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A controlled distributed parameter model for a fluid-flerildtructure
system: numerical simulations and experiment validations

Bogdan Robu; Lucie Baudouin and Christophe Prieur

Abstract— We consider the problem of active reduction of
vibrations in a fluid-flexible structure system. In the aeropace
domain, we are actually interested in the system that coupte
the deflection of a plane wing and the sloshing of the fuel inde
the wing’s tank. The control is performed using piezoelectic
patches and the main difficulty comes from the complex
coupling between the flexible modes of the wing and the
sloshing modes of the fuel. We establish an infinite-dimenmnal
model for the global system and then a finite-dimensional
approximation calculated using the first modes and validatd on
the experimental setup. A feedback controller is used to sho
the effectiveness of the closed loop in attenuating vibratins.

Index Terms— PDE experiment, fluid-flexible structure, pole Fig. 1. Plant description: the rectangular plate and thézbotal cylinder
placement

. INTRODUCTION The study of flexible plates has been already considered in

Smart structures occupied a major place in the contrgl?e Iiter_ature (see [14]) but they are usuaIIy_ based on finite
research area during the last two decades. They are ng&m_ensmnal quel. On th_e other har_1d, the interaction of the
used for their capability of attenuating the vibrations andexible plate with the fluid asks to introduce a dynamical
measuring the deformation of structure. For instance censi fluid model which is also an infinite-dimensional equation
recent feedback control techniques devoted to the actif@d which is coupled with the plate equation.
vibration reduction of flexible structures see [1], [6]. The first contribution of this paper is therefore the compu-

In the applicative domain of aerospace, we study the geftion of an infinite-dimensional mod(_e! fpr the fluid-strue _
eral problem of the suppression of a plane wing’s vibratiogYStem- Then we compute a stabilizing controller which
considering that the wing is in interaction with the moveimeniS based on a pole-placement feedback. We check up on
of the fuel inside the wing’s tank. Recent developmentsén thSimulations that there is no spillover effect when closing t
aerospace applications lead to more and more flexible wing82P- Finally we present some experiments on a real setup.
The actual system we study (see Figure 1) is an exampIeThe paper is orgamz_ed as follows. We present in Secu_on
of a coupled fluid-flexible structure system. Some studied the plant under consideration. The plate is equipped with
investigate the use of piezoelectric patches to effe,;{ivepiezoelectric patches (sensors and actuators). Then tioSec
suppress the vibrations. However, only a few results atd we establish the fluid-structure model of our system. We
already available in the literature for fluid-structuretsyss. COmpute in Section 1V a simple stabilizing controller which
One can see e.g. [13] for a recent theoretical result and [16] @ Pole-placement feedback control law. Section IV is also
for a validation of the method by means of experimentaqieVOted to numerical simulations and to experiments on the
results. There are less studies of fluid-structure systedit def€al setup.
cated to aerospace applications but one can read [15] where
controllers are designed using a numerical model.

The first aim of this paper is to derive an infinite dimen- The system we want to control is located at ISAE-
sional model of the specific fluid-(flexible)structure syste ENSICA, Toulouse, France and has been constructed to have
The distribution of entries and the number of degrees dhe vibration frequencies of a real plane wing with fuel [15]
freedom of possible applications motivate us to considépur goal is to build a pole placement controller that will
a model written using partial differential equations. Theattenuate the vibrations of a plate despite the shaking of a
difficulties that we have to manage are twofold. On the ont@nk filled with liquid and inserted at the end of the plate.
hand the flexible structure is comparable to a plate, and we The device is composed of an aluminium rectangular plate
have two independent space variables (in contrast to tl@d a plexiglas horizontal cylindrical tank filled with liigl
classical cantilever beam which does not have any widthfsee Figure 1).

The plate has the length along the horizontal axis and the

CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulousend&a yidth along the vertical one; it is clamped on one side and
Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-3107 S L.
Toulouse, France br obu@ aas. fr, baudoui n@aas.fr, (ree onthe three others. The characteristics of the alumini
cprieur@aas. fr plate are given in Table I.

Il. PLANT DESCRIPTION



IIl. M ODELING OF THE SYSTEM

Plate length L 136 m In this section we compute the mathematical model of
Plate width | 0.16 m the system previously presented. We first present an irfinite
Plate thickness h 0.005 m dimensional model using operator matrices and then a finite-
Plate density p | 2970 kg m—3 . . o )
Blate Young modulus | Y ~= GPa dimensional model considering only some of the system’s
Plate Poisson coefficienf v 0.33 modes.

TABLE | A. Infinite-dimensional model
PLATE CHARACTERISTICS
On the one hand, considering the plate, we assume the
kinematic hypothesis given by [2, Chapter 11.1]. This alow
The piezoelectric actuators and sensors of the plant aus to calculate the kinetic and potential energies as well as
made from PZT (lead zirconate titanate). They are glued neftte mass and stiffness matrices. More details for calarati
to the plate’s clamped side. Two sensors are also located are given in [7, Chapter 4.6]. Using the mass and stiffness
the opposite side of the plate with respect to the actuatorgatrices one can infer the partial derivative equation ef th
The characteristics of the sensors and the actuators aa giplate:
in Table II.

0w ow 9%m 9*m.,
Ms—= w)—=— + YI,A*w = Y4 = 1
Actuator length Lpiczo 0.14m 5 o2 +C(w) ot T oy? * 022 @)
Actuator width Ipiczo 0.075 m . o .
Actuator thickness Rpiczo 0.0005 m where C(w) IS qn Oper"f‘tor quantlfylng the damplng,
Sensor length Lepiczo 0.015 m w = w(y,z1t) is the displacementn, mass per unit
Sensor width lepiezo 0.025 m late area) the Young modulus and, = — - the
Sensor thickness Repiezo 0.0005 m P - . 9 . s 12(1-v2)
Actuator/Sensor density i 7800 kg m—3 moment of inertia of the plateA is the Laplace operator
1€Z0 2
. . 2 2
Actuator/S'ensor Yogng mo_dL_JIus Ypiezo 67 GPa with A2 belng equa| to % + %) . The m., m, are
Actuator piezoelectric coefficient ds31 —210e~ 2 mV-T Y z . . ‘
Sensor piezoelectric coefficient | e 9.6 N (vm)~T external moments, along theandy - axis, delivered to the
Actuator/Sensor Poisson coefficielt vpc.o 0.3 plate by the actuators (see [4] or [3]) and by the sloshing
TABLE I modes. Further on (1) is to be solved using the boundary
CHARACTERISTICS OF THE PIEZOELECTRIC PATCHES conditions given in [2, Chapter 8.1.1] or [3].

The tank is located at abo0t05% length of the plate’s ~ Later in our study we are using the homogeneous partial
free side and is symetrically spread along the horizontal ax derivative equation in the absence of external forces:

Due to the configuration of the total system (cf Figures 1 and )
2) we infer that the tank undergoes a longitudinal movement Y1, 012 +A%w =0 (2)
when the plate has a flexion movement and a pitch movemen . . . . .
when the plate has a torsion movement. It has the dimensiog;ggzeug:ipIﬁfzn}izzt\i'g:;hen be expressed in a Hilbertian
given in Table Il and it can be filled with water or ice up to 9 ’

an arbitrary level. If the tank is filled with ice we can easily s >

model it by a steady mass.When the tank is filled with watef (v: 2: 1) = Z (Y, 2)ak(t) = Z i, (y)Zj. (2)ar(t) (3)
but the water level is close t0 or close to the cylinder =1 k=1

diameter (tank empty or tank completely filled), as there iwhereY;, (y) andZ;, (z) are the Ritz functions of two beams
no sloshing behaviour, the modeling process is similar. ~ along they-axis andz-axis. For a more detailled description
of the choice of Ritz functions see [7, Chapter 5.2].

On the other hand, we now consider the longitudinal
movement of the liquid along the-axis. Because the liquid
motion is starting from rest, there is a velocity potential
o(x,y, z,t) such that (see [12, Chapter 1.12]) the equation
of liquid continuity is written

ms 0w

Fig. 2. Deformation of the rectangular plate ¢  0%¢  0%¢ 0 @)
ox2 oy 922
Tank exterior diamete] ~ 0.11 m and the linearized equation of liquid motion is
Tank interior diameter 0.105 m 96
Tank length 0.5m o¢ P A _
Tank density 1180 kg m—> ot + P +tg(z—h) = Cox =0 ®)
Tank young modulus 4.5 GPa . .
TABLE I where(C| stands for the acceleration along thexis, g for
CHARACTERISTICS OF THE CYLINDRICAL TANK the gravitational acceleration artdfor the liquid height in

the container at rest positiop;andp are the density and the
pressure of the liquid. Further on (4) and (5) are to be solved
using the boundary conditions detailled in [12, Chapte}.1.9



As in [5, Chapter 1.2], we can give the expression of théhe actuators. More explanations are given for the finite-

oscillating free surface as: dimensional case in paragraph III-B.3.

z=h+6(z,y1) (6) B. Finite-dimensional approximation
whered(z,y,t) is the small displacement of the free surface Knowing that the influence of system’s modes is inversely
above the undisturbed level= h. proportional to the mode’s frequency we legitimate that we

One can notice from [9, Chapters 1 and 2] that the solutiomay approximate the displacement by the fixstmodes of
of the sloshing problem depends on the geometry of the tarikie system. We are detailing in this subsection the caiculat
In the case of horizontal cylindrical tank, as it is our cake, of the finite-dimensional approximation of our model. We
difficulty resides in the fact that the shape of the horizbntaaim at describing a state space model where the state vector
cylinder does not fit into any standard coordinate system arsthould gather the firsiV vibration modes of the plate and
thus the velocity potential, which is quantifying the sliog)y  the first NV sloshing modes of the tank.
cannot be derived using separation variable method. In ourl) Plate model: In this section we are calculating the
case (horizontal cylindrical tank that undergoes longitatl ~ finite-dimensional approximation of (1) for the rectangula
movement) the longitudinal mode frequencies are simplglate.
curves faired through experimental data as are no andlytica We write the finite-dimensional approximation for the
results available (see [5, Chapter 1.6]). clamped-free-free-free plate in the absence of the tanigusi

The solution we propose to overcome this difficulty is teequation (1). The approximation of the effect of the tank wil
make a geometrical approximation, the cylindrical tankagei be considered in Section IlI-B.3.b. We write
approximated by a rectangular one with the same sloshing Xp(t) = A, X, (t) + Byu(t)
frequencies but for which there are analytical results for { y(t) = C X, (t)
the calculation of modes and forces/moments. In order to P
calculate the parameters of the rectangular “virtual” taek where X, = (g1 wiqi -+ ¢y wngn ) - the g
use the following approach: we choose the length of thieeing the same as in (3) - is the state space vector, and
rectangular tank equal to the one of the cylindrical one, théae dynamic matrix4,, is written as:
width of the rectangular tank equal to the width of the free A

(10)

surface of the liquid and the height of the rectangular tank s 0 AO 8
that the liquid volume in both containers is the same. After Ay = P (11)
comparing the sloshing frequencies of the rectangular tank 0 0 A
to the ones calculated from the experimental data we observe Py
, : 5 B B
that the difference is only0~“Hz. with 4, — 2Ckwi Wi\ for every from 1 to N.

Further on¢(x,y, z,t) and §(z,y,t) are calculated by Wk 0
solving (4), (5) and (6) with proper boundary conditions(se  The frequency of thé!* mode iswy, in [rad s~'] given
[10] for a rectangular tank of length along thez-axis and in [2, Chapter 11] and,, is the damping. The experiments
width b along they-axis). As the movement of the liquid have proved that the damping is not constant for every
is along thez-axis it can be proven that the free surfacevibration mode but it depends on the quality factor which is
displacement and the velocity potential are not dependirdjfferent for every structure mode. The value of the quality
ony: vector is obtained by measurements on the structure for a
oo given input voltage.
O(x,y,t) = 0(x,t) = Zrl cos(= (7) For the control matrixB,, [4] or [11] can be consulted for
i=0 the main steps regarding the modeling of the piezoelectric
b(x,y,2,t) = oz, z1t) patches. As our experimental setup is not symmetric with
_ = (8)  respect to the-axis - actuators only on one side of the plate
= Zi:O 7i(t) Zrstnn i, wy ©0S(5ix) iti i
- the position of the neutral fiber needs to be recalculated
where =i = wg andr; = %. By replacing (6), (7) and using [11]. The control matrix is then written as:
(8) in (5) we get a differential equation aof which is to T
be solved for the free surface. This allow us to compute P> 0) (12)
ther; functions. After tedious calculations we have the totajyhere
moment exerted by the liquid sloshing:

cosh(Eiz)

By = (bp,,0,...;bp,,0,....b

Za2
_ / v/ .
o i . [ L b = KoY ) = () [ | s
Y - - — — . — a2
i Hz?’ tanh(Zih)  sinh(Zih) +K(Z)(202) = Z}(2a1)) Y;(y)dy
pCoa’b () hZi var
t—g T2 b Z 43 - (9 (Wa1, 2a1), (Ya2, 2a2) are the coordinates of the actuator and
i=1,3,5,.. K, is a parameter depending on the actuator/plate geometry

Further on, for the coupling, (9) is used in the momen&nd on the position of the neutral fiber. In (1Q)¢) stands
expressionmn, of (1) along with the moment delivered by for the voltage applied to the piezoelectric patch.



The output matrixC,, is calculated with the new position  3) Model coupling:The crucial and the most difficult part
of the neutral fiber: in the modeling of this experimental setup is the interaxctio
between the plate and the cylinder. In the following sub-

Cp = (0,6py50,0,py 0, 0, 6py) (13) section the calculations are done assuming that the liquid
where movement is approximated by only one mass pendulum
Zea system and the plate movement by only one Ritz function.
Cpp = wpI:CCa ((Yi'(ycg) - Y/ (ye1)) / Zj(z)dz The generalization to more mass pendulum systems and more
ya el Ritz functions is direct.
+H(Z}(2c2) — Z;(zcl))/ Yi(y)dy) In order to quantify the interaction between the plate and
Ye1

the tank we have to study the plate’s influence on the tank
and C, is the capacity of the charge amplifier we useand vice versa.

to measure the voltage in the output of the piezoelectric a) Plate’s influence on the liquid filling the rectangular
sensor andk,. is a parameter depending on the sensor/platank: The movement of the pendulum mass system under
geometry and on the position of the neutral fiber. Thexternal acceleration is described by (14), whéteis the
coordinates of the sensor patch &g, z.1), (ye2, 2c2). For — acceleration delivered by the movement of the plate. We
a more detailled calculation of the matricBs and C,, see first use (3) to express the movement of the plate and

[17]. the acceleration is then obtained by derivations according
2) Liquid model: In this section we calculate the finite- to time. In the case of one mass-pendulum and one Ritz
dimensional approximation of the tank’s sloshing. function the acceleration becomes:

Having the geometrical parameters of the rectangular tank . .
one can use [12, Chapter 17] to calculate the movement Co =1i(y, 2,1) = V1(¥) Z1(2)d1 (*) (18)
equations and the boundary conditions. We then use theéhere Y;(y) and Z;(z) are the first Ritz functions along
approximation given by [10] to model the sloshing. We arg-axis andz-axis.
using a finite number of mass pendulums systems - eachAs in [10], the external acceleratiafi, can be calculated
corresponding to a sloshing mode - that is to say for thia the gravity centeilG = (yg, z) of the tank for steady
k" odd integeri of the series (9), it corresponds a massmotion. Thus (18) becomes:
pendulum system denotéd

The state-space representation is then easily obtaineg usi W(ya, za,t) = Y1(ya) Z1(26)41(t) = Co
the pendulum equation under external acceleration: and this allow us to write”, as:
1 .. . T
G+ 26| L0+ o = ——Co 14)  Co=(Nile)Zi(zc) 0) (G(t) wia()) . (19)
k k k

i : .. . T
where z;, is the angle of thekth pendulum compared to . From this last equation one can seei(t) wiqi(t) )
its equilibrium position,l;, its length and¢, is the value 'S the derivative of the state space vector of the rectangula
of pendulum damping and it is fixed at 0.01 for all massP!at® Xp. By taking K¢ = ( Yi(ya)Zi(z¢) 0 ), (19)
pendulum systems. becomes:
By choosing the state space vector for the liquid sloshing Co = KgAyX, + KgByu (20)

T
Y P . L .
equal to X, = ( k[T %k ) + the dynamic equation is where X,, was replaced with the expression from (10).

Using (20), (16) and (17), equation (15) becomes:

Xz - AzXz + Bzuacc (15)
where the matrix4d. computed from (14) is: X = A X, + B.(KeApXp + Ko Bpu) (21)
A, 0 ... 0 This equation describes the fact that the movement of the
01 A 0 plate generates a movement of the pendulum mass systems,
A, = o (16) that is to say a movement of the liquid in the tank.
0 0 ... A b) Tank’s influence on the rectangular platéhe liquid
o sloshing is sensed by the plate as a perturbation that comes
o _2@& _\/% into the state space representation by means of a mafgix
Wi o = . .
, 2 0 { X, =A,X, + Bpu+ B, X, (22)
In the case of the control matriB, the construction is y=CpXp

also direct by considering from (14),.. = Co as the control  see (paragraph II-B.1). For the calculation of the perrb
variable: tion matrix B., we are using the same approach as in the
B T case of the control matri®,,.
B, = (b2,,0,...,b:,,0, ..., b2, 0) (17) The external moment applied to the tank due to the
whereb. — [ "I movement of the fluid is computed in (9). By our choice
e ' of the physical parameters of the pendulum, the moment



due to the liquid sloshing is equal to the moment due to V. CONTROLLER SYNTHESIS
the movement of all mass-pendulum systems. The externalln this section we calculate a controller for our experi-

moment written for only one mass-pendulum is mental setup using the finite-dimensional approximation of

our model.
Using the state space representation (26) we can use the

where Cyy + 117 is the total acceleration due to pendulunPole allocation method to compute a controllerthat will -
oscillations and plate movement. Using (20) and (21), th@inimize the response time of the closed-loop in comparison

M., = miLi(Co + 1171)

expression of\1,,, can be rewritten as: to the open-loop.
The controllerK is first tested in simulation under Matlab
_252\/12 _\/IZ and then on the experimental setup at ISAE. In our case the
M., =( mihLi 0) y ! ' ] X. (23) voltage delivered by will be the input of the system and
T 0 the voltage delivered by the piezoelectric sensor will be th

system’s output. The tank is filled up to an arbitrary level of

From this last equation we can infer that the total mog 7. The initial condition considered is a plate displacement
mentum of the pendulums does not depend on the externgl ocm from its initial equilibrium position. In choosing

accelerationCy but only on the liquid movement. the closed-loop poles, we have to take into account the

For the calculation of3., we are then assuming that thejimitations of the piezoelectric actuatofs 130V, 130V/].
total momentum is concentrated in a small square around

the tank center of gravity, with edges of coordinates A. Simulations

(1165 216), (Y26, 22¢)- The total bending moment is: The controller is calculated using the first three modes of
via e /920 920 the plate and the two modes of the liquid sloshing, that is to
r,,= / / ( 5 L+ 3 ;”) wdydz.  (24) say (26) is used with\,, € R® and X, € R*.
g J=e Y z The closed-loop system is then simulated using the first
Using (23) and (3) into (24) we obtain four modes of the plgt_e aqd the first three modes of the quui_d
sloshing (therefore it is simulated on a system of larger di-
B _ ( bap, ) (25) mension). The voltage delivered by the piezoelectric ssnso
=P 0 in the open-loop and the closed-loop case are presented in
Figure 3. The real part of the closed-loop poles was chosen
where: up to 10 times the real part of the open-loop ones. The state
z2a estimator is a Luenberger observer with the same dimension
bepy = Ky ((Yil(yQG) - Yi/(ylG))/ Zj(z)dz as the system. The real part of the observer poles is up to
420 ¢ 10 times bigger than the real part of the poles.
HZ)(ea0) ~ Ziferc) [ Vitw)ay)

Yic

andsz = ( miliLy 0 )Az

C. Complete Model

From (21) and (22) one can write the complete state-space
model of the experimental setup. For the sake of clarity of
the presentation of the complete model we consider the case
of one Ritz function and one mass-pendulum. _

For the complete system we choose as state space vec&t

0

3. Response of the closed-loop system (in plain ling) ahthe
n-loop system (in dotted line) on numerical simulations

T
X = ( §p > = ( G wiqn Z ﬁm ) . The voltage delivered by the pole placement controller
: is presented in Figure 4. The voltage being in the range
Combining all the matrices leads to the following finite-[—130V, 130V], the most important constraint is respected.
dimensional approximation using the state-space reptasen

xxxxxxxxxxxxxxxxxxxxxxxxxx

tion: .
v Ay, By B, :
() (s) e i
y=(C, 0)X :

_1 1 o
where4,,, = h]éGAP B, = llféch and

0 denotes the null matrix of appropriate dimensions. Fig. 4. \Voltage applied to the actuators on numerical sitiria



From Figure 3 one can notice the absence of the spillovées probably due to the uncertainty that was not taken into
effect on the fourth mode (i.e. the first one which has beeronsideration while calculating the controller.
neglected in the design on the controller). Although it is Further investigations are necessary in some areas and are
a common problem when working with infinite-dimensionaktudied now such as:
systems we did not observe it. Even though some techniquks Damping modeling. We considered the damping of the
to cancel it exist, e.g. by prefiltering the piezoelectrins®  structure being constant for each mode. In reality we ob-
signals with a low-pas filter, see [8]. served that the damping depends not only on the mode but
, also on the input voltage of the structure.
B. Experiments 2. H,, controller. Constructed with a large number of
The results are then tested on the experimental setyglate/liquid modes, it will make the system robust to exteri
The controller previously calculated is implemented undgserturbations. Also the use of uncertainty in modeling the
the same initial conditions (plate displacementof from system and in the synthesis of the controller will improve
its initial position). The voltage delivered by the system’the closeness between the closed loop response time.
sensors, in the open-loop and the closed-loop case, is givBnNon linear modeling of the actuators.
in Figure 5. The response time (settling time) is measured
considering al0% tolerance band. We can see that the
closed-loop response is better that the open-loop one, evenThe authors would like to thank Valérie Pommier-

though we considered only a few modes for the plate/liquidudinger, ISAE, Toulouse (France) for fruitful discussson
on the experimental setup.
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