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A controlled distributed parameter model for a fluid-flexible structure
system: numerical simulations and experiment validations

Bogdan Robu; Lucie Baudouin and Christophe Prieur

Abstract— We consider the problem of active reduction of
vibrations in a fluid-flexible structure system. In the aerospace
domain, we are actually interested in the system that couples
the deflection of a plane wing and the sloshing of the fuel inside
the wing’s tank. The control is performed using piezoelectric
patches and the main difficulty comes from the complex
coupling between the flexible modes of the wing and the
sloshing modes of the fuel. We establish an infinite-dimensional
model for the global system and then a finite-dimensional
approximation calculated using the first modes and validated on
the experimental setup. A feedback controller is used to show
the effectiveness of the closed loop in attenuating vibrations.

Index Terms— PDE experiment, fluid-flexible structure, pole
placement

I. I NTRODUCTION

Smart structures occupied a major place in the control
research area during the last two decades. They are now
used for their capability of attenuating the vibrations and
measuring the deformation of structure. For instance consider
recent feedback control techniques devoted to the active
vibration reduction of flexible structures see [1], [6].

In the applicative domain of aerospace, we study the gen-
eral problem of the suppression of a plane wing’s vibration
considering that the wing is in interaction with the movement
of the fuel inside the wing’s tank. Recent developments in the
aerospace applications lead to more and more flexible wings.
The actual system we study (see Figure 1) is an example
of a coupled fluid-flexible structure system. Some studies
investigate the use of piezoelectric patches to effectively
suppress the vibrations. However, only a few results are
already available in the literature for fluid-structure systems.
One can see e.g. [13] for a recent theoretical result and [16]
for a validation of the method by means of experimental
results. There are less studies of fluid-structure system dedi-
cated to aerospace applications but one can read [15] where
controllers are designed using a numerical model.

The first aim of this paper is to derive an infinite dimen-
sional model of the specific fluid-(flexible)structure system.
The distribution of entries and the number of degrees of
freedom of possible applications motivate us to consider
a model written using partial differential equations. The
difficulties that we have to manage are twofold. On the one
hand the flexible structure is comparable to a plate, and we
have two independent space variables (in contrast to the
classical cantilever beam which does not have any width).
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Fig. 1. Plant description: the rectangular plate and the horizontal cylinder

The study of flexible plates has been already considered in
the literature (see [14]) but they are usually based on finite-
dimensional model. On the other hand, the interaction of the
flexible plate with the fluid asks to introduce a dynamical
fluid model which is also an infinite-dimensional equation
and which is coupled with the plate equation.

The first contribution of this paper is therefore the compu-
tation of an infinite-dimensional model for the fluid-structure
system. Then we compute a stabilizing controller which
is based on a pole-placement feedback. We check up on
simulations that there is no spillover effect when closing the
loop. Finally we present some experiments on a real setup.

The paper is organized as follows. We present in Section
II the plant under consideration. The plate is equipped with
piezoelectric patches (sensors and actuators). Then in Section
III we establish the fluid-structure model of our system. We
compute in Section IV a simple stabilizing controller which
is a pole-placement feedback control law. Section IV is also
devoted to numerical simulations and to experiments on the
real setup.

II. PLANT DESCRIPTION

The system we want to control is located at ISAE-
ENSICA, Toulouse, France and has been constructed to have
the vibration frequencies of a real plane wing with fuel [15].
Our goal is to build a pole placement controller that will
attenuate the vibrations of a plate despite the shaking of a
tank filled with liquid and inserted at the end of the plate.

The device is composed of an aluminium rectangular plate
and a plexiglas horizontal cylindrical tank filled with liquid
(see Figure 1).

The plate has the length along the horizontal axis and the
width along the vertical one; it is clamped on one side and
free on the three others. The characteristics of the aluminium
plate are given in Table I.



Plate length L 1.36 m
Plate width l 0.16 m

Plate thickness h 0.005 m
Plate density ρ 2970 kg m−3

Plate Young modulus Y 75 GPa
Plate Poisson coefficient ν 0.33

TABLE I

PLATE CHARACTERISTICS

The piezoelectric actuators and sensors of the plant are
made from PZT (lead zirconate titanate). They are glued next
to the plate’s clamped side. Two sensors are also located on
the opposite side of the plate with respect to the actuators.
The characteristics of the sensors and the actuators are given
in Table II.

Actuator length Lpiezo 0.14 m
Actuator width lpiezo 0.075 m

Actuator thickness hpiezo 0.0005 m
Sensor length Lcpiezo 0.015 m
Sensor width lcpiezo 0.025 m

Sensor thickness hcpiezo 0.0005 m
Actuator/Sensor density ρpiezo 7800 kg m−3

Actuator/Sensor Young modulus Ypiezo 67 GPa
Actuator piezoelectric coefficient d31 −210e−12 m V−1

Sensor piezoelectric coefficient e31 −9.6 N (Vm)−1

Actuator/Sensor Poisson coefficient νpiezo 0.3

TABLE II

CHARACTERISTICS OF THE PIEZOELECTRIC PATCHES

The tank is located at about0.05% length of the plate’s
free side and is symetrically spread along the horizontal axis.
Due to the configuration of the total system (cf Figures 1 and
2) we infer that the tank undergoes a longitudinal movement
when the plate has a flexion movement and a pitch movement
when the plate has a torsion movement. It has the dimensions
given in Table III and it can be filled with water or ice up to
an arbitrary level. If the tank is filled with ice we can easily
model it by a steady mass.When the tank is filled with water
but the water level is close to0 or close to the cylinder
diameter (tank empty or tank completely filled), as there is
no sloshing behaviour, the modeling process is similar.
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Fig. 2. Deformation of the rectangular plate

Tank exterior diameter 0.11 m
Tank interior diameter 0.105 m

Tank length 0.5 m
Tank density 1180 kg m−3

Tank young modulus 4.5 GPa

TABLE III

CHARACTERISTICS OF THE CYLINDRICAL TANK

III. M ODELING OF THE SYSTEM

In this section we compute the mathematical model of
the system previously presented. We first present an infinite-
dimensional model using operator matrices and then a finite-
dimensional model considering only some of the system’s
modes.

A. Infinite-dimensional model

On the one hand, considering the plate, we assume the
kinematic hypothesis given by [2, Chapter 11.1]. This allows
us to calculate the kinetic and potential energies as well as
the mass and stiffness matrices. More details for calculations
are given in [7, Chapter 4.6]. Using the mass and stiffness
matrices one can infer the partial derivative equation of the
plate:

ms

∂2w

∂t2
+ ζ(w)

∂w

∂t
+ Y Is∆

2w =
∂2my

∂y2
+

∂2mz

∂z2
(1)

where ζ(w) is an operator quantifying the damping,
w = w(y, z, t) is the displacement,ms mass per unit
plate area,Y the Young modulus andIs = h3

12(1−ν2) the
moment of inertia of the plate.∆ is the Laplace operator

with ∆2 being equal to
(

∂2

∂y2 + ∂2

∂z2

)2

. The mz, my are
external moments, along thez andy - axis, delivered to the
plate by the actuators (see [4] or [3]) and by the sloshing
modes. Further on (1) is to be solved using the boundary
conditions given in [2, Chapter 8.1.1] or [3].

Later in our study we are using the homogeneous partial
derivative equation in the absence of external forces:

ms

Y Is

∂2w

∂t2
+∆2w = 0 (2)

The displacementw will then be expressed in a Hilbertian
base using Ritz functions:

w(y, z, t) =

∞
∑

k=1

ηk(y, z)qk(t) =

∞
∑

k=1

Yik(y)Zjk(z)qk(t) (3)

whereYik(y) andZjk(z) are the Ritz functions of two beams
along they-axis andz-axis. For a more detailled description
of the choice of Ritz functions see [7, Chapter 5.2].

On the other hand, we now consider the longitudinal
movement of the liquid along thex-axis. Because the liquid
motion is starting from rest, there is a velocity potential
φ(x, y, z, t) such that (see [12, Chapter 1.12]) the equation
of liquid continuity is written

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0 (4)

and the linearized equation of liquid motion is

∂φ

∂t
+

p

ρ
+ g(z − h)− C0x = 0 (5)

whereC0 stands for the acceleration along thex-axis, g for
the gravitational acceleration andh for the liquid height in
the container at rest position;ρ andp are the density and the
pressure of the liquid. Further on (4) and (5) are to be solved
using the boundary conditions detailled in [12, Chapter 1.9].



As in [5, Chapter 1.2], we can give the expression of the
oscillating free surfacez as:

z = h+ δ(x, y, t) (6)

whereδ(x, y, t) is the small displacement of the free surface
above the undisturbed levelz = h.

One can notice from [9, Chapters 1 and 2] that the solution
of the sloshing problem depends on the geometry of the tank.
In the case of horizontal cylindrical tank, as it is our case,the
difficulty resides in the fact that the shape of the horizontal
cylinder does not fit into any standard coordinate system and
thus the velocity potential, which is quantifying the sloshing,
cannot be derived using separation variable method. In our
case (horizontal cylindrical tank that undergoes longitudinal
movement) the longitudinal mode frequencies are simply
curves faired through experimental data as are no analytical
results available (see [5, Chapter 1.6]).

The solution we propose to overcome this difficulty is to
make a geometrical approximation, the cylindrical tank being
approximated by a rectangular one with the same sloshing
frequencies but for which there are analytical results for
the calculation of modes and forces/moments. In order to
calculate the parameters of the rectangular “virtual” tankwe
use the following approach: we choose the length of the
rectangular tank equal to the one of the cylindrical one, the
width of the rectangular tank equal to the width of the free
surface of the liquid and the height of the rectangular tank so
that the liquid volume in both containers is the same. After
comparing the sloshing frequencies of the rectangular tank
to the ones calculated from the experimental data we observe
that the difference is only10−2Hz.

Further onφ(x, y, z, t) and δ(x, y, t) are calculated by
solving (4), (5) and (6) with proper boundary conditions (see
[10] for a rectangular tank of lengtha along thex-axis and
width b along they-axis). As the movement of the liquid
is along thex-axis it can be proven that the free surface
displacement and the velocity potential are not depending
on y:

δ(x, y, t) = δ(x, t) =

∞
∑

i=0

ri(t) cos(Ξix) (7)

φ(x, y, z, t) = φ(x, z, t)

=
∑

∞

i=0 ṙi(t)
cosh(Ξiz)

Ξi sinh(kih)
cos(Ξix)

(8)

whereΞi = π i
a

and ṙi = dri
dt

. By replacing (6), (7) and
(8) in (5) we get a differential equation ofri which is to
be solved for the free surface. This allow us to compute
theri functions. After tedious calculations we have the total
moment exerted by the liquid sloshing:

my = −2ρb

∞
∑

i=1,3,5,...

r̈i(t)

Ξi3

[

1

tanh(Ξih)
+

2

sinh(Ξih)

]

+
ρC0a

3b

12
+ 2ρb

∞
∑

i=1,3,5,...

r̈i(t)

Ξi3
hΞi

2
(9)

Further on, for the coupling, (9) is used in the moment
expressionmy of (1) along with the moment delivered by

the actuators. More explanations are given for the finite-
dimensional case in paragraph III-B.3.

B. Finite-dimensional approximation

Knowing that the influence of system’s modes is inversely
proportional to the mode’s frequency we legitimate that we
may approximate the displacement by the firstN modes of
the system. We are detailing in this subsection the calculation
of the finite-dimensional approximation of our model. We
aim at describing a state space model where the state vector
should gather the firstN vibration modes of the plate and
the firstN sloshing modes of the tank.

1) Plate model: In this section we are calculating the
finite-dimensional approximation of (1) for the rectangular
plate.

We write the finite-dimensional approximation for the
clamped-free-free-free plate in the absence of the tank using
equation (1). The approximation of the effect of the tank will
be considered in Section III-B.3.b. We write

{

Ẋp(t) = ApXp(t) +Bpu(t)
y(t) = CpXp(t)

(10)

where Xp =
(

q̇1 ω1q1 · · · ˙qN ωNqN
)

- the qk
being the same as in (3) - is the state space vector, and
the dynamic matrixAp is written as:

Ap =









Ap1
0 · · · 0

0 Ap2
· · · 0

· · ·

0 0 · · · ApN









(11)

with Apk
=

(

−2ζkωk −ωk

ωk 0

)

for everyk from 1 to N .

The frequency of thekth mode isωk in [rad s−1] given
in [2, Chapter 11] andζpk

is the damping. The experiments
have proved that the damping is not constant for every
vibration mode but it depends on the quality factor which is
different for every structure mode. The value of the quality
vector is obtained by measurements on the structure for a
given input voltage.

For the control matrixBp, [4] or [11] can be consulted for
the main steps regarding the modeling of the piezoelectric
patches. As our experimental setup is not symmetric with
respect to thex-axis - actuators only on one side of the plate
- the position of the neutral fiber needs to be recalculated
using [11]. The control matrix is then written as:

Bp = (bp1
, 0, ..., bpk

, 0, ..., bpN
, 0)T (12)

where

bpk
= Kb(Y

′

i (ya2)− Y ′

i (ya1))

∫ za2

za1

Zj(z)dz

+Kb(Z
′

j(za2)− Z ′

j(za1))

∫ ya2

ya1

Yi(y)dy

(ya1, za1), (ya2, za2) are the coordinates of the actuator and
Kb is a parameter depending on the actuator/plate geometry
and on the position of the neutral fiber. In (10),u(t) stands
for the voltage applied to the piezoelectric patch.



The output matrixCp is calculated with the new position
of the neutral fiber:

Cp = (0, cp1
, ..., 0, cpk

, ..., 0, cpN
) (13)

where

cpk
= Kc

ωpk
Ca

(

(Y ′

i (yc2)− Y ′

i (yc1))

∫ zc2

zc1

Zj(z)dz

+(Z ′

j(zc2)− Z ′

j(zc1))

∫ yc2

yc1

Yi(y)dy

)

and Ca is the capacity of the charge amplifier we use
to measure the voltage in the output of the piezoelectric
sensor andKc is a parameter depending on the sensor/plate
geometry and on the position of the neutral fiber. The
coordinates of the sensor patch are(yc1, zc1), (yc2, zc2). For
a more detailled calculation of the matricesBp andCp see
[17].

2) Liquid model: In this section we calculate the finite-
dimensional approximation of the tank’s sloshing.

Having the geometrical parameters of the rectangular tank
one can use [12, Chapter 17] to calculate the movement
equations and the boundary conditions. We then use the
approximation given by [10] to model the sloshing. We are
using a finite number of mass pendulums systems - each
corresponding to a sloshing mode - that is to say for the
kth odd integeri of the series (9), it corresponds a mass-
pendulum system denotedk.

The state-space representation is then easily obtained using
the pendulum equation under external acceleration:

z̈k + 2ξz

√

g

lk
żk +

g

lk
zk = −

1

lk
C0 (14)

where zk is the angle of thekth pendulum compared to
its equilibrium position,lk its length andξz is the value
of pendulum damping and it is fixed at 0.01 for all mass-
pendulum systems.

By choosing the state space vector for the liquid sloshing

equal toXz =
(

żk

√

g
lk
zk

)T

, the dynamic equation is

Ẋz = AzXz +Bzuacc (15)

where the matrixAz computed from (14) is:

Az =









Az1 0 · · · 0
0 Az2 · · · 0

· · ·

0 0 · · · AzN









(16)

with Azk =





−2ξz
√

g
lk

−

√

g
lk

√

g
lk

0



.

In the case of the control matrixBz the construction is
also direct by considering from (14)uacc = C0 as the control
variable:

Bz = (bz1 , 0, ..., bzk , 0, ..., bzN , 0)
T (17)

wherebzk =

(

−
1
lk

0

)

.

3) Model coupling:The crucial and the most difficult part
in the modeling of this experimental setup is the interaction
between the plate and the cylinder. In the following sub-
section the calculations are done assuming that the liquid
movement is approximated by only one mass pendulum
system and the plate movement by only one Ritz function.
The generalization to more mass pendulum systems and more
Ritz functions is direct.

In order to quantify the interaction between the plate and
the tank we have to study the plate’s influence on the tank
and vice versa.

a) Plate’s influence on the liquid filling the rectangular
tank: The movement of the pendulum mass system under
external acceleration is described by (14), whereC0 is the
acceleration delivered by the movement of the plate. We
first use (3) to express the movement of the plate and
the acceleration is then obtained by derivations according
to time. In the case of one mass-pendulum and one Ritz
function the acceleration becomes:

C0 = ẅ(y, z, t) = Y1(y)Z1(z)q̈1(t) (18)

where Y1(y) and Z1(z) are the first Ritz functions along
y-axis andz-axis.

As in [10], the external accelerationC0 can be calculated
in the gravity centerG = (yG, zG) of the tank for steady
motion. Thus (18) becomes:

ẅ(yG, zG, t) = Y1(yG)Z1(zG)q̈1(t) = C0

and this allow us to writeC0 as:

C0 =
(

Y1(yG)Z1(zG) 0
) (

q̈1(t) ω1q̇1(t)
)T

. (19)

From this last equation one can see
(

q̈1(t) ω1q̇1(t)
)T

is the derivative of the state space vector of the rectangular
plate Ẋp. By taking KG =

(

Y1(yG)Z1(zG) 0
)

, (19)
becomes:

C0 = KGApXp +KGBpu (20)

whereẊp was replaced with the expression from (10).
Using (20), (16) and (17), equation (15) becomes:

Ẋz = AzXz +Bz(KGApXp +KGBpu) (21)

This equation describes the fact that the movement of the
plate generates a movement of the pendulum mass systems,
that is to say a movement of the liquid in the tank.

b) Tank’s influence on the rectangular plate:The liquid
sloshing is sensed by the plate as a perturbation that comes
into the state space representation by means of a matrixBzp:

{

Ẋp = ApXp +Bpu+BzpXz

y = CpXp
(22)

see (paragraph III-B.1). For the calculation of the perturba-
tion matrix Bzp we are using the same approach as in the
case of the control matrixBp.

The external moment applied to the tank due to the
movement of the fluid is computed in (9). By our choice
of the physical parameters of the pendulum, the moment



due to the liquid sloshing is equal to the moment due to
the movement of all mass-pendulum systems. The external
moment written for only one mass-pendulum is

Mzp = m1L1(C0 + l1z̈1)

whereC0 + l1z̈1 is the total acceleration due to pendulum
oscillations and plate movement. Using (20) and (21), the
expression ofMzp can be rewritten as:

Mzp =
(

m1l1L1 0
)





−2ξz
√

g
l1

−

√

g
l1

√

g
l1

0



Xz (23)

From this last equation we can infer that the total mo-
mentum of the pendulums does not depend on the external
accelerationC0 but only on the liquid movement.

For the calculation ofBzp we are then assuming that the
total momentum is concentrated in a small square around
the tank center of gravityG, with edges of coordinates
(y1G, z1G), (y2G, z2G). The total bending moment is:

Γzp =

∫ y2G

y1G

∫ z2G

z1G

(

∂2Mzp

∂y2
+

∂2Mzp

∂z2

)

wdydz. (24)

Using (23) and (3) into (24) we obtain

Bzp =

(

bzp1

0

)

(25)

where:

bzp1
= Kzp

(

(Y ′

i (y2G)− Y ′

i (y1G))

∫ z2G

z1G

Zj(z)dz

+(Z ′

j(z2G)− Z ′

j(z1G))

∫ y2G

y1G

Yi(y)dy

)

andKzp =
(

m1l1L1 0
)

Az .

C. Complete Model

From (21) and (22) one can write the complete state-space
model of the experimental setup. For the sake of clarity of
the presentation of the complete model we consider the case
of one Ritz function and one mass-pendulum.

For the complete system we choose as state space vector:

X =

(

Xp

Xz

)

=
(

q̇1 ω1q1 ż1

√

g
l1
z1

)T

.

Combining all the matrices leads to the following finite-
dimensional approximation using the state-space representa-
tion:







Ẋ =

(

Ap Bzp

Apz Az

)

X +

(

Bp

Bpz

)

u

y =
(

Cp 0
)

X

(26)

whereApz =

(

−
1
l1
KGAp

0

)

, Bpz =

(

−
1
l1
KGBp

0

)

and

0 denotes the null matrix of appropriate dimensions.

IV. CONTROLLER SYNTHESIS

In this section we calculate a controller for our experi-
mental setup using the finite-dimensional approximation of
our model.

Using the state space representation (26) we can use the
pole allocation method to compute a controllerK that will
minimize the response time of the closed-loop in comparison
to the open-loop.

The controllerK is first tested in simulation under Matlab
and then on the experimental setup at ISAE. In our case the
voltage delivered byK will be the input of the system and
the voltage delivered by the piezoelectric sensor will be the
system’s output. The tank is filled up to an arbitrary level of
0.7. The initial condition considered is a plate displacement
of 2cm from its initial equilibrium position. In choosing
the closed-loop poles, we have to take into account the
limitations of the piezoelectric actuators[−130V, 130V ].

A. Simulations

The controller is calculated using the first three modes of
the plate and the two modes of the liquid sloshing, that is to
say (26) is used withXp ∈ R

6 andXz ∈ R
4.

The closed-loop system is then simulated using the first
four modes of the plate and the first three modes of the liquid
sloshing (therefore it is simulated on a system of larger di-
mension). The voltage delivered by the piezoelectric sensors
in the open-loop and the closed-loop case are presented in
Figure 3. The real part of the closed-loop poles was chosen
up to 10 times the real part of the open-loop ones. The state
estimator is a Luenberger observer with the same dimension
as the system. The real part of the observer poles is up to
10 times bigger than the real part of the poles.
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Fig. 3. Response of the closed-loop system (in plain line) and of the
open-loop system (in dotted line) on numerical simulations

The voltage delivered by the pole placement controller
is presented in Figure 4. The voltage being in the range
[−130V, 130V ], the most important constraint is respected.
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Fig. 4. Voltage applied to the actuators on numerical simulations



From Figure 3 one can notice the absence of the spillover
effect on the fourth mode (i.e. the first one which has been
neglected in the design on the controller). Although it is
a common problem when working with infinite-dimensional
systems we did not observe it. Even though some techniques
to cancel it exist, e.g. by prefiltering the piezoelectric sensor
signals with a low-pas filter, see [8].

B. Experiments

The results are then tested on the experimental setup.
The controller previously calculated is implemented under
the same initial conditions (plate displacement of2cm from
its initial position). The voltage delivered by the system’s
sensors, in the open-loop and the closed-loop case, is given
in Figure 5. The response time (settling time) is measured
considering a10% tolerance band. We can see that the
closed-loop response is better that the open-loop one, even
though we considered only a few modes for the plate/liquid.
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Fig. 5. Response of the closed-loop system (in plain line) and of the
open-loop system (in dotted line) on experiments

Figure 6 gives the voltage delivered by the pole placement
controller on the experimental setup.
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Fig. 6. Voltage applied to the actuators on experiments

By considering Figures 3 and 5 one can notice an open-
loop response time of54 seconds during experimental tests
and of45 seconds during numerical simulations. Because of
the closeness of the response time we infer the validity of
our approximation and of our model.

V. CONCLUSION

After settling an infinite-dimensional model we have com-
puted a finite-dimension approximation for the experimental
setup by using Ritz method. Tests and simulations are made
with only three modes for the plate and two modes for
the liquid. Due to the closeness in open-loop response time
between the model and the experimental setup we infer
the validity of the model. However the response time of
the closed loop systems is not so close in both cases. It

is probably due to the uncertainty that was not taken into
consideration while calculating the controller.

Further investigations are necessary in some areas and are
studied now such as:
1. Damping modeling. We considered the damping of the
structure being constant for each mode. In reality we ob-
served that the damping depends not only on the mode but
also on the input voltage of the structure.
2. H∞ controller. Constructed with a large number of
plate/liquid modes, it will make the system robust to exterior
perturbations. Also the use of uncertainty in modeling the
system and in the synthesis of the controller will improve
the closeness between the closed loop response time.
3. Non linear modeling of the actuators.
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[3] E. Crépeau and C. Prieur. Control of a clamped-free beamby a
piezoelectric actuator.ESAIM: Control, Optim. Cal. Var., 12:545–563,
2006.

[4] E.K. Dimitriadis, C.R. Fuller, and C.A. Rogers. Piezoelectric actu-
ators for distributed vibration excitation of thin plates.Journal of
Vibrational Acoustics, 113:100–107, 1991.

[5] F.T. Dodge. The new ”dynamic behavior of liquids in moving
containers”. Technical report, Southwest Research Institute, San
Antonio, Texas, 2000.

[6] A.J. Fleming and S.O. Reza Moheimani. Optimal impedancedesign
for piezoelectric vibration control. Conference on Decision and
Control 2004, 3:2596 – 2601, 14-17 Dec. 2004.
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