

cp,q ≥ 0.
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Although c is defined for any (p, q) ∈ (V × V), we always set

cp,q = 0, when (p, q) 6∈ E , (2)

so-that non-null capacities are only defined on existing edges. The purpose for
extending the definition capacities to elements of (V × V) \ E in this manner is
to simplify notations in many upcoming summations and equations.

We assume, without loss of generality (see [9]), that capacities are such that
for every p ∈ P

cs,p 6= 0 ⇒ cp,t = 0. (3)

We therefore summarize the capacities of the edges linked to the terminal nodes
and set for all p ∈ P

cp = cs,p − cp,t. (4)

For any S ⊂ P , we denote the value of the s-t cut (S ∪ {s},V \ (S ∪ {s})) in G
by valG (S). We remind that

valG (S) =
∑

p∈S∪{s}
q 6∈S∪{s}

cp,q.

Notice that, thanks to (2), we have not clarified that (p, q) ∈ E in the above
summation.

We use throughout the paper and remind here that, by convention, the
empty sum is null:

∑

n∈∅

an = 0 , whatever (an)n∈N ∈ R
N.

We also define flows as any mapping f : (V×V) → R
+ satisfying the capacity

constraints
0 ≤ fp,q ≤ cp,q , for all (p, q) ∈ (V × V), (5)

and the flow conservation
∑

q∈σE (p)

fq,p =
∑

q∈σE (p)

fp,q , for all p ∈ V . (6)

Again, (2) and (5) guarantee that

fp,q = 0, for any (p, q) 6∈ E . (7)

This is the reason why we do not clarify that (q, p) ∈ E (resp. (p, q) ∈ E ) in
the left (resp. right) hand side sum in (6). As usual, the value of the flow f in
G is defined by

valG (f) =
∑

p∈σE (t)

fp,t. (8)

Notice that we use the same notation for the value of a flow and the value of a
s-t cut in G. This abuse of notation will never be ambiguous once in context.
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As for capacities, we summarize the flow passing through the edges linked to
the terminal nodes and set for all p ∈ P

fp = fs,p − fp,t. (9)

As is well known (and can easily be shown by induction on the cardinality of
S), for any flow f and any S ⊂ V the flow entering S is equal to the flow exiting
S:

∑

p∈S
q 6∈S

fq,p =
∑

p∈S
q 6∈S

fp,q. (10)

Considering (3), (5) and (9), we can rewrite (10) and obtain that

for any S ⊂ P ,
∑

p∈S

fp +
∑

p∈S
q 6∈S

(fq,p − fp,q) = 0. (11)

We call max-flow any solution f∗ of the linear program

{

maxf valG (f) ,
under the constraints (5) and (6).

As is well known (see [5]), the value of the max-flow is equal to the value of the
min-cut:

valG (f∗) = min
S⊂P

valG (S) .

Before going ahead, let us remind the details motivating the study of such a
graph: When minimizing a pairwise Markov Random Field of the form

E(u) = β
∑

p∈P

Ep(up) +
∑

(p,q)∈(P×P)

Ep,q(up, uq), β ∈ R
+, (12)

among u ∈ {0, 1}P and when the terms Ep,q(.) are submodular, [9] proves that
(12) can be globally minimized. The proof provides the construction of a graph
G and a constant K ∈ R such that for any S ⊂ P , we have

valG (S) = E(uS) +K, (13)

where uS ∈ {0, 1}P is defined by

uS
p =

{

0 if p 6∈ S

1 if p ∈ S
, ∀p ∈ P . (14)

Since (14) makes a one to one correspondence between cuts in G and {0, 1}P ,
(13) guarantees that a min-cut in G corresponds to a minimizer of (12). The
latter can therefore be efficiently computed with a max-flow algorithm such as
described in [2]. The graph constructed in [9] and [2] satisfies all the hypotheses
made in this paper.
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Throughout the paper, we consider a fixed graph G = (V , E , c), with V , E
and c as above. All along this paper, we also denote B ⊂ Z

d and assume that
B and G are such that

∀p ∈ P , (σE(p) ∩ P) ⊂ Bp, (15)

where
Bp = {p+ q, q ∈ B}. (16)

In practice, we typically think of B as a ball centered at the origin. In such a
case, (15) means that neighbors in the graph G are close to each other in Z

d.

3 Main result of the paper

Theorem 1 Let G be the graph defined in Section 2, let B ⊂ Z
d satisfy (15)

and let us assume that p ∈ P satisfies











either
(

∀q ∈ Bp, cq ≥ 0 and cq ≥
∑

q′∈σE (q)
q′ 6∈Bp

cq,q′
)

,

or
(

∀q ∈ Bp, cq ≤ 0 and cq ≤ −
∑

q′∈σE(q)
q′ 6∈Bp

cq′,q
)

.
(17)

Then, there exists a max-flow f in G such that

∀q ∈ σE (p), fp,q = fq,p = 0. (18)

As a consequence, removing the node p from the graph G does not modify its

max-flow value.

The proof of this theorem is contained in Section 4, Section 5 and Section 6.
For simplicity, we only prove in these sections the theorem when the node p

satisfies the first condition of (17).
The statement for the second condition of (17) is easily deduced from the

other statement by considering a graph G′ = (V , E ′, c′), whose edges are such
that

for all (q′, q) ∈ (P × P) , (q, q′) ∈ E ′ ⇐⇒ (q′, q) ∈ E

and
(s, q) ∈ E ′ ⇐⇒ (q, t) ∈ E and (q, t) ∈ E ′ ⇐⇒ (s, q) ∈ E ;

and whose capacities are such that

c′q,q′ = cq′,q , ∀(q, q′); and c′s,q = cq,t and c′q,t = cs,q , ∀q ∈ P .

Any pixel p ∈ P satisfying the second condition of (17) in G, satisfies the first
condition of (17) in G′ and there exists a max-flow f ′ in G′ such that

∀q ∈ σE′(p), f ′
p,q = f ′

q,p = 0.
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It is not difficult to check that the mapping f : V × V −→ R defined by

fq′,q = f ′
q,q′ , ∀(q, q′) ∈ P × P , and fq,t = f ′

s,q and fs,q = f ′
q,t , ∀q ∈ P ,

is a max-flow in G and satisfies (18).
Algorithmically, the above theorem guarantees that, during the graph con-

struction, we can test every node before it is added to the graph. If the node
satisfies (17), it is not useful to the max-flow evaluation and can be removed
without alteration of the max-flow value. We can compute the max-flow in the
subgraph of G restricted to V \{p} and extend it using (18) to obtain a max flow
f in G. As a consequence, if we denote by (S, T ) the s-t-cut in G corresponding
to this flow f, we trivially obtain that, if p satisfies the first condition of (17)
and cp > 0, then p ∈ S. Also, if moreover q ∈ σE(p) and cp,q > 0, q ∈ S.
An analogue reasonning can be done if p satisfies the second condition of (17).
Altogether, this permits to deduce the min-cut in the non-reduced graph from
the min-cut in the reduced graph.

In practice, if the graph G is obtained using the construction in [9], we deduce
the minimizer u∗ ∈ {0, 1}P of (12), from the minimum cut

(

S ∪ {s} ,
(

(P \ {p}) \ S
)

∪ {t}
)

,

where S ⊂ (P \ {p}) has been computed in the graph from which the node p

satisfying (17) has been removed, using:

u∗
r =



























1 , if r = p and ∀q ∈ Bp, cq ≥ 0 and cq ≥
∑

q′∈σE (q)
q′ 6∈Bp

cq,q′ ,

0 , if r = p and ∀q ∈ Bp, cq ≤ 0 and cq ≤ −
∑

q′∈σE(q)
q′ 6∈Bp

cq′,q,

1 , if r 6= p and r ∈ S,

0 , if r 6= p and r 6∈ S.

Finally, notice that in (17) the condition cq ≥ 0 is useless since, for all
q ∈ Bp, cq ≥

∑

q′∈σE (q)
q′ 6∈Bp

cq,q′ ≥ 0. Similarly, cq ≤ 0 is useless. We only write it

for the sake of clarity.

4 Avoiding useless flow on closed walks

In this section we remind a known result. We also prove it so-that the paper is
self contained.

Proposition 1 Let G be the graph defined in Section 2. There exists a max-flow

f in G satisfying







for any positive l and any closed walk p0 − p1 − . . .− pl
of length l in G,there exists i ∈ {0, . . . , l− 1} such that

fpi,pi+1
≤ fpi+1,pi

.

(19)
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Proof. We only prove that there exists a max-flow f in G satisfying







for any positive length l and any simple closed walk p0 − p1 − . . .− pl
of length l in G,there exists i ∈ {0, . . . , l − 1}
such that fpi,pi+1

≤ fpi+1,pi
.

(20)
The two statements are indeed equivalent: - The statement of the proposition
trivially implies that f satisfies (20); - Conversely, it is possible to extract a
simple closed walk from any closed walk p0 − p1 − . . . − pl, and the flow f

satisfying (20) ends up being such that there exists i ∈ {0, . . . , l} satisfying
fpi,pi+1

≤ fpi+1,pi
.

Let f be a max-flow in G. For any positive length l ∈ N and any closed
simple walk w = p0 − p1 − . . . − pl of length l in G, we denote by (Pf,w) the
statement:

(Pf,w) : ∀i ∈ {0, . . . , l − 1}, fpi,pi+1
> fpi+1,pi

.

We also consider

W (f) = {w,w is a closed simple walk satisfying (Pf,w)}.

Notice first that if
#W (f) = 0, (21)

where # denotes the cardinality of a set, the flow f necessarily satisfies (20)
and (19).

We show, in the remaining of the proof, that if f is such that #W (f) > 0,
there exist f ′ such that

#W (f ′) < #W (f).

Since for any max-flow f the set W (f) is finite, any initial max-flow lead to
a max-flow satisfying (21) (and therefore (19)) after a finite number of such
recursion.

Let us now assume that f is such that #W (f) > 0. Let us also consider a
closed simple walk w = p0 − p1 − . . .− pl ∈ W (f).

We denote
δ = min

i∈{0,...,l−1}
(fpi,pi+1

− fpi+1,pi
).

Since w satisfies (Pf,w), we have δ > 0.
We define the mapping f ′ : (V × V) → R

+ such that for all (p, q) ∈ (V × V):

f ′
p,q =







fp,q − fq,p − δ , if there is 0 ≤ i < l, such that (p, q) = (pi, pi+1)
0 , if there is 0 ≤ i < l, such that (p, q) = (pi+1, pi)
fp,q , otherwise.

(22)
Notice that this definition is not ambiguous since w is a simple walk.

Also, since f is a flow in G, we clearly have for all (p, q) ∈ (V × V)

0 ≤ f ′
p,q ≤ fp,q ≤ cp,q.
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In order to prove the flow conservation, we consider p ∈ V . Let us first assume
that p 6= pi, for all i ∈ {0, . . . , l}. Then (22) guarantees that f ′

p,q = fp,q and
f ′
q,p = fq,p for all q ∈ σE (p). We therefore trivially get

∑

q∈σE (p)

f ′
q,p =

∑

q∈σE (p)

f ′
p,q.

Let us now assume that there exists i ∈ {0, . . . , l − 1} such that p = pi. We
denote (if i = 0) p−1 = pl−1 and we have

∑

q∈σE (p)

(f ′
q,p−f ′

p,q) =
∑

q∈σE (p)
q 6=pi+1

q 6=pi−1

(f ′
q,p−f ′

p,q)+(f ′
pi+1,pi

−f ′
pi,pi+1

)+(f ′
pi−1,pi

−f ′
pi,pi−1

)

Using (22), we obtain for each term

∑

q∈σE (p)
q 6=pi+1

q 6=pi−1

(f ′
q,p − f ′

p,q) =
∑

q∈σE (p)
q 6=pi+1

q 6=pi−1

(fq,p − fp,q), (23)

(f ′
pi+1,pi

− f ′
pi,pi+1

) = 0− (fpi,pi+1
− fpi+1,pi

− δ), (24)

and
(f ′

pi−1,pi
− f ′

pi,pi−1
) = (fpi−1,pi

− fpi,pi−1
− δ)− 0. (25)

Summing (23), (24), (25) and simplifying, we finally get

∑

q∈σE (p)

(f ′
q,p − f ′

p,q) =
∑

q∈σE (p)
q 6=pi+1

q 6=pi−1

(fq,p − fp,q) + (fpi+1,pi
− fpi,pi+1

) + (fpi−1,pi
− fpi,pi−1

)

=
∑

q∈σE (p)

(fq,p − fp,q)

= 0

As a conclusion, f ′ is a flow. It is of course a max-flow. Indeed, (1) and (7)
guarantee that ft,p = 0, for all p ∈ P . Since w satisfies (Pf,w), this ensures that

t 6= pi, ∀i ∈ {0, . . . , l}.

Using (8) and (22), we finally get

valG (f ′) = valG (f) .

We still need to show that

#W (f ′) < #W (f).

With that in mind, we consider w′ = p′0 − p′1 − . . .− p′l′ ∈ W (f ′). We are going
to prove that we necessarily have w′ ∈ W (f).
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We know that for any j ∈ {0, . . . , l′ − 1}

0 < (f ′
p′

j
,p′

j+1
− f ′

p′

j+1
,p′

j
).

Together with (22), this guarantees that for any j ∈ {0, . . . , l′ − 1}

(p′j , p
′
j+1) 6= (pi+1, pi), for all i ∈ {0, . . . , l − 1}.

Therefore, using (22), we either have

f ′
p′

j
,p′

j+1
= fp′

j
,p′

j+1
and f ′

p′

j+1
,p′

j
= fp′

j+1
,p′

j
;

or
(p′j , p

′
j+1) = (pi, pi+1), for some i ∈ {0, . . . , l− 1}.

In the latter case, we have

0 < f ′
p′

j
,p′

j+1
− f ′

p′

j+1
,p′

j
= (fp′

j
,p′

j+1
− fp′

j+1
,p′

j
− δ)− 0

≤ fp′

j
,p′

j+1
− fp′

j+1
,p′

j
.

As a conclusion, in both cases, we have

0 < (f ′
p′

j
,p′

j+1
− f ′

p′

j+1
,p′

j
) ≤ (fp′

j
,p′

j+1
− fp′

j+1
,p′

j
).

This means that w′ ∈ W (f) and finally

W (f ′) ⊂ W (f).

In order to show that this inclusion is strict, we denote

i0 ∈ argmin
i∈{0,...,l−1}

(fpi,pi+1
− fpi+1,pi

).

Using (22), we trivially obtain that

f ′
pi0

,pi0+1
= f ′

pi0+1,pi0
= 0,

and therefore w 6∈ W (f ′). This concludes the proof. �

5 Avoiding useless traversing flow

Throughout this section, we consider a graph G as constructed in Section 2 and
a max-flow f in G satisfying (19). We also consider p ∈ P such that

∀q ∈ Bp, fq ≥ 0,

where Bp is defined in (16).
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The purpose of this section is to establish a sufficient condition so-that f can
be modified in such a way that

fp,q ≥ fq,p, for all q ∈ σE(p).

In words, the node p sends more flow to its neighbors than it can receive from
them.

In order to do so, our strategy consists in modifying the max-flow f in G
in such a way that it satisfies this property. The modification of f is done by
constructing a graph G′ and combining f with a max flow f ′ in G′. Heuristically,
the construction of G′ permits to redirect (and avoid) the flow traversing p in
the grid E ∩ (P × P).

In order to construct G′, we first consider

Σi(p) = {q ∈ P , ∃p0 − . . .− pl ∈ W (q, p) such that

∀i ∈ {0, . . . , l − 1}, fpi,pi+1
> fpi+1,pi

},

and

Σo(p) = {q ∈ Bp, ∃p0 − . . .− pl ∈ W (p, q) such that

∀i ∈ {0, . . . , l − 1}, fpi,pi+1
> fpi+1,pi

},

where we remind that W (q, p) (resp. W (p, q)) contains all the walks starting
at q (resp. p) and ending at p (resp. q). Examples of sets Σ+ and Σ− are drawn
on Figure 1.

Let us first notice that, since f satisfies (19),

∀q ∈ (Σi(p) ∩ σE(p)) , fq,p ≥ fp,q (26)

and
∀q ∈ (Σo(p) ∩ σE(p)) , fp,q ≥ fq,p. (27)

Similarly, since f satisfies (19), we have

Σi(p) ∩ Σo(p) = ∅. (28)

Moreover,
p 6∈ Σi(p) and p 6∈ Σo(p).

For simplicity, we denote

Σ− = Σi(p) and Σ+ = Σo(p) ∪ {p}.

Also, since f satisfies (19), we have

∀q ∈ Σ−, ∀q′ ∈ Σ+, fq,q′ ≥ fq′,q. (29)

Otherwise, we could easily build a closed walk contradicting (19).
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q+ q−

p

Σo(p)

Σi(p)

Bp

Figure 1: Example of configuration for Σo(p) (in yellow), Σi(p) (in green), Bp

(the square). The arrows represent the direction of the flow on two walks in
W (q−, p) and W (p, q+). We know that some flow goes from q− ∈ Σi(p) to
q+ ∈ Σo(p) and traverses p. This is the flow we are redirecting in this section.
A (too) simplistic solution for avoiding the traversing flow would be to increase
fs,q+ , decrease fs,q− in order to avoid the flow on the walk described by the
arrows.

We also denote

P ′ = Σ− ∪ Σ+ , V ′ = P ′ ∪ {s, t} (30)

and construct the graph
G′ = (V ′, E ′, c′) ,

where E ′ and c′ are defined below. We set

E ′ = E ′
t ∪ (E ′

n ∩ ET ), (31)

where ET = {(q, q′), such that (q′, q) ∈ E} and with

E ′
t = {(q, t), with q ∈ Σ− such that fq ≥ 0}

⋃

(

{s} × Σ+
)

(32)

and
E ′
n =

(

Σ+ × Σ+
)

⋃

(

(Σ− ∪ {p})× (Σ− ∪ {p})
)

. (33)

The capacities c′ are defined by

c′q,t = fq , for q ∈ Σ− such that fq ≥ 0, (34)

c′s,q = cq − fq , for q ∈ Σ+, (35)

and

c′q,q′ =

{

fq′,q − fq,q′ , if fq′,q > fq,q′

0 , otherwise
, for (q, q′) ∈ (E ′

n ∩ ET ). (36)
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Notice that there exist some nodes in Σ− which are linked to no terminals.
As in Section 2, we artificially extend all the capacities c′ and set

c′q,q′ = 0, for all (q, q′) ∈ ((V ′ × V ′) \ E ′) .

Notice that, in the graph G′ all the flow sent by s goes in Σ+ and all the
flow arriving at t comes from Σ−. Moreover, all the edges between Σ+ and Σ−

contain p.
Also, for any S ⊂ P ′, we denote the value of the s-t cut (S ∪ {s}, (P ′ \ S) ∪ {t})

in G′ by

valG′ (S) =
∑

q∈(S∪{s})
q′ 6∈(S∪{s})

c′q,q′ .

Using (34), (35) and (36), we find

valG′ (S) = E1 + E2 + E3,

where we write

E1 =
∑

q∈(Σ+\S)

c′s,q , E2 =
∑

q∈(Σ−∩S)

c′q,t and E3 =
∑

q∈S

q′∈(P′\S)

c′q,q′ . (37)

In particular, using (28) and (30), we have

valG′

(

Σ+
)

=
∑

q∈Σ+

q′∈Σ−

c′q,q′ ,

which, using (33), (28) becomes

valG′

(

Σ+
)

=
∑

q∈Σ−

c′p,q.

Finally, we obtain using (36) and (26)

valG′

(

Σ+
)

=
∑

q∈Σ−

(fq,p − fp,q). (38)

The following proposition has the most technical proof of the paper but will
later provide a condition implying that Σ+ is a min-cut in G′.

Proposition 2 Let G′ be the graph constructed in Section 5. For any S ⊂ P ′,

valG′ (S) ≥ valG′

(

Σ+
)

+
∑

q∈Σ+\(S∪{p})



cq +
∑

q′∈P\Σ+

(fq′,q − fq,q′)



 . (39)
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Proof. Let us first decompose E3 according to

E3 = E′
1 + E′

2 + E′
3 + E′

4,

with

E′
1 =

∑

q∈(S∩Σ+)

q′∈(Σ+\S)

c′q,q′ , E′
2 =

∑

q∈(S∩Σ+)

q′∈(Σ−\S)

c′q,q′

E′
3 =

∑

q∈(S∩Σ−)

q′∈(Σ+\S)

c′q,q′ , E′
4 =

∑

q∈(S∩Σ−)

q′∈(Σ−\S)

c′q,q′

We rewrite, using (36),

E′
1 =

∑

q∈(S∩Σ+)

q′∈(Σ+\S)
fq′,q>fq,q′

(fq′,q − fq,q′), E
′
2 =

∑

q∈(S∩Σ+)

q′∈(Σ−\S)
(q,q′)∈E′,fq′ ,q>fq,q′

(fq′,q − fq,q′) (40)

E′
3 =

∑

q∈(S∩Σ−)

q′∈(Σ+\S)
(q,q′)∈E′,fq′ ,q>fq,q′

c′q,q′ , E
′
4 =

∑

q∈(S∩Σ−)

q′∈(Σ−\S)
fq′ ,q>fq,q′

(fq′,q − fq,q′) (41)

Using (33) and (28), then (36) and (26), we immediately find that

E′
2 =

{ ∑

q∈(Σ−\S)(fq,p − fp,q) , if p ∈ S

0 , otherwise,
and E′

3 = 0. (42)

Moreover, since the total amount of flow entering and exiting (S ∩ Σ−) are
equal, we have (see (11))

∑

q∈(S∩Σ−)
fq≥0

fq +
∑

q∈(S∩Σ−)
fq<0

fq +
∑

q∈(S∩Σ−)

q′ 6∈(S∩Σ−)

(fq′,q − fq,q′) = 0

Moreover, if we decompose the last term and reorganize the equation we obtain

∑

q∈(S∩Σ−)
fq≥0

fq +
∑

q∈(S∩Σ−)

q′∈(Σ−\S)

(fq′,q − fq,q′) = −
∑

q∈(S∩Σ−)
fq<0

fq −
∑

q∈(S∩Σ−)

q′∈Σ+

(fq′,q − fq,q′)

Together with the definition of E2 in (37), (34) and the definition of E′
4 in (41)
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this leads to

E2 + E′
4 ≥

∑

q∈(S∩Σ−)
fq≥0

fq +
∑

q∈(S∩Σ−)

q′∈(Σ−\S)

(fq′,q − fq,q′)

= −
∑

q∈(S∩Σ−)
fq<0

fq −
∑

q∈(S∩Σ−)

q′∈Σ+

(fq′,q − fq,q′)

≥
∑

q∈(S∩Σ−)

(fq,p − fp,q) +
∑

q∈(S∩Σ−)

q′∈(Σ+\{p})

(fq,q′ − fq′,q).

Then, using (29), we immediately obtain

E2 + E′
4 ≥

∑

q∈(S∩Σ−)

(fq,p − fp,q).

Together with (42) and (38), this leads to the following intermediate result:

E2 + E′
2 + E′

3 + E′
4 ≥

{

valG′ (Σ+) , if p ∈ S
∑

q∈(S∩Σ−)(fq,p − fp,q) , otherwise.
(43)

In order to finish the proof, let us first notice that using the definition of E1

in (37), (35) and the definition of E′
1 in (40)

E1 + E′
1 ≥

∑

q∈(Σ+\S)

(cq − fq) +
∑

q∈(S∩Σ+)

q′∈(Σ+\S)

(fq′,q − fq,q′) (44)

Expressing that the total amount of flow entering and exiting (Σ+\S) are equal,
we have (see (11))

∑

q∈(Σ+\S)

fq +
∑

q∈(Σ+\S)

q′∈(Σ+∩S)

(fq′,q − fq,q′) +
∑

q∈(Σ+\S)

q′∈P\Σ+

(fq′,q − fq,q′) = 0.

Together with (44), this guarantees that

E1 + E′
1 ≥

∑

q∈(Σ+\S)

cq +
∑

q∈(Σ+\S)

q′∈P\Σ+

(fq′,q − fq,q′),

≥
∑

q∈(Σ+\S)



cq +
∑

q′∈P\Σ+

(fq′,q − fq,q′)



 (45)

When p ∈ S, by combining the latter result with (43), we immediately get (39).
If p 6∈ S, (45) can be rewritten using (38)

E1 + E′
1 ≥

∑

q∈(Σ+\(S∪{p}))



cq +
∑

q′∈P\Σ+

(fq′,q − fq,q′)



+ cp + valG′

(

Σ+
)

.
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Since cp ≥ 0, and (43) and (26) guarantee that E2 + E′
2 + E′

3 + E′
4 ≥ 0 , this

ensures that (39) holds even when p 6∈ S and concludes the proof. �

All along the remaining of this Section, we consider a max-flow f ′ in G′.
Notice also that G′ satisfies analogues of (1) and (3). Therefore, as in Section
2, we denote

f ′
q = f ′

s,q − f ′
q,t,

for all q ∈ P ′. We also artificially extend the flow f ′ and set

f ′
q = 0, for all q 6∈ P ′

and
f ′
q,q′ = 0, for all (q, q′) ∈ ((V ′ × V ′) \ E ′) .

We are now going to combine f and f ′ in order to build a mapping f ′′ : E → R

which will turn out to be a max-flow in G such that

f ′′
p,q ≥ f ′′

q,p = 0 , ∀q ∈ σE (p).

Let us begin with the definition of f ′′. We distinguish in the definition the
different possible configuration for edges of E .

f ′′
q,q′ =

{

fq,q′ − fq′,q , if fq,q′ ≥ fq′,q
0 , otherwise,

, for (q, q′) 6∈ E ′ (46)

{

f ′′
s,q = 0 and f ′′

q,t = −fq , for q ∈ P ′ such that fq < 0
f ′′
s,q = fq + f ′

q and f ′′
q,t = 0 , for q ∈ P ′ such that fq ≥ 0

(47)

f ′′
q′,q =

{

fq′,q − fq,q′ − f ′
q,q′ , if fq′,q > fq,q′ ,

0 , otherwise
, for (q′, q) ∈ P ′2 ∩ ET . (48)

The equations (46), (47) and (48) permit to define f ′′
q,q′ for all (q, q′) ∈ E

and (again) we extend f ′′ outside E and set

f ′′
q,q′ = 0, for all (q, q′) ∈ ((V × V) \ E) .

We also denote
f ′′
q = f ′′

s,q − f ′′
q,t , ∀q ∈ P .

Notice that, since f ′
q = 0 for all q 6∈ P ′ as well as for q ∈ P ′ such that fq < 0

(see (34) and (35)), we always have, according to (46) and (47),

f ′′
q = fq + f ′

q , ∀q ∈ P . (49)

Proposition 3 The mapping f ′′ : (V × V) → R is a max-flow in G.

Proof. Let us first show that f ′′ satisfies the capacity constraints. Let (q′, q) ∈ E .
We distinguish below the different configuration for (q′, q).
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• If (q′, q) 6∈ E ′ and using (46) we either have

0 ≤ f ′′
q′,q = fq′,q − fq,q′ ≤ cq′,q,

or
0 ≤ f ′′

q′,q = 0 ≤ cq′,q.

• If q′ ∈ Σ− and q = s or t:

– If moreover fq′ < 0, then using (47), 0 ≤ f ′′
s,q′ = 0 ≤ cs,q′ and

0 ≤ f ′′
q′,t = fq′,t ≤ cq′,t.

– If fq′ ≥ 0, then using (47) and (34), we find that 0 ≤ f ′′
s,q′ = fs,q′ −

f ′
q′,t ≤ cs,q′ and 0 ≤ f ′′

q′,t = 0 ≤ cq′,t.

• If q′ ∈ Σ+ and q = s or t: since q′ ∈ Bp, we necessarily have fq′ ≥ 0,
then using (47) and (35), we have 0 ≤ f ′′

s,q′ = fs,q′ + f ′
s,q′ ≤ cs,q′ and

0 ≤ f ′′
q′,t = 0 ≤ cq′,t.

• If (q′, q) ∈ (P ′ × P ′):

– If moreover fq′,q ≤ fq,q′ , then (48) guarantees 0 ≤ f ′′
q′,q = 0 ≤ cq′,q.

– If fq′,q > fq,q′ , using (36), we have

0 ≤ f ′
q,q′ ≤ c′q,q′ = fq′,q − fq,q′ ,

and finally (48) guarantees that

0 ≤ f ′′
q′,q = fq′,q − fq,q′ − f ′

q,q′ ≤ cq′,q.

Let us now prove the flow conservation. Let q ∈ P . We distinguish below the
different possible position for q.

• If q 6∈ P ′, then for any q′ ∈ σE(q) the definition of E ′ given in (31), (32)
and (33) guarantees that both (q, q′) and (q′, q) 6∈ E ′. Using (46), we
obtain f ′′

q,q′ − f ′′
q′,q = fq,q′ − fq′,q, for all q′ ∈ σE(q), and therefore

∑

q′∈σE (q)

(

f ′′
q′,q − f ′′

q,q′

)

=
∑

q′∈σE (q)

(fq′,q − fq,q′) = 0.

• If q ∈ P ′, the flow conservation constraint given by (11) for f and f ′ at q

can be decomposed to provide

fq +
∑

q′∈P∩σE(q)
q′ 6∈σE′ (q)

(fq′,q − fq,q′) +
∑

q′∈P∩σE′ (q)
fq′ ,q>fq,q′

(fq′,q − fq,q′)

+
∑

q′∈P∩σ
E′(q)

fq′,q≤fq,q′

(fq′,q − fq,q′) = 0
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and
f ′
q +

∑

q′∈P∩σ
E′ (q)

fq′ ,q>fq,q′

(0− f ′
q,q′) +

∑

q′∈P∩σ
E′ (q)

fq′ ,q≤fq,q′

(f ′
q′,q − 0) = 0.

Summing these equalities and using (49), (46) and (48), we obtain

f ′′
q +

∑

q′∈P∩σE(q)
q′ 6∈σ

E′ (q)

(f ′′
q′,q − f ′′

q,q′) +
∑

q′∈P∩σE′ (q)
fq′,q>fq,q′

(f ′′
q′,q − f ′′

q,q′)

+
∑

q′∈P∩σE′(q)
fq′,q≤fq,q′

(f ′′
q′,q − f ′′

q,q′) = 0.

The latter corresponds to flow conservation constraint (11) at the node q

for f ′′.

Altogether, we now know that f ′′ is a flow. We still need to show that it is
a max-flow. The latter property is in fact trivially obtained since (47) and (46)
guarantee that f ′′

q,t = fq,t, for all q ∈ P . Therefore, the value of f ′′ is equal to
the value of f. Since f is a max-flow, this value is maximal and f ′′ is a max-flow.
�

Proposition 4 If Σ+ is a minimum s-t cut in the graph G′ defined in Section

5, then the max-flow f ′′ is such that

∀q ∈ P ∩ σE(p), f ′′
q,p = 0.

As a consequence,

∀q ∈ P ∩ σE(p), f ′′
p,q ≥ f ′′

q,p.

Proof. Since f ′ is a max-flow in G′ and Σ+ is a min s-t cut in G′, Ford-Fulkerson
theorem guarantees that they have the same value. We therefore have

valG′ (f ′) = valG′

(

Σ+
)

=
∑

q′∈Σ+

q 6∈Σ+

(q′,q)∈E′

c′q′,q

=
∑

q∈Σ−

c′p,q (50)

Moreover, since f ′ is a flow, the total amount of flow entering and exiting
Σ+ are equal. Therefore, we have (see (11))

∑

q∈Σ+

f ′
q +

∑

q′∈Σ+

q 6∈Σ+

q∈σE′ (q′)

(f ′
q,q′ − f ′

q′,q) = 0.
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Together with (8), (32) and (33), this guarantees that

valG′ (f ′) =
∑

q∈Σ−

fq≥0

f ′
q =

∑

q∈Σ−

(f ′
p,q − f ′

q,p),

Since the amounts of flow entering and exiting Σ− are equal. Combined with
(50), this provides

∑

q∈Σ−

c′p,q =
∑

q∈Σ−

f ′
p,q −

∑

q∈Σ−

f ′
q,p. (51)

As a consequence,
∑

q∈Σ−

f ′
q,p =

∑

q∈Σ−

(f ′
p,q − c′p,q) ≤ 0.

However, since for all q ∈ Σ−, f ′
q,p ≥ 0, we finally obtain that

∀q ∈ Σ−, f ′
q,p = 0.

Using (51) again, (26) and (36), this provides

∀q ∈ Σ−, f ′
p,q = c′p,q = fq,p − fp,q.

Therefore, using (26) and (48),

∀q ∈ Σ−, f ′′
q,p = 0. (52)

Moreover, using (27) and (48), we also have

∀q ∈ (Σ+ ∩ σE (p)), f
′′
q,p = 0. (53)

Combining this result with (52), we obtain

∀q ∈
(

Σ+ ∪ Σ−
)

∩ σE(p), f ′′
q,p = 0. (54)

Now, if q ∈ σE(p) \ (Σ+ ∪ Σ−), the definitions of Σ+ and Σ− imply that neces-
sarily fp,q = fq,p. The definition of E ′ also guarantees that (p, q) and (q, p) 6∈ E ′.
Together, with (46), we finally obtain that

∀q ∈ σE (p) \
(

Σ+ ∪ Σ−
)

, f ′′
p,q = f ′′

q,p = 0.

Together with (54), this concludes the proof. �

Proposition 5 Let G be the graph defined in Section 2, let B satisfy (15) and

let us assume that p ∈ P is such that

∀q ∈ Bp, cq ≥ 0 and cq ≥
∑

q′∈P∩σE(q)
q′∈P\Bp

cq,q′ , (55)

then, there exists a max-flow f in G such that

∀q ∈ σE(p), fp,q ≥ fq,p = 0. (56)
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Proof. This is a straightforward consequence of Proposition 3, Proposition 2
and Proposition 4.

Indeed, if (55) holds, we know that for any max-flow f in G as in Proposition
1 and any S ⊂ P ′

∑

q∈Σ+\(S∪{p})



cq +
∑

q′∈P\Σ+

(fq′,q − fq,q′)



 ≥

∑

q∈Σ+\(S∪{p})



cq +
∑

q′∈P\Bp

(fq′,q − fq,q′)



 ≥ 0,

since for all q′ ∈ Bp \Σ
+, fq′,q − fq,q′ ≥ 0. Therefore, Proposition 2 guarantees

that Σ+ is a min s-t cut in G′. Then, Proposition 3 guarantees that f ′′ is a
max-flow in G and Proposition 4 guarantees that f ′′ satisfies (56). �

6 A useless nodes

Throughout this section, we consider a graph G as constructed in Section 2,
a set B satisfying (15), a pixel p ∈ P satisfying (55) and a max-flow f in G
satisfying (56).

The purpose of this section is to modify f so-that it remains a max-flow in
G and satisfies

∀q ∈ σE(p), fp,q = fq,p = 0.

The latter obviously implies that the node p is useless when computing the
max-flow in G.

Notice that, since the flow f satisfies (56), the only flow entering p comes
from the source s. Therefore, in this section we want to decrease fs,p. However,
since the flow fs,p entering p contributes to the flow exiting Bp, we need to
compensate fs,p by increasing fs,q, for q ∈ Bp. Similarly to Section 5, this
intuitive (and too simplistic) strategy is strengthened by considering a max-
flow f ′ is an appropriate graph G′.

Since the method for modifying f is analogous to the one used in Section
5, we chose to use the same notations for the objects playing the same role.
Beware not to confuse their definition.

First, we denote

P ′ = Bp ,Σ+ = Bp \ {p} and Σ− = {p}. (57)

In order to modify f, we build a graph G′ = (P ′, E ′, c′) where E ′and c′ are
defined below. We consider

E ′ =
(

E ∩
(

Σ+ × Σ+
))

⋃

(

(σE(p) ∩ Σ+)× Σ−
)

⋃

(

{s} × Σ+
)

⋃

{(p, t)}.

(58)
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We define the capacities c′ by

c′q,q′ = cq,q′ − fq,q′ + fq′,q, ∀(q, q
′) ∈

(

E ∩
(

Σ+ × Σ+
))

(59)

c′q,p = fp,q , ∀q ∈ (σE (p) ∩Σ+) (60)

c′s,q = cq − fq , ∀q ∈ Σ+ (61)

c′p,t = fp (62)

As usual, in order to simplify the notations, we artificially set

c′q,q′ = 0 , ∀(q, q′) ∈ (P ′ × P ′) \ E ′, (63)

and we write
c′q = c′s,q − c′q,t , ∀q ∈ P ′. (64)

Notice first that, for any S ⊂ P ′, the value of the s-t cut ((S ∪ {s}), (P ′ \
S) ∪ {t}) in G′ depends on whether p ∈ S or p 6∈ S. If p ∈ S, we have

valG′ (S) = c′p,t +
∑

q∈(Σ+\S)

c′q +
∑

q∈S

q′∈(P′\S)

c′q,q′ .

Therefore, we trivially have using (59)-(64)

valG′ (S) ≥ c′p,t = fp , if p ∈ S. (65)

Moreover, for any S ⊂ P ′, the value of the s-t cut ((S ∪ {s}), (P ′ \ S)∪ {t})
in G′ is given by

valG′ (S) =
∑

q∈(Σ+\S)

c′q +
∑

q∈S

q′∈(P′\S)

c′q,q′ , if p 6∈ S. (66)

In particular, if S = Σ+, we obtain using (60), the conservation of the flow f at
p and (56) that

valG′

(

Σ+
)

=
∑

q∈(Σ+∩σE′ (p))

c′q,p,

=
∑

q∈(Σ+∩σE (p))

fp,q,

= fp . (67)

The following proposition will later give a sufficient condition for Σ+ to be
a min cut in G′.

Proposition 6 Let G′ be the graph constructed in Section 6. For any S ⊂ P ′,

• if p 6∈ S

valG′ (S) = valG′

(

Σ+
)

+
∑

q∈S

q′∈(Σ+\S)

cq,q′+
∑

q∈(Σ+\S)



cq +
∑

q′∈P\P′

(fq′,q − fq,q′)



 ,

(68)
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• if p ∈ S

valG′ (S) ≥ valG′

(

Σ+
)

. (69)

Proof. Notice first that, if p ∈ S, (69) is a straightforward consequence of (65)
and (67). Let us assume from now on that p 6∈ S.

Since f is a flow, the total amount of flow entering and exiting (P ′ \ S) are
equal (see (11)) and therefore, using (57)

fp +
∑

q∈(Σ+\S)

fq +
∑

q∈(P′\S)
q′∈P\(P′\S)

(fq′,q − fq,q′) = 0.

Using (67), (61) and (64), we obtain

valG′

(

Σ+
)

+
∑

q∈(Σ+\S)

(cq − c′q) +
∑

q∈(P′\S)
q′∈P\(P′\S)

(fq′,q − fq,q′) = 0.

Combined with (66), this becomes

valG′ (S) = valG′

(

Σ+
)

+
∑

q∈(Σ+\S)

cq +
∑

q∈(P′\S)
q′∈P\(P′\S)

(fq′,q − fq,q′) +
∑

q∈S

q′∈(P′\S)

c′q,q′ .

(70)
We now decompose the last term of the above equation using (59), (60) and
(56) and write

∑

q∈S

q′∈(P′\S)

c′q,q′ =
∑

q∈S

q′∈(Σ+\S)

(cq,q′ − fq,q′ + fq′,q) +
∑

q∈S

fp,q,

=
∑

q∈S

q′∈(Σ+\S)

cq,q′ −
∑

q′∈S

q∈(Σ+\S)

(fq′,q − fq,q′) +
∑

q′∈S

(fp,q′ − fq′,p),

=
∑

q∈S

q′∈(Σ+\S)

cq,q′ −
∑

q∈(P′\S)
q′∈S

(fq′,q − fq,q′).

Combining the latter with (70), we finally obtain

valG′ (S) = valG′

(

Σ+
)

+
∑

q∈(Σ+\S)

cq +
∑

q∈S

q′∈(Σ+\S)

cq,q′ +
∑

q∈(P′\S)
q′∈P\P′

(fq′,q − fq,q′).

Using (15), we remark that for any q′ 6∈ P \ P ′, we have q′ 6∈ σE (p) and we can
finally deduce that (68) holds for all S ⊂ P ′ such that p 6∈ S. �

22



As in Section 5, we will from now on consider a max flow f ′ in the graph G′

built in the current section. We also artificially extend the flow f ′ and set

f ′
q,q′ = 0, for all (q, q′) ∈ ((V ′ × V ′) \ E ′) . (71)

Once again, the graph G′ satisfies analogues of (1) and (3), therefore, as usual,
we denote for simplicity

f ′
q = f ′

s,q − f ′
q,t , ∀q ∈ P ′. (72)

We are now going to combine f and f ′ in order to build a mapping f ′′ : E → R

which will turn out to be a max-flow in G such that

f ′′
p,q = f ′′

q,p = 0 , ∀q ∈ σE (p).

As for G′ and f ′, beware that the mapping f ′′ is different in Section 5 and in
the current section.

Let us begin with the definition of f ′′. We distinguish below the different
possible configurations for the elements of E .

f ′′
q = fq ∀q 6∈ P ′, (73)

f ′′
q,q′ = fq,q′ ∀(q, q′) ∈ E , with q 6∈ P ′ or q′ 6∈ P ′(74)

f ′′
q = fq + f ′

q ∀q ∈ P ′, (75)

and for (q, q′) ∈
(

E ∩ (Σ+)2
)

f ′′
q,q′ =

{

(fq,q′ + f ′
q,q′)− (fq′,q + f ′

q′,q) if fq,q′ + f ′
q,q′ ≥ fq′,q + f ′

q′,q

0 if fq,q′ + f ′
q,q′ < fq′,q + f ′

q′,q

(76)

and

f ′′
p,q = fp,q − f ′

q,p ∀q ∈ (P ′ ∩ σE(p)) (77)

f ′′
q,p = 0 ∀q ∈ (P ′ ∩ σE(p)) (78)

We also define

f ′′
s,q = max(f ′′

q , 0) and f ′′
q,t = max(−f ′′

q , 0) , ∀q ∈ P . (79)

Notice that the equation (73)-(79) permit to define f ′′
q,q′ for all (q, q′) ∈ E . Once

again, we extend f ′′ outside E and set

f ′′
q,q′ = 0, for all (q, q′) ∈ ((V × V) \ E) .

The following proposition holds.

Proposition 7 The mapping f ′′ : (V × V) → R is max-flow in G.
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Proof. Notice first that, if f ′′ is a flow in G it is necessarily a max flow since,
according to (55), (σE(t) ∩ P ′) = ∅ and therefore, using (73), we always have
f ′′
q,t = fq,t, for all q ∈ σE (t). Therefore, we have valG (f ′′) = valG (f) and, if f ′′

is a flow in G, f ′′ is necessarily a max-flow in G.
In order to show that f ′′ is a flow we first show that it satisfies the capac-

ity constraints. Let (q, q′) ∈ E . We distinguish below the different possible
configurations for the elements of (q, q′).

• If q = s and q′ 6∈ Bp or if q 6∈ Bp and q′ = t, using (73) and (79), we know
that

0 ≤ f ′′
q,q′ = fq,q′ ≤ cq,q′ and 0 ≤ f ′′

q′,q = fq′,q ≤ cq′,q.

• If q 6∈ Bp or q′ 6∈ Bp, using (74), we obtain again

0 ≤ f ′′
q,q′ = fq,q′ ≤ cq,q′ .

• If q = s and q′ ∈ Σ+, using (75) and (61), we get

0 ≤ f ′′
q,q′ = fs,q′ + f ′

s,q′ ≤ cq,q′ .

• If q = s and q′ = p, using (75) and (62), we get

0 ≤ f ′′
q,q′ = fs,p − f ′

p,t ≤ cq,q′ .

• If (q, q′) ∈ (Σ+)2 and fq,q′ + f ′
q,q′ ≥ fq′,q + f ′

q′,q, using (76) and (59), we
obtain

0 ≤ f ′′
q,q′ = fq,q′ + f ′

q,q′ − fq′,q − f ′
q′,q ≤ cq,q′ − f ′

q′,q ≤ cq,q′ .

• If (q, q′) ∈ (Σ+)2 and fq,q′ + f ′
q,q′ < fq′,q + f ′

q′,q, using (76), we trivially
have

0 ≤ f ′′
q,q′ = 0 ≤ cq,q′ .

• If q = p and q′ ∈ (Bp ∩ σE(p)), using (77) and (60), we get

0 ≤ f ′′
q,q′ = fp,q′ − f ′

q′,p ≤ cq,q′ .

• If q ∈ (Bp ∩ σE(p)) and q′ = p, then (78) trivially guarantees that

0 ≤ f ′′
q,q′ = 0 ≤ cq,q′ .

In order to show the flow conservation constraints, we consider, from now
on, q ∈ P . We distinguish below the different possible position for q.

• If q ∈ P \ P ′, we have, using (73) and (74), we have f ′′
q,q′ = fq,q′ and

f ′′
q′,q = fq′,q, for all q′ ∈ σE(q). Therefore,

∑

q′∈σE (q)

f ′′
q′,q =

∑

q′∈σE (q)

fq′,q =
∑

q′∈σE (q)

fq,q′ =
∑

q′∈σE (q)

f ′′
q,q′ .
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• If q ∈ Σ+, expressing that the two flows f and f ′ are conserved at q, we
obtain using (7) and (56)

fq +
∑

q′∈(P∩σE(q))
q′∈P\P′

(fq′,q − fq,q′) +
∑

q′∈(P∩σE(q))

q′∈Σ+

(fq′,q − fq,q′) + fp,q = 0

and
f ′
q +

∑

q′∈(P∩σE(q))

q′∈Σ+

(f ′
q′,q − f ′

q,q′) − f ′
q,p = 0.

Summing those inequalities and using (74)-(78), we obtain

f ′′
q +

∑

q′∈(P∩σE(q))
q′∈P\P′

(f ′′
q′,q−f ′′

q,q′)+
∑

q′∈(P∩σE (q))

q′∈Σ+

(f ′′
q′,q−f ′′

q,q′)+(f ′′
p,q−f ′′

q,p) = 0.

The latter expresses that f ′′ is conserved at the node q.

• If q = p, then using (75), (77) and (78) as well as (15) and (62), we obtain
∑

q′∈σE(p)

(f ′′
q′,p − f ′′

p,q′) = fs,p − f ′
p,t −

∑

q′∈(P′∩σE (p))

(fp,q′ − f ′
q′,p).

Using that fp,t = 0 (see (55), (4) and (3)), f ′
s,p = 0 (see (58) and (63)),

fq′,p = 0 (see (56)) and f ′
p,q′ = 0 (see (58) and (63)), we obtain

∑

q′∈σE (p)

(f ′′
q′,p − f ′′

p,q′) = (fs,p − fp,t) + (f ′
s,p − f ′

p,t)

−
∑

q′∈(P′∩σE (p))

[

(fp,q′ − fq′,p) + (f ′
p,q′ − f ′

q′,p)
]

. (80)

Simplifying, we finally obtain
∑

q′∈σE (p)

(f ′′
q′,p − f ′′

p,q′) =
∑

q′∈σE (p)

(fq′,p − fp,q′) +
∑

q′∈σE(p)

(f ′
q′,p − f ′

p,q′),

= 0,

since the two flows f and f ′ are conserved at p.

This concludes the proof. �

Proposition 8 If Σ+ is a minimum s-t cut in the graph G′ defined in Section

6, then the max-flow f ′′ is such that

∀q ∈ σE (p), f ′′
q,p = f ′′

p,q = 0.

As a consequence, removing the node p from the graph G does not modify its

maximal flow value.
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Proof. If Σ+ is a minimum s-t cut in the graph G′ defined in Section 6, then
Ford-Fulkerson theorem, (67) and (58) guarantee that

fp = valG′

(

Σ+
)

= valG′ (f ′) = f ′
p,t.

Using (75), (72) and (71) this yields

f ′′
p = fp − f ′

p,t = 0,

which, using (79), provides
f ′′
s,p = f ′′

p,t = 0.

Together with (78), this guarantees that

for all q ∈ σE(p), f ′′
q,p = 0. (81)

Expressing the flow conservation constraint at p for f ′′, we deduce from (81)
that

∑

q∈σE (p)

f ′′
p,q =

∑

q∈σE (p)

f ′′
q,p = 0,

which guarantees that

for all q ∈ σE(p), f ′′
p,q = 0,

since f ′′
p,q ≥ 0, for all q ∈ σE(p).

Together with (81), this concludes the proof. �

We can now conclude with the following proposition.

Proposition 9 Let G be the graph defined in Section 2, let B satisfy (15) and

let us assume that p ∈ P satisfies (55). Then, there exists a max-flow f in G
such that

∀q ∈ σE (p), fp,q = fq,p = 0. (82)

As a consequence, removing the node p from the graph G does not modify its

maximal flow value.

Proof. This is a straightforward consequence of Proposition 5, Proposition 6,
Proposition 7 and Proposition 8.

Indeed, if (55) holds, we know that there is max-flow f in G satisfying (56).
Therefore, using the notations of Section 6, we know that for any S ⊂ P ′ such
that p 6∈ S

∑

q∈Σ+\S



cq +
∑

q′∈P\P′

(fq′,q − fq,q′)



 ≥ 0.

Therefore, for G′ as defined in Section 6, Proposition 6 guarantees that for any
S ⊂ P ′

valG′ (S) ≥ valG′

(

Σ+
)

,
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and therefore Σ+ is a min s-t cut in G′. Then, Proposition 7 guarantees that
f ′′ is a max-flow in G and Proposition 8 guarantees that f ′′ satisfies (82). �

7 Numerical experiments

In this section, we evaluate the performance of the test (17) against standard
graph cuts (SGC) in terms of memory and segmentation accuracy for reducing
graphs involved in binary image segmentation. For doing so, we compare the
relative reduced graph sizes obtained from the tests (17) and the test described
in [11] which is defined by

ρ =
♯V∗

♯V
× 100, (83)

where V∗ denote the set of useful nodes actually present in the reduced graph.
Lower values of (83) therefore means lower memory consumption. In the ex-
periments, B corresponds to a square window of size 3 centered at the origin.
Moreover, we use the interactive image segmentation model described in [1] in
connectivity 1 1. Let us now briefly remind this model. Consider an image
I : P → [0, 1]c as a function, mapping each pixel p ∈ P to a vector Ip ∈ [0, 1]c.
For any pixel p ∈ P , the data term Ep(.) is defined as

{

Ep(1) = −log P(Ip | p ∈ O),
Ep(0) = −log P(Ip | p ∈ B).

(84)

where O and B denote respectively the object and background seeds interac-
tively given by the user. In (84), the probability density function of color distri-
bution for the object and the background seeds are estimated using normalized
histograms with a number of bins respectively equal to 256 and 50 for grayscale
and color images. For any pixels pair (p, q) ∈ (P × P), the smoothness term
Ep,q(.) corresponds to a contrast-sensitive Ising model

Ep,q(up, uq) =

{

0 if up = uq,
1

‖p−q‖2
exp

(

− ‖Ip−Iq‖
2
2

2σ2

)

otherwise,
(85)

where ‖.‖2 denotes the Euclidean norm (either in R
d or Rc) and σ is a parameter

generally linked to the contrast in the image. As an illustration, when the
intensities Ip and Iq in (85) appear in the same range, we have ‖Ip − Iq‖2 < σ.
This implies a large cost in the exponential and therefore discourages any cut
between the nodes p and q. The opposite situation is also valid when the nodes
p and q are located on both sides of a contour. The following experiments
are performed on an Athlon Dual Core 6000+ 3GHz with 2Gb RAM using the
max-flow algorithm of [2]. Times include the graph construction, the max-flow

1This term corresponds to 8 neighbors in 2D images and 26 neighbors in 2D+t and 3D

images.
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computation as well as the construction of the solution and are averaged over
10 runs.

Let us now describe the experimental procedure for segmenting images seg-
mented in [11]. For each image, the seeds and the model parameters are manu-
ally optimized for getting the best segmentation. Using these seeds and param-
eters, a reference segmentation is computed with SGC. Afterwards, a second
segmentation is computed with the test (17) using the same seeds and parame-
ters. The differences between both segmentations are then estimated using the
Hausdorff distance. We also measure the difference (denoted by ∆ρ∗) between
the relative reduced graph size (denoted by ρ∗) obtained with the test (17) and
the test in [11]. In words, the test studied in [11] is more efficient (from a
memory point of view) than the test (17) when ∆ρ∗ > 0 and conversely. The
obtained results for these experiments are summarized in Table 1 and illustrated
in Figure 2.

As the test [11], the test (17) globally outperforms SGC in terms of memory
while keeping a Hausdorff distance null 2. SGC fail to segment some of the 2D+t
and 3D volumes while the test (17) permits to segment them while keeping a
low memory usage. In a similar manner to the test [11], one can also observe in
Figure 2 that reduced graphs have a larger size when β is low (denotes a strong
regularization of the model). Indeed, since t-links (edges linking a node p ∈ P
to s or t) capacities are multiplied by β, the test (17) becomes harder to satisfy
when β diminishes and conversely. This situation is typical of noisy images
since a lot a nodes inside B are connected to opposite terminals (see image
"zen-garden-c" in Figure 2). An ideal situation therefore consists as in [11] of
large area of nodes linked to the same terminal and separated by rough borders
(see images "book", "fluo-cell-c" and "ct-thorax" in Figure 2).

In Table 1, one also observe that the test (17) is globally less efficient than
the test [11] in terms of memory usage with an average negative ∆ρ∗ over all
images. This least performance is strenghtened when the amount of regular-
ization is large. Indeed, in such a situation, the test [11] can be relaxed when
varying the window radius r unlike the test (17). However, when the amount
of regularization is of moderate level, the memory gains are almost the same.
We have also measured no differences between the segmentation obtained with
the test (17) and the test [11]. This clearly demonstrates that the test [11] is
an heuristic achieving very good results with respect to the test (17). The ex-
actness of the test (17) is however at the expense of a larger computational cost
compared to the test [11] since the worst-case complexity now depends both on
the size of B and the graph connectivity.

Finally, we want to highlight that the test (17) for reducing the graphs is not
limited to a particular energy model or more generally, to image segmentation.
Such an approach can be for instance adapted to solve Chan-Vese model [4] in
image segmentation or Total Variation-based models [7] in image restoration.

2We omit this information in the experiments since this value is always the same.
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Volume name Size SGC Test (17) ρ∗ (%) ∆ρ∗ (%)
zen-garden-c 481 ×321 22.90 Mb 23.39 Mb 90.24 +0.51
red-flowers-c 481 ×321 22.90 Mb 10.40 Mb 46.26 -22.96

book 3012 ×2048 917.26 Mb 78.95 Mb 7.91 +0.27
cells-z 512 ×512 38.91 Mb 23.39 Mb 61.65 -12.74

interview-man-2c 426 ×240 ×180 7.55 Gb (*) 228.44 Mb 3.21 0.0
plane-take-off-c 492 ×276 ×180 10.03 Gb (*) 532.00 Mb 6.09 +0.11

fluo-cell-c 478 ×396 ×121 9.39 Gb (*) 514.00 Mb 5.88 0.0

ct-thorax 245 ×245 ×151 3.71 Gb (*) 771.00 Mb 17.30 0.0
cells 230 ×230 ×57 1.23 Gb 771.00 Mb 59.38 -8.0
brain 181 ×217 ×181 2.91 Gb (*) 771.00 Mb 24.22 +0.16

Table 1: The memory required by SGC and graph reduced with the test (17)
are compared when segmenting 2D (top rows), 2D+t (middle rows) and 3D
(bottom rows) images. Color images names are suffixed by "c". (*) means that
SGC fail to segment the image due to a too large memory usage. The memory
consumption is obtained by multiplying the number of nodes and edges by the
memory size of the structure representing them.

"zen-garden-c" (90.24%) "book" (7.91%) "fluo-cell-c" (5.88%) "ct-thorax" (17.30%)
β = 4× 10−6 β = 1.0 β = 2.0 β = 20.0

Figure 2: Seeds (top row), segmentations (middle row) and reduced graphs (bot-
tom row) for a subset of images of Table 1. Reduced graphs are superimposed
in yellow to the original image. Relative reduced graph sizes as well as β values
are indicated below each image.
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