
HAL Id: hal-00692416
https://hal.science/hal-00692416

Submitted on 30 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Cellular Machinery
Troels C. Damgaard, Espen Hojsgaard, Jean Krivine

To cite this version:
Troels C. Damgaard, Espen Hojsgaard, Jean Krivine. Formal Cellular Machinery. SASB 2011, 2011,
Venice, Italy. pp.55-74, �10.1016/j.entcs.2012.05.015�. �hal-00692416�

https://hal.science/hal-00692416
https://hal.archives-ouvertes.fr

SASB 2011

Formal cellular machinery

Troels C. Damgaard

Edlund A/S, Denmark

Espen Højsgaard

IT University Copenhagen, PLS group, Denmark

Jean Krivine1

Univ Paris Diderot, Sorbonne Paris Cité,
Laboratoire PPS, UMR 7126, F-75205 Paris, France

Abstract

Various calculi have been proposed to model different levels of abstraction of cell signaling and
molecular interactions. In this paper we propose a framework inspired by some of these calculi
that structures interactions and agents from the most basic elements of the cell (protein interaction
sites) to higher order ones (compartments and molecular species).

Keywords: systems biology, compartment, rule-based modeling, kappa, bigraphs, projectivity,
membrane, term rewriting

1 Introduction

It has been about 10 years now since part of the theoretical computer sci-
ence community got interested in applying formal methods to systems biology.
Since then it seems that the quest for a calculus having proteins, compart-
ments or channels as first class citizens has not reached an end. Among the
large variety of languages that have been proposed to tackle various aspects
of systems biology (see Refs. [22,5,21,10,12,3,1,18,20,17,19,15,2,4,14] for a non
exhaustive list), several ideas seem of particular importance to us: (i) the

1 corresponding author: jean.krivine@pps.jussieu.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:jean.krivine@pps.jussieu.fr

Damgaard, Højsgaard and Krivine

cellular medium can be described as a graph where nodes represent molecules
and edges represent physical contacts between these molecules [10,12,1,14], (ii)
languages with a natural notion of location of reaction can be used to represent
cellular compartments [21,19,20,15,2], (iii) interactions between compartments
and proteins or vesicle transformations can be described using local patches
of membranes, without committing to any particular global curvature [11,4],
and (iv) although laws governing interactions of molecular components are
numerous, they can be engendered by a small set of generators [3].

The present work proposes to integrate points (i) to (iv) in a single for-
malism. More specifically we define a language for proteins and cells in an
incremental way, making explicit the trade-off between expressiveness and
complexity. We decompose the construction of the language in four steps:

– C0: an “untyped” calculus aimed at modeling protein-protein interactions.
The dynamics of these interactions is presented as a small set of generator
rules, which modelers can refine and compose but not change.

– C1: an intermediate version of the term language that allows modelers to
type reactions introduced at the previous stage.

– C2: the main expressiveness increment of our language. It introduces com-
partments and the notion of projectivity of membrane reactions, i.e. the pos-
sibility to mention patches of membrane, without having to deal with their
global curvature. We propose a matching algorithm, that is proven both sound
and complete. At this stage, generators allow modelers to create and destroy
compartments in a projective fashion.

– C3: the final step of the construction deals with the diffusion problem.
In particular we incorporate means to talk about connected components of
reactants, which is a key feature for a new set of generators modeling diffusion
of molecular species and intra-molecular complex formation. To the best of our
knowledge C3 is the first calculus of its kind that allows one to model molecular
agents both at a micro level (where interactions are purely local) and a macro
level (where interactions involve connected components of agents).

The language we build is inspired by and closely related to the κ-calculus
of Danos and Laneve [9,10] and Milner’s bigraphical reactive systems [16],
however these connections will be left informal throughout the paper. The
reader might refer to Appendix A and to Ref. [6] for some preliminary work
on the subject.

2 C0: forming molecules

Proteins are long polymers built over an alphabet of 20 amino acids. Each
protein’s interaction capabilities are mediated by its 3D folding in space which
in turn depends on its amino acid composition. Protein interactions are ei-

2

Damgaard, Højsgaard and Krivine

ther structural when they form non-covalent bonds to other molecular agents
(DNA, RNA, other proteins) or enzymatic when they can catalyze the chem-
ical modification of the substrate to which they are bound. In the first case
one usually talks about complex formation, in the latter one talks about post-
transcriptional modification. It has been observed that the amino acid se-
quence of most proteins appearing in living organisms can be regrouped into
domains which are strings of amino acids that have a specific fold in space
that is rather context free. Biologists tend to associate “functions” to do-
mains, for instance zinc finger domains are often linked to the specific DNA
binding capability of their host protein.

The first step of our construction, termed C0, is aimed at representing
domains as a collection of interaction sites, proteins as a collection of domains
and interactions as protein assembly and complex formation.

2.1 Terms

Consider an infinite set of site names S = {x, y, z, . . . } and a disjoint infinite
set of backbone names B = {a, b, c, . . . }. Let D be a terminal symbol, distinct
from all others, that we use to denote domains. Terms T of C0 are built on
the following grammar:

D,D′ ::= Da(x1, . . . , xk) for a ∈ B, xi ∈ S

T, S ::= D | 0 | (T, S) | T\v for v ∈ S ∪ B

Intuitively a k-ary domain Da(x1, . . . , xk) is the placeholder of k (interaction)
sites and one backbone. Each site i is equipped with a name xi ∈ S and
each domain with a backbone name a ∈ B. Backbone name sharing denotes
domains that belong to the same protein, site name sharing denotes complex
formation. We inductively define free occurrences of names as:

fn (Da(x1, . . . , xk)) = {a, x1, . . . , xk}

fn(0) = ∅

fn(T, S) = fn(T) ∪ fn(S)

fn(T\v) = fn(T)− {v}

Symmetrically, one can define the bound occurrences of names, which we shall
denote by bn(T). Terms are equipped with a natural notion of structural
congruence defined in Fig. 1. The structural congruence relation rules include
a natural α-equivalence on bound names. In the following we assume that
names that are not under the same binder are kept distinct.

3

Damgaard, Højsgaard and Krivine

(S, T) ≡ (T, S)

((T, S), T ′) ≡ (T, (S, T ′))

(T, 0) ≡ T

T\u ≡ T u 6∈ fn(T)

(T\u)\v ≡ (T\v)\u

T\u ≡ (T {v/u})\v v 6∈ fn(T)

(T\u, S) ≡ (T, S)\u u 6∈ fn(S)

Fig. 1. Structural congruence for C0.

2.2 Graphical notation

T =
(

Da(x, y),Db(x, z)
)

\y

D D

S = (Da(x),Da(x)) \x

D D

U = (Da(x, x),Da(z),Da()) \a\x

11

2 2 1 1
x

aa b

z

D DD1 1

2
z

Intuitively, the term to port graph correspondence is the following: domains
are nodes, sites and backbones are ports and name sharing denotes (hyper)
edges. Bound names denote closed ports and we use the term closed edges
to denote a bound name that is shared. Similarly, free names denote open
ports and form open edges when they are shared. Open ports or edges can
be merged or closed in the context (see later). With these conventions, one
may view any term (up to structural congruence) as the isomorphism class
of a port graph (with hyper-edges), in the style of bigraphs [16], where nodes
(domains) are equipped with connection ports (sites and backbones). As an
example we give above the port graph representation of terms T, S and U .
The reader familiar with bigraphs will notice that we drift slightly away from
Milner’s notation: site ports are represented by small circles that are filled
when they are closed. Backbone ports are represented as small triangles that
are also filled when they are closed. We use curved lines for site edges and
straight lines for backbone edges. We label open edges or open ports with the
corresponding free name (closed edges and ports are not labelled). Note that
we will omit site numbers whenever they are not necessary.

Connections between sites correspond to physical contacts between protein
parts. This connection being exclusive we want to restrict to terms where
restrictions bind at most two occurrences of site names. In the following of
this paper we will assume that for any term T , free site names occur exactly

4

Damgaard, Højsgaard and Krivine

once in T and bound site names have at most two occurrences. Note that we
do not impose such restrictions on backbone name sharing.

2.3 Pattern matching and dynamics

A match for T in S is defined as a context C[•] with exactly one hole such
that C[T] ≡ S. Such contexts are defined inductively as:

C[•] ::= • | C[•]\u | C[•], T u ∈ B ∪ S

A rule is a pair of terms 〈T, S〉 such that fn(S) ⊆ fn(T). Given a set R
of such pairs, one may rewrite terms by letting these rules be applied in a
context free manner, i.e. :

r = 〈T, S〉 ∈ R T ′ ≡ C[Tσ] S ′ ≡ C[Sσ]

T ′ →r S ′

for some name substitution σ.

2.4 Generators

It is clear that not all rules make sense from a biological point of view: the
fact that backbone names denote the core of a protein and that site names
denote connection between protein domains is purely conventional and this
convention could be easily broken. A way to proceed is to define some sorting
discipline that allows one to screen off undesired terms from admissible ones
[2], invalid rule applications being discarded “on the fly”. Instead of doing
this, we adopt a strategy of pre-conceiving what “laws” a modeler is able to
invoke when defining her own rule set. This is achieved by defining a set
G0 of basic rule generators that a modeler can only refine to her needs, cf.
Fig. 2. These generators allow one to perform standard atomic actions of
graph rewriting. It is noteworthy that these generators, including degrade,
are side effect free. We shall carry this set of generators throughout the rest
of this paper, incorporating new generators as the language grows.

Say a rule r = 〈T, S〉 is generated if and only if it can be obtained by:

– refinement: there exists 〈T ′, S ′〉 ∈ G0 such that T ≡ C[T ′σ] and S ≡
C[S ′σ] for some context C[•] and substitution σ.

– composition: one can generate two rules 〈T, T ′〉 and 〈T ′, S〉.

2.5 Discussion

We have introduced so far a simple calculus that rewrites proteins structured
as connected domains. Proteins can be connected to each other (as in complex

5

Damgaard, Højsgaard and Krivine

D

x1 . . . xk

D D

x1 . . . xk

Di j i j

D

x1 . . . xk

D

disconnect

connect

cleave

fuse

degrade
D

x1 . . . xk

synthesize
D

D

x1 . . . xk

D

a a

y1 . . . yq y1 . . . yq

y1 . . . yqy1 . . . yq

a a

a

bb

. . .

Fig. 2. The set G0 of generators for C0.

formation), new domains can be fused to proteins (as in protein synthesis)
or severed (as trans-membrane proteins can be cleaved to emit signals into
the inter cellular medium). This calculus is fairly abstract in the sense that
two proteins may only differ in the number of domains they have and in the
number of sites these domains possess. It is clear that we lack means of naming
molecular components such as domain names (SH2, Tyrosine, PWWP etc.)
or protein names (SOS, EGF, IGF, p53, etc.). Before performing a bigger
increment in expressiveness, when we introduce compartments in Section 4,
we would like to briefly introduce a way to deal with names as a particular
type of context in which unamed proteins can be embedded. The intent is to
provide a way to define molecular reactions as refinements of the generators we
have just presented, in keeping with the biological intuition that information
about molecular objects is always partial and that more context could reveal
more about the nature of a molecule. In particular, we have the ontology
problem in mind that several names can denote the same protein or gene.

3 C1: naming molecules

3.1 Terms

Consider a new set of namesM that is pairwise disjoint from B and S. Terms
of C1 are essentially those of C0 where domains have an extra meta name
m,m′ ∈M that will point to new type of terms called info terms (denoted by
I, J, . . .). Let I be a set of terminal symbols (distinct from all previous ones)
called informations (think of protein or domain names). The grammar of C1
is:

D,D′ ::= Da
m(x1, . . . , xk) a ∈ B, m ∈M, xi ∈ S (domains)

I, J ::= Infom Info ∈ I, m ∈M (info)

T, S ::= 0 | D | I | (T, S) | T\v for v ∈ S ∪ B ∪M (named terms)

6

Damgaard, Højsgaard and Krivine

Ribosome

D

D

D

D

D

Nucl.
G Nucl.

G

Nucl.

Prot. compl.

Ribosome

DD

Prot. compl.

D

Amino acid Glycine

D DD

D

Nucl.
G Nucl.

G

Nucl.

D

a

a

b b

�G, ∗, G� → Glycine

Fig. 3. Graphical illustration of the role of info nodes and meta names, with the rule for the RNA
translation of a Glycine amino acid. Node shape is purely illustrative. A ribosome is bound to
a guanine being part of an RNA strand (backbone b) and has started to assemble a new protein
(backbone a). The next nucleotide on the right is of unspecified type followed by a G nucleotide,
this triplet 〈G, ∗, G〉 codes for the Glycine that is produced on the right.

Structural congruence coincides with the one defined earlier.

3.2 Graphical notation

This simple extension has a natural impact on the graphical notation, as shown
in Fig. 3 with an example of amino acid synthesis. Info nodes are represented
by their type (Nucl., G, Ribosome, Prot. compl., Amino acid, Glycine) without
drawing borders around them. Meta names that are shared by nodes induce
thin straight hyper edges. Open meta ports are not drawn, and closed meta
edges are represented with filled arrowheads (as in the Amino acid and Glycine
nodes on the right hand side).

There are only two specific generators for C1, for all Info ∈ I:

(Concretize) Da
m(x1, . . . , xk)→ Da

m(x1, . . . , xk), Infom

(Abstract) Da
m(x1, . . . , xk), Infom → Da

m(x1, . . . , xk)

and again, rules can be generated by refinement and composition of generators.

3.3 Discussion

With little symbol pushing burden we obtain a fairly expressive language
which, at this stage, is already a reasonable candidate for representing most
types of synthetic biology systems. It is noteworthy that the nature of an in-
teraction can be expressed here as a form of type instantiation. One may think
of C0 generators as polymorphic reaction types: (α, β) connect or α synthesize.
They can be instantiated as (A,B) connect or Amino acid synthesize.

This second step brings us closer to the κ-calculus of Danos and Laneve
[10]. In fact, our calculus now encompasses κ in a straightforward way (see
Appendix A).

7

Damgaard, Højsgaard and Krivine

4 C2: placing molecules

As we already stressed in the previous sections, we have for now abstracted
away from space and geometry: molecules are assumed to be floating in a
uniform medium that lets domains react freely with each other. One could for
instance encode a discrete compartment as info nodes attached to each domain
and make sure they are compatible when two domains encounter. Yet, not only
would this induce an explosion in the number of rules to write, but also entail a
lot of book keeping rules in order to make sure that protein domains remain co-
localized. We propose here to exploit our informal yet underlying relationship
with bigraphs in order to add a simple notion of compartmentalization to our
language.

4.1 Terms

Let V be an infinite set of parameter names {X, Y, Z, . . . } assumed to be
pairwise disjoint from S, B andM. Let C be a terminal symbol, distinct from
previous ones. Terms P,Q, . . . of C2 are generated by the following extension
of the grammar for C1:

T, S ::= · · · | Cm(T) | X m ∈M, X ∈ V (local terms)

P,Q ::= T | (T ‖ P) | P\v v ∈M∪ S ∪ B (wide terms)

Terms of the form Cm(T) denote compartments. They are nodes with a meta
name, like domains, but have neither sites nor backbone. In the way defined in
the previous section, this meta name allows one to specify a type of compart-
ment: for instance nucleus,membrane ∈ I (one may also think of region ∈ I
to denote compartments with no physical boundaries).

Note also the use parameters as in Cm(X), whereX denotes the unspecified
content of compartment Cm. We use V(P) to denote the set of parameter
names in P . For simplicity we consider here “linear terms”, i.e. terms that do
not contain multiple copies of the same parameter variables. It entails that a
rule may delete parameters but not duplicate them.

Terms of C2 are either local, in which case we use T, S to denote them, or
wide in which case we use P,Q. The term P = (T ‖ S) is a pattern requiring T
and S to be separated by exactly one compartment boundary in any context;
note that this differs from the interpretation of wide composition in bigraphs,
where they may be separated by any number of boundaries. Hence we will see
that P has a match in both (Cm(T), S) and (T,Cm(S)). We want to absorb
here the projective view of membrane reactions introduced by Danos and
Pradalier [11] and also present in a later work by Cardelli [4]. The underlying
idea is that membrane curvature is a global property that one may not want

8

Damgaard, Højsgaard and Krivine

to consider when expressing cellular mechanisms. This trait will turn out to
be very useful when defining a minimal set of generators for C2.

Definition 4.1 [Local contexts] A context C[•] with exactly one hole is a
local context if it is of the form:

C[•] ::= • | C[•]\u | C[•], T u ∈ B ∪ S

Note that the context Cm(•) is not a local context. It is however a derivable
wide context as we will see shortly.

Structural congruence for C2 extends the one of C1 with the following laws
for wide composition of terms:

Cm(T) ≡ Cm(T
′) if T ≡ T ′

Cm(T\u) ≡ Cm(T)\u if u 6= m

(P\u)\v ≡ (P\v)\u

P\u ≡ (P {v/u})\v v 6∈ fn(P)

T\u ‖ P ≡ (T ‖ P)\u u 6∈ fn(P)

T ‖ P\u ≡ (T ‖ P)\u u 6∈ fn(T)

It is clear that any wide term is structurally congruent to a term of the form
(T1 ‖ · · · ‖ Tn)\V (using the shorthand P\V for the restriction of the names
of V). We sometimes write P ‖ Q to denote the concatenation P and Q (in
the style of list concatenation). Importantly a pattern of the form T ‖ S ‖ T ′

specifies that T and T ′ are exactly two compartment layers away from each
other, and that S is one compartment layer away from both T and T ′, we
will call this distance projective because it does not take the orientation of
the compartment borders, that will separate the terms in the context, into
account. We shall see that valid matches for a wide term (T1 ‖ · · · ‖ Tn)\V
will correspond to those in which the distance between Ti and Ti+k is exactly
k, for all i ∈ {1, . . . , n− k}.

4.2 Pattern matching

For any wide term P , say that P has width w(P) = n if P ≡ (T1 ‖ · · · ‖ Tn)\V
for some local terms Ti.

Definition 4.2 [Projective distance]

Let P be a wide term and Ti, Tj two disjoint term occurrences in P . The

9

Damgaard, Højsgaard and Krivine

projective distance of Ti, Tj in P , written ∆Ti,Tj
(P) is inductively defined as:

∆Ti,Tj
(Ti, Tj) = 0

∆Ti,Tj
(T, S) = ∆Ti,Tj

(T) if Ti, Tj 6∈ S

∆Ti,Tj
(P\u) = ∆Ti,Tj

(P)

∆Ti,Tj
(Cm(T)) = ∆Ti,Tj

(T)

∆Ti,Tj
(Cm(T), S) = ∆Ti,Tj

(T, S) + 1 if Ti ∈ T and Tj ∈ S

∆Ti,Tj
(T ‖ P) = ∆Ti,Tj

(P) if Ti, Tj ∈ P

∆Ti,Tj
(T ‖ P) = ∆Ti,Tj

(T) if Ti, Tj ∈ T

∆Ti,Tj
(T ‖ S ‖ P) = ∆Ti,Tj

(T ‖ P) + 1 if Ti, Tj 6∈ S

∆Ti,Tj
(T ‖ S) = ∆Ti,Tj

(T, S) + 1 if Ti ∈ T, Tj ∈ S

In other terms, the projective distance between Ti and Tj is equal to the
number of wide compositions and compartment layers that separate Ti from
Tj.

Given a wide term P = (T1 ‖ · · · ‖ Tn)\V , we need to define contexts
C

n[•, . . . , •] with exactly n holes in which one may embed P while preserving
nesting distance. Let generic contexts (with an arbitrary number of holes) be
inductively defined as:

T•, S• ::= • | T | (T•, S•) | (T•)\u | Cm (T•) u ∈ B ∪ S ∪M & m ∈M

For any such context T• with exactly k holes, we write T• = C
k[•, . . . , •] or

simply T = C
k. Importantly, not all contexts of the form C

1 is a local context
since Cm(•) is not local. Furthermore, not all contexts of k holes will be valid
placeholders for wide terms of width k. Rather than trying to enumerate
valid contexts with n holes we use a procedure that generates valid matches
for terms of arbitrary width. We will then prove that this procedure is both
sound and complete in the sense that it finds only correct matches for wide
terms, and finds them all.

Let projection constraints π be words on the alphabet Π
def
= {L, M, •,⊥}.

We use these constraints during the construction of a wide context C
n, as

an abstraction of the context that retains only the positions of compartments
borders, symbols L and M, and holes, symbol •. In order to check that C

n is
a valid context, it will suffice to make sure that the projection constraint is
well-formed. For instance, the constraint π = •·L·•·M ·• is an abstraction of an
invalid context with exactly three holes, that would place the term T ‖ S ‖ T ′

in an environment where T and T ′ would be at (projective) distance 0 instead

10

Damgaard, Højsgaard and Krivine

(ax.)
T →֒• C[•]

P →֒π T• v 6∈ fn(T•) ∪ bn(T•)

P\v →֒π T•
(rest)

P →֒π T• m fresh L·π·M 6→ ⊥

P →֒L·π·M Cm(T•)
(wrap)

P →֒π0
T• Q →֒π1

S• π0 · π1 6→ ⊥

P ‖ Q →֒π0·π1
C[T•, S•]

(comp)

Table 1
The extension relation. Contexts C[•] are the local contexts of Definition 4.1.

of 2. Invalid constraints are detected during the construction of a wide context
(cf. Table 1), using the reduction relation of Table 1.

Definition 4.3 [Valid constraints] Let π ∈ Π∗ be a projection constraint. Let
· denote the concatenation of words over the alphabet Π. Say that π is valid
if π 6→ ⊥ with → ⊆ Π∗ × Π∗ the least reflexive, transitive, and compatible
relation engendered by:

• · L ·L→ ⊥ M·M · • → ⊥ M · L→ ⊥

• · • → ⊥ • · L · • · M · • → ⊥ ⊥ · π → ⊥ π · ⊥ → ⊥

The inductive construction of the extension relation is given in Table 1.
Let µ, µ′, . . . denote (possibly empty) lists of parameter assignation of the
form [X1 ← T1]; . . . ; [Xn ← Tn] with V(Ti) = ∅. We use |µ| to denote the set
of parameter names in µ, and Pµ to denote P in which parameters have been
substituted according to µ.

Definition 4.4 [Matches] A wide context C
n[•, . . . , •] with exactly n holes

and a parameter assignation list µ form a match 〈Cn, µ〉 for a wide term
P = (T1 ‖ · · · ‖ Tn)\V in S if and only if:

P →֒π C
n and |µ| = V(P) and ((Cn[T1, . . . , Tn]µ)\V)σ ≡ S

for some name substitution σ.

Furthermore, a pair r = 〈P,Q〉 with w(P) = w(Q) = n and V(P) = V(Q)
generates a transition T →r S if the match 〈Cn[•, . . . , •], µ〉 for P in T is a
match for Q in S.

We conclude this section with the expected soundness and completeness
results for our extension relation with respect to projective distance.

11

Damgaard, Højsgaard and Krivine

D

. . .

D

. . .

cleave

fuse

D

. . .

D

. . .

a a

2

2

C

pinch
channel channel

C

channel channel

X

merge
XX

channel channel

touch

part

X X

C C

X

Da(x1, . . . , xk) ‖ Db(y1, . . . , yq)\b → Da(x1, . . . , xk) ‖ Da(y1, . . . , yq)

0 ‖ 0 → (channelm ‖ C(channelm))\m

(channelm ‖ C(channelm, X))\m → X ‖ 0

0 ‖ C(X) → (channelm ‖ C(channelm, X))\m

X

X

Informal InformalLeft hand side Right hand side

X
X

channel channel

X

(X, channelm ‖ 0 ‖ channelm)\m → (channelm ‖ 0 ‖ channelm, X)\m

unsafe-diffuse

X

channel channel

Fig. 4. Generators for C2.

Theorem 4.5 (Soundness) Let 〈Cn[•, . . . , •], µ〉 be a match for a wide term
P in a local term T . For all disjoint local term occurrences S, S ′ ∈ P , we have
∆S,S′(P) = ∆S,S′(T).

Theorem 4.6 (Completeness) Let P = (T1 ‖ · · · ‖ Tn)\V be a wide term
and C

n[•, . . . , •] be a generic context with exactly n holes. Let also T ≡
((Cn[T1, . . . , Tn]µ)\V)σ for some parameter assignation µ and name substi-
tution σ.

If for all i, j ≤ n one has ∆Ti,Tj
(P) = ∆Ti,Tj

(T), then P →֒π C
n is deriv-

able, for some π ∈ (Π\ {⊥})∗.

4.3 Generators

The generators are presented in Fig. 4, keeping with the graphical convention
introduced earlier. We add here compartments, represented as nodes with
double line boundaries, and variables. Wide terms are simply represented

12

Damgaard, Højsgaard and Krivine

next to each other. Crucially, the possibility to express compartment patches
independently of their general curvature allows us to maintain a minimal set
of generators. Rules specifying curvature are then obtained as refinements
of these generators. The wide versions of the fuse and cleave generators now
allow for the representation of transmembrane proteins (aka receptors). Note
that we do not generalize the connect and disconnect generators to keep with
the fact that protein-protein interactions are local.

The other generators rely on the intuition, sketched in an earlier work on
bigraphs [15], that dynamic molecular compartments can be modeled using an
intermediate step where two compartments are connected by a “neck”. This
neck, visible in generators pinch, merge, touch and unsafe-diffuse, is represented
by two connected channel nodes, which are particular info nodes. In the unsafe-
diffuse rule, they are used to indicate that molecules can translocate from one
location to another, along the channel edge. This rule can be applied in order
to populate a vesicle after pinch or touch, and until part or merge is applied.

At this stage our language is equipped with ways to model dynamic com-
partments and diffusion. Yet, consistency of the biological interpretation of
C2 terms relies on a careful usage of the unsafe-diffuse rule. Indeed, nothing
prevents modelers from using this generator to stretch a protein across several
membranes by diffusing only a part of it, violating the desired invariant that
only a backbone edge may cross a compartment (in the case of a receptor).
In order to correct for this, we need to restrict diffusion to instances that will
preserve biological soundness of terms. The final step in the design of our
language is aimed at solving this question.

5 C3: moving molecules

5.1 Terms

Let specB
S
be a family of B and S indexed terminal symbols (distinct from all

others) with B ⊆ B and S ⊆ S ∪M. The grammar generating terms of C3
extends the previous one in the following way:

T, S ::= . . . (local terms)

G,H ::= T | specB
S
(T) | (G,H) (global terms)

P,Q ::= G | (P ‖ Q) | . . . (wide terms)

where specB
S
(T) denotes the fact that term T describes a partial species, i.e.

is either a connected component or a pattern that should be placed in a
context that will make it connected. The sets B and S denote respectively the
free backbone names of the species and its free site and meta names. These
names are kept separated for convenience because backbones will be allowed

13

Damgaard, Højsgaard and Krivine

to cross membranes while meta and site names will not be shared by nodes
that are not co-located in the same compartment. For instance, the expression
spec

{a}
∅ ((Db

m(x), X)\b, x,m) denotes a partial species that contains a domain
Db

m(x) and that may only have a connection with other nodes outside the
species boundaries by sharing the backbone name a.

The idea behind C3 is that although connectivity, i.e. transitive closure
of name sharing, is a property one may not want to consider in general, it
becomes relevant for some particular interactions including diffusion. We will
come back to this in the section describing the new generators.

Structural congruence allows us to form spec nodes on demand. To do so,
we extend previous structural laws with the following ones:

Da
m(x1, . . . , xk) ≡ spec

{a}
{m,x1,...,xk}

(Da
m(x1, . . . , xk))

(init)

fn(A) ∩ (B ∪ S) 6= ∅ B′ = B ∪ (fn(A) ∩ B) S′ = S ∪ (fn(A) ∩ S)

specB
S
(T), A ≡ specB

′

S′
(T,A)

(grow)

u ∈ B ∪ S B′ def
= B− {u} S′ def

= S− {u}

specB
S
(T)\u ≡ specB

′

S′
(T\u)

T ≡ T ′

specB
S
(T) ≡ specB

S
(T ′)

Where A is either a domain node or an info node. Intuitively, the left-to-
right orientation of the above first three equations allows one to capture more
knowledge about connectivity, while the other direction is forgetful. If one
wishes to consider diffusion of vesicles, one needs the additional rule:

fn(T ′) ∩ (B ∪ S) 6= ∅ B′ = B ∪ (fn(T ′) ∩ B) S′ = S ∪ (fn(T ′) ∩ S)

specB
S
(T),Cm(T ′) ≡ specB

′

S′
(T,Cm(T ′))

that allows one to encompass compartments in the recognition of molecular
species.

In order to ease the understanding of the generators presented in the next
section, let us give a simple example of the usage of a species term in a
pattern. Consider the term P = (speca∅(X) ‖ speca∅(Y))\a which denotes
a transmembrane complex split in two parts X and Y on both sides of a
membrane. We wish to find a match for P in the term:

T =
(

Da
m1

(x), SH2m1
,Cm2

(Da
m3

(y),Db
m4

(y))
)

\ {a, b, x, y,mi}

To do so, we first need to turn T into a form that makes the desired connec-

14

Damgaard, Højsgaard and Krivine

channel
channel

m
channel channel

X XY Y

(speca∅(X), channelm ‖ specA∪a
S (Y) ‖ channelm)\m\a (channelm ‖ specA∪a

S (Y) ‖ channelm, speca∅(X))\m\a→

D

x1 . . . xk

D D

x1 . . . xk

Di j i j

intra

a b ba

specabx̃,ỹ(D
a(x1, . . . , xi, . . . , xk),D

b(y1, . . . , yj , . . . , yq))\xi\yj specabx̃�,ỹ�(Da(x1, . . . , z, . . . , xk),D
b(y1, . . . , z, . . . , yq))\z→

diffuse

channel
channel channel channel

X X

diffuse

(spec∅
∅
(X), channelm ‖ 0 ‖ channelm)\m → (channelm ‖ 0 ‖ channelm, spec∅

∅
(X))\m

y1 . . . yq y1 . . . yq

Fig. 5. C3 generators. In the intra generator, let x̃
def
= {x1, . . . , xk} and ỹ

def
= {y1, . . . , yq},

x̃′
def
= x̃ {z/xi} and ỹ′

def
= ỹ {z/yj}

tivity apparent:

T ≡
(

speca∅(D
a
m1

(x), SH2m1
\ {x,m1}),

Cm2
(speca∅((D

a
m3

(y),Db
m4

(y))\ {b, y,m3,m4})\m2

)

\a

Then, using the extension relation, we generate a context for P

P →֒•·L·•·M (•,Cm(•)) = C
2[•, •]

which, together with a list of parameter assignations

µ
def
= [X ← (Da

m1
(x), SH2m1

)\ {x,m1}]; [Y ← (Da
m3

(y),Db
m4

(y))\ {b, y,m3,m4}]

defines a valid match for P in T . One verifies that, indeed:

(C[speca∅(X), speca∅(Y)]µ) {m2/m} \a ≡ T

5.2 Generators

Generators are given in Fig. 5. They extend the generators of all previous
stages, to the exception of the unsafe-diffuse rule that is replaced by its safe
counterparts. We keep with the graphical conventions introduced earlier, and
use cloud nodes to denote (partial or total) species.

15

Damgaard, Højsgaard and Krivine

As one may see in Fig. 5, we now have two generators for diffusion. The
first one models classical diffusion: a total species may move from one com-
partment connected to another via a channel. The second generator models
diffusion of transmembrane species: two partial and parametric species de-
note, respectively, both sides of a transmembrane complex. The side of the
complex whose content is X may translocate while the other side stays in
its current location. The result of this operation in the two possible projec-
tions, is informally depicted on both sides of the generator and corresponds to
the diffusion of a transmembrane complex along the neck. Finally, the intra
generator stands for intra-molecular complex formation 2 .

Definition 5.1 [Mixture] Say that a term P is a mixture if:

– w(P) = 1, fn(P) = ∅ and P is parameter free

– Site edges have exactly two sites and do not cross compartments

– Backbone hyper edges cross at most one compartment

– P is structurally equivalent to a term that contains no species node.

The last condition essentially states that species nodes that are present in a
mixture are derivable from a species free mixture to which the above structural
congruence rules have been applied. To ensure this one simply needs to verify
the simple syntactical condition:

Proposition 5.2 A global term of the form G = specB
S
(T) is a mixture if and

only if T :

– T is a mixture.

– fn(T) = B ∪ S.

– T is a connected component.

The above proposition guarantees that one may always eliminate species
nodes of the form specB

S
(T) from a mixture, provided the sets B and S capture

the free names of T and provided T defines a single connected set of agents.
Note however, that general global terms need not be mixtures and one may
have occurrences of species node in rules that do not satisfy this condition
as it is for instance the case in the diffusem generator. Yet not all species
node make sense in a C3 expression. For instance spec∅∅(D

a
m(x), X) will never

have a match in any mixture since the structural congruence for species node
introduction will always insure that the free names a,m and x will appear
in the superscript and subscript of spec. The following proposition defines
well-formed expressions with species nodes:

2 This generator cannot be obtained as a refinement of connect since specB
S
(•) is not a valid

local context.

16

Damgaard, Højsgaard and Krivine

Proposition 5.3 For any term G = specB
S
(T), there exists a mixture M such

that G has a match in M if and only if:

– fn(T) ⊆ B ∪ S

– and either:
· T is connected
· V(T) 6= ∅ and fn(T) 6= ∅
· fn(T) = ∅ and T = X1, . . . , Xn for some parameters Xi .

Note that the second condition says that either T needs to be already
connected in the expression or leave ”room enough” so that the context will
make T connected. It is easy to check that all the generators introduced in
Fig. 5 satisfy this condition.

Lemma 5.4 (Preservation) Let R be a set of generated rules and let P be
a mixture. If P →r Q with r ∈ R then Q is a mixture.

As a corollary of the above lemma and Proposition 5.2, one has that a term
containing specB

S
(T, S) can only have a match in a mixture where T and S are

part of the same connected component, which is a guarantee of the soundness
of the intra generator.

6 Conclusion

The idea that models of signaling pathways or protein assembly should be
considered as programs is now wending its way through the systems biology
crowd. This is an appealing fact to language theoreticians, because it implies
that one needs to accomplish in Systems Biology the same mutation that was
accomplished in software engineering, when programs became too cumber-
some and unwieldy to be developed in a non uniform way. This suggests that
systems biology will soon require the development of high level languages,
debuggers, and IDEs to compensate for the increasing gap between accumu-
lation of data and its representation in executable models. The work we have
presented here is an attempt to comply with Fontana’s requirement that “a
model should be a data structure that contains a transparent, formal, and ex-
ecutable representation of the facts it rests upon” [13]. In order to do so, we
have structured our language in order to be able to tune the resolution level
of the entities we wanted to describe: from anonymous domains, to molecular
species, and from membrane patches to full fledged compartments.

We have already mentioned several approaches that were conducted with
similar motivations, some of which we took inspiration from. Yet, we believe
that the presented language offers a level of expressivity that was not acces-
sible before in a single formalism. In particular we should mention that our
language strictly contains the κ-calculus and corresponds to a particular class

17

Damgaard, Højsgaard and Krivine

of bigraphical reactive systems that is yet to be defined formally 3 . Obviously,
expressiveness and relative ease of use is not enough and future work should
aim at developing quantitative simulation and analysis techniques. Here again,
previous works have paved the way for such developments. In particular, prox-
imity with the κ-calculus for which such analysis and simulation technique
have been defined [8,7] and the stochastic semantics for bigraphs [15], should
be of great help.

References

[1] Andrei, O. and H. Kirchner, Graph rewriting and strategies for modeling biochemical networks,
in: Proc. SYNASC, 2007, pp. 407–414.

[2] Bacci, G., D. Grohmann and M. Miculan, A framework for protein and membrane interactions,
in: Proc. MeCBIC’09, 2009, pp. 19–33.

[3] Cardelli, L., Brane calculi - interactions of biological membranes, in: Computational Methods
in Systems Biology, Springer, 2004 pp. 257–278.

[4] Cardelli, L., Bitonal membrane systems - interactions of biological membranes, Theoretical
Computer Science 404 (2008).

[5] Chabrier, N. and F. Fages, Symbolic model checking of biochemical networks, in: Proc.
CMSB’03, LNCS 2602, 2003, pp. 146–162.

[6] Damgaard, T. C. and J. Krivine, A generic language for biological systems based on bigraphs,
Technical Report 115, IT University of Copenhagen (2009).

[7] Danos, V., J. Feret, W. Fontana, R. Harmer and J. Krivine, Abstracting the differential
semantics of rule-based models: exact and automated model reduction, in: IEEE Symposium
LICS, 2010, pp. 362–381.

[8] Danos, V., J. Féret, W. Fontana and J. Krivine, Scalable simulation of cellular signaling
networks, in: Proc. APLAS’07, LNCS 4807, 2007, pp. 139–157.

[9] Danos, V. and C. Laneve, Core formal molecular biology, in: Proc. ESOP’03, LNCS 2618,
2003, pp. 302–318.

[10] Danos, V. and C. Laneve, Graphs for formal molecular biology, in: Proc. CMSB’03, LNCS
2602, 2003, pp. 34–46.

[11] Danos, V. and S. Pradalier, Projective brane calculus, in: Proc. CMSB’04, 2004, pp. 134–148.

[12] Faeder, J. R., M. L. Blinov and W. S. Hlavacek, Rule based modeling of biochemical networks,
Complexity (2005), pp. 22–41.

[13] Fontana, W., Systems biology, models, and concurrency, in: Proc. POPL’08, 2008, pp. 1–2.

[14] John, M., C. Lhoussaine, J. Niehren and C. Versari, Biochemical reaction rules with constraints,
in: Proc. ESOP 2011, LNCS 6602, 2011, pp. 338–357.

[15] Krivine, J., R. Milner and A. Troina, Stochastic bigraphs, in: Proceedings of MFPS XXIV,
ENTCS 218, 2008, p. 7396.

[16] Milner, R., “The Space and Motion of Communicating Agents,” Cambridge University Press,
2009.

[17] Phillips, A. and L. Cardelli, Efficient, correct simulation of biological processes in the stochastic
pi-calculus, in: CMSB, 2007, pp. 184–199.

3 This may prove to be a complex task, since projectivity is not a trivial concept to capture
with the standard definition of bigraphs. See Ref. [6] for some hints on how to do this.

18

Damgaard, Højsgaard and Krivine

[18] Priami, C. and P. Quaglia, Beta binders for biological interactions, in: Computational Methods
in Systems Biology, LNCS 3082, 2005, pp. 20–33.

[19] Păun, G. and F. J. Romero-Campero, Membrane computing as a modeling framework. cellular
systems case studies, in: Formal Methods for Computational Systems Biology, LNCS 5016,
2008, pp. 168–214.

[20] R.Barbuti, A.Maggiolo-Schettini, P.Milazzo and A.Troina, A calculus of looping sequences for
modelling microbiological systems, Fundamenta Informaticæ72 (2006), pp. 21–35.

[21] Regev, A., E. M. Panina, W. Silverman, L. Cardelli and E. Shapiro, Bioambients: An
abstraction for biological compartments, Theoretical Computer Science 325 (2004), pp. 141–
167.

[22] Regev, A., W. Silverman and E. Y. Shapiro, Representation and simulation of biochemical
processes using the π-calculus process algebra, in: Pacific Symposium on Biocomputing, 2001,
pp. 459–470.

19

Damgaard, Højsgaard and Krivine

A Retrieving the κ-calculus.

In this section we show how one may naturally represent any κ-calculus model
at the C1 level of our language. As the encoding is rather straightforward from
a technical point of view, we shall simply describe here the translation of a
particular example. We then show how C3 enables us to go beyond what one
can express in κ.

A.1 The κ-calculus

We consider here the definition of κ that is implemented in the κ-simulator
KaSim 4 . Terms of the κ-calculus are built on the following grammar:

Definition A.1 (κ-Agents)

(i) agent a ::= N(σ)

(ii) agent name N ::= A ∈ A

(iii) interface σ ::= ∅ | s, σ

(iv) site s ::= nλ
ι

(v) site name n ::= x ∈ S

(vi) internal state ι ::= ǫ (any state)

| m ∈ V

(vii) binding state λ ::= ǫ (free)

| − (semi-link)

| ? (wild-card)

| i ∈ N

Expressions are simply formed by concatenation of agents E ::= a, E | ∅.
Every agent represents a molecular entity (such as a protein) that has sites
that can be used for complex formation (i.e. binding with other sites). For
instance the expression:

EGF(r1),ErbB1(l1,CR3,Y1016p,Y1092
?
p),EGF(r

2),ErbB1(l2,CR3,Y1092−u)

corresponds to a molecular soup containing two instances of the agent ErbB1 (a
membrane receptor for the epidermial growth factor protein) and two instances
of the agent EGF (the growth factor signal). In κ, each agent name comes with

4 http://kappalanguage.org

20

http://kappalanguage.org

Damgaard, Højsgaard and Krivine

D

D

D

DD

ErbB1

l

CRY1016
Y1092p

r

p

ErbB1

ErbB1

ErbB1

EGF

D

D

D

ErbB1

l

CR

r

ErbB1

EGF

D

Y1016
ErbB1

D

u

a

x

b

c

Fig. A.1. Representation of the κ expression into C1.

a fixed signature Σ : N → P(S) that specifies the names of the sites each

instance has. For instance Σ(ErbB1)
def
= {l, CR, Y1016, Y1092, . . . }. Note that

the protein ErbB1 has in fact numerous tyrosine domains (whose name are
of the form Yxxx where xxx corresponds to some amino acid position in the
chain) that we do not list here. As a convention in κ, one does not represent
sites that take no part in a given rule. In the example above, the site Y1092

is left aside in one of the instances of ErbB1.

The superscript on a site indicate its binding state. The empty superscript
ǫ marks a site that is free of any connection, indicates that the site is bound
to an unspecified partner, ? indicates a site that is either free or bound and
an integer is used to denote an explicit edge, as the one that connects the site
r of the leftmost EGF to the site l of ErbB1.

The subscript on a site indicate its internal state. This is essentially a
placeholder for a tag that serves to identify sites that have been chemically
modified. Note that the absence of tag indicates that one does not care about
its internal state in the expression.

A.2 The κ-calculus in C1

Fig. A.1 shows the C1 representation of the above κ-expression.

The convention we adopt for the representation of κ-terms is the following:
we use a domain node for each site of the kappa expression to translate.
Internal states, site and agent names are represented by info nodes. Sites
that belong to the same κ-agents will share the same backbone. Sites that are
connected in the κ expression will be bound in the C1-term. Notice that the
backbone of both instances of ErbB1 are both open. This captures the fact

21

Damgaard, Højsgaard and Krivine

D

D

D

DD

ErbB1

l

CRY1016
Y1092p

r

p

ErbB1

ErbB1

ErbB1

EGF

D

D

D

ErbB1

l

CR

r

ErbB1

EGF

D

Y1016
ErbB1

D

u

a

x

b

c

cell

X

Fig. A.2. Adding compartments to the the κ expression.

that not all sites of the signature of ErbB1 are present in the expression.

A.3 Expressiveness of C3

As said, ErbB1 proteins are in fact membrane receptors. ErbB1 protein is
composed of an extra cellular domain that holds the ligand binding site l and
an intra cellular domain that bears the other interaction sites. Now that we
have represented our expression in a richer language, it becomes natural to
represent these facts as we show in Fig. A.2.

A key regulatory mechanism of the EGF pathway is called receptor inter-
nalization. It is a mechanism by which receptors become trapped in inner
vesicles that may eventually bubble down to the cytoplasm of the cell. This
prevents the receptor from binding to new incoming signals. It is not possible
to represent this behavior in κ for two reasons. The first reason, which we
have already solved, is that there is no way to represent compartments in κ.
The second reason is more subtle. Indeed, during receptor internalization,
not only will ErbB1 get trapped inside the vesicle, but along with it will be
any protein complex attached to its extra cellular domain. In the example of
Fig. A.2, one should capture also the EGF ligand that is bound to it. This
is what we do in Fig. A.3 by defining an internalization rule that utilizes a
species node.

22

Damgaard, Højsgaard and Krivine

D

ErbB1

x
D

ErbB1

x

channel

channel

C vesicle

Intern.

ErbB1

l

CRY1016
Y1092p

r

p

ErbB1

ErbB1

ErbB1

EGF

ErbB1

l

CR

r

ErbB1

EGF

Y1016
ErbB1

u

a

x

b

c

cell

vesicle

ErbB1

l

CRY1016
Y1092p

r

p

ErbB1

ErbB1

ErbB1

EGF

D

ErbB1

l

CR

r

ErbB1

EGF

D

Y1016
ErbB1

u

a

x

b

c

cell

channel

channel

(specb∅(X) ‖ specb∅(D
b
m(x),ErbB1m))\b channelp ‖ (Cm�(channelp, spec

b
∅(X)), vesiclem� , specb∅(D

b
m(x),ErbB1m))\b→

X

b

X
b

Fig. A.3. The Intern. rule is obtained by composition of the pinch and diffusem generators and
invoking the species node where it is needed. Below is the result of the application of this rule to
our example. Notice that the receptor gets internalized together with its ligand protein EGF.

23

Damgaard, Højsgaard and Krivine

B Proof of the soundness Theorem

Definition B.1 Let ǫ denote the empty word on Π∗ and · the concatenation
of words. The abstraction map on generic wide contexts α : T• → (Π\ {⊥})∗

is defined as:

α(T)
def
= ǫ

α((T•)\u)
def
= α(T•)

α(•)
def
= •

α(T•, S•)
def
= α(T•) · α(S•)

α(Cm(T•))
def
= L·α(T•)·M

Lemma B.2 Let P be a wide term such that P →֒π T• for some π ∈ (Π\ {⊥})∗.
Then α(T•) = π.

Proof. By induction on the derivation of P →֒π T•.

(Base case). T →֒• C[•] by (ax.). Since C is a local context with
exactly one hole, the unique • cannot be wrapped in a compartment.
From Def.B.1 it follows that α(C[•]) = •.

(Inductive step).
- (rest). By induction hypothesis we have α(T•) = π.
- (wrap). By induction hypothesis we have α(T•) = π. According to
Def B.1 we have α(C(T•)) = Lα(T•)M = L·π·M.

- (comp). By induction hypothesis we have π0 = α(T•) and π1 = α(S•).
Since C[•] is a local context with exactly one hole, we have that
α(C[T•, S•]) = α(T•, S•) which, by Def B.1 is equal to α(T•) ·α(S•) =
π0 · π1. ✷

✷

Let π̄ denote a well parenthesized word of the form L·π·M.

Lemma B.3 If π is a derivable projective constraint, then π 6= π0 • π̄1 • π2

for all π0, π1, π2.

Proof. By induction on the size of π1.

(Base case). According to Def 4.3 we have •L•M• → ⊥ so π 6→ ⊥ implies
π 6= •L•M• .

(Inductive step). By red. ad abs. suppose:

π = π0 • Lπ1M • π2

24

Damgaard, Højsgaard and Krivine

Since π 6→ ⊥ we have necessarily π1 = •π
′
1• (since •LL→ ⊥ and MM• → ⊥

and LM is not derivable). Now by induction hypothesis π′
1 6= π̄′′, so the

only possibility is π′
1 =Mπ3L for some π3. So we obtain:

π = π0 • L•Mπ3L•M • π2

From L·M→ ⊥ it follows that π3 = •π
′
3• and we have a contradiction. ✷

✷

In order to define the projective distance between two occurrences of •
symbols in a word π, we need the following labeling operation.

Definition B.4 [labeling] Assume an infinite set of labels Λ. Let Π+ =
{Mα, Lα, •i} be a decoration of the alphabet Π where α ∈ Λ and i ∈ N. We
define the labeling function ℓ : (Π\ {⊥})∗ × N× Λ∗ → Π+ as:

ℓ(• · π)(i)(λ)
def
= •i · ℓ(π)(i+ 1)(λ)

ℓ(L·π)(i)(λ)
def
= Lα · ℓ(π)(i)(α · λ) with α ∈ Λ fresh

ℓ(M · π)(i)(α · λ)
def
= Mα · ℓ(π)(i)(λ)

ℓ(ǫ)(i)(λ)
def
= ǫ

We now consider labelled versions of projective constraints.

Definition B.5 Let |α denote either Lα or Mα and let α ⊙ λ be defined as

α⊙ λ
def
= α · λ if λ 6= α · λ′and α⊙ λ

def
= λ otherwise. Let |λ| denote the size of

the word λ. Define ∆#
i,j(π) the projective distance between •i and •j in π as:

∆#
i,j(•k · |α · •k+1 · π)(λ)

def
= ∆#

i,j(•k+1 · π)(λ) if k < i

∆#
i,j(•k · |α · •k+1 · π)(λ)

def
= ∆#

i,j(•k+1 · π)(α⊙ λ) if k ≥ i and k < j

∆#
i,j(•k · π)(λ)

def
= |λ| if k ≥ j

We write ∆#
i,j(π) for ∆

#
i,j(π)(ǫ)

The following proposition will be useful for the upcoming proofs.

25

Damgaard, Højsgaard and Krivine

Proposition B.6 The following equalities hold:

∆#
i,j(•kπ)(ǫ) = ∆#

k,j(•kπ)(ǫ) if i ≤ k < j

∆#
i,j(π)(α · λ) = ∆#

i,j(π)(λ) + 1 if α 6∈ π

∆#
i,j(π0 •i π1)(ǫ) = ∆#

i,j(•iπ1)(ǫ)

∆#
i,j(π0 •j π1)(ǫ) = ∆#

i,j(π0•j)(ǫ)

Lemma B.7 Let π = π0 •i π1 •j π2 •k π3 be a derivable projective constraint,
for some π0, π1, π3. We have:

∆#
i,k(π) = ∆#

i,j(π) + ∆#
j,k(π)

Proof. By induction on k − i.

(Base case). Suppose π = π0 •i |α •i+1 |β •i+2 π1. Since π is derivable,
α 6= β otherwise π → ⊥. We have:

∆#
i,i+2(π) = ∆#

i,k(•i|α •i+1 |β•i+2)(ǫ)

= ∆#
i,k(•i+1|β•i+2)(α)

= |α · β|

= 2 = ∆#
i,i+1(π) + ∆#

i+1,i+2(π)

(Inductive step). Suppose π = π0 •i |απ
′
1 •j π2 •k π3. We have:

∆#
i,k(π)

def
= ∆#

i,k(•i|α •i+1 π
′
1 •j π2•k)(ǫ)

def
= ∆#

i,k(•i+1π
′
1 •j π2•k)(α)

Using Lemma B.3 we know that α 6= π′
1 and α 6= π2. So we have:

∆#
i,k(π) = (∆#

i,k(•i+1π
′
1 •j π2•k)(ǫ)) + 1

= (∆#
i+1,k(•i+1π

′
1 •j π2•k)(ǫ)) + 1

By induction hypothesis we obtain:

∆#
i,k(π) = (∆#

i+1,j(•i+1π
′
1•j) + ∆#

j,k(•jπ2•k)) + 1

∆#
i,k(π) = (∆#

i+1,j(•i+1π
′
1•j) + 1) + ∆#

j,k(•jπ2•k)

∆#
i,k(π) = ∆#

i,j(•i|α •i+1 π
′
1•j) + ∆#

j,k(•jπ2•k)

∆#
i,k(π) = ∆#

i,j(π) + ∆#
j,k(π)

26

Damgaard, Højsgaard and Krivine

✷

✷

Corollary B.8 For any derivable π, ∆#
i,i+k(π) = k.

Proof. By induction on k.

(Base case). The base case is ∆#
i,i+1(π) = 1 which is true, by definition

of ∆#.

(Inductive step). Now we want to find ∆#
i,i+k(π) for some π of the form

π = π0 •i |απ1 •i+k π2. We have:

∆#
i,i+k(π)(ǫ)

def
= ∆#

i,i+k(•i|α •i+1 π1•i+k)(ǫ)

= ∆#
i,i+k(•i+1π1•i+k)(α)

Using Lemma B.3 we know that α 6∈ π1 so:

∆#
i,i+k(π)(ǫ) = ∆#

i,i+k(•i+1π1•i+k)(ǫ) + 1

= ∆#
i+1,i+k(•i+1π1•i+k)(ǫ) + 1

By induction hypothesis we have:

∆#
i,i+k(π)(ǫ) = (k − 1) + 1 = k

✷

✷

We obtain the soundness Theorem as a corollary of Lemma B.2 and Lemma B.7.

Proof. [Theorem 4.5] Let P = (T1 ‖ · · · ‖ Tn)\V , and P →֒π T• with 〈T•, µ〉

a match for P in S for some µ (|µ| = V(P)). We have ∆Ti,Ti+k(P)
def
= k.

Suppose P →֒π 〈T•, µ〉. Using Lemma B.2, we have α(T•) = π. Now using
Corollary B.8 we also know that ∆#

i,i+k(π) = k and we have ∆Ti,Ti+k
(P) =

∆#
i,i+k(π) = k. We conclude by noticing that α(T•) preserves nesting dis-

tances between holes (it doesn’t remove compartments that contain holes).
So, ∆Ti,Ti+k

(P) = ∆Ti,Ti+k
(S). ✷

✷

27

Damgaard, Højsgaard and Krivine

C Proof of the completeness Theorem

In order to prove Theorem 4.6 we need some properties on extensions.

Lemma C.1 Let Cn(T) denote a term of the form:

C(C1[C(C2[. . .C(Cn[T]) . . .])])

For all wide term P = (T1 ‖ · · · ‖ Tn)\V , we have:

P →֒π• T ⇒ T = C[Tn] (C.1)

P →֒•π T ⇒ T = C[T1] (C.2)

P →֒πMM T ⇒ T = C[Ck(Tn)] (C.3)

P →֒LLπ T ⇒ T = C[Ck(T1)] (C.4)

for some k ≥ 2 and:

P →֒π•M T ⇒ T = C1[C(C2[Tn])] (C.5)

P →֒L•π T ⇒ T = C1[C(C2[T1])] (C.6)

P →֒L•M•π T ⇒ T = C[T2] (C.7)

Proof. [Lemma C.1] By induction on |π|. For simplicity we consider here
terms without restriction on names, without loss of generality.

[cases (C.1)0 and (C.2)0] For both Equations (C.1) and (C.2) the only
derivation producing a • symbol is (ax.) which gives the expected con-
clusion.

[case (C.3)0 and (C.4)0] The smallest π such that P →֒πMM T or P →֒LLπ T
is respectively π = LL• and π = •MM. They both stem from the derivation:

T1 →֒• C1[T1] = T ′
(ax.)

P →֒L•M C(T ′)
(wrap)

P →֒LL•MM C(C(T ′)
(wrap)

and we have P →֒LL•MM C(C(C[T1]) = C(C(C[Tn]) which is in the expected
form.

28

Damgaard, Højsgaard and Krivine

[case (C.5)0 and (C.6)0] The smallest π for P →֒π•M T is π = L and the
only possible derivation is:

P →֒• T
(ax.)

P →֒L•M C(T)
(wrap)

It follows that P = T1 and T = C[T1]. So we have:

P →֒L•M C(C[T1])

which is in the expected form. One proceeds in a symmetric manner for
(C.6)0.

[case (C.7)0] The derivation is :

T1 →֒L•M C(C1[T1]) T2 →֒• C2[T2]

P = T1 ‖ T2 →֒L•M• T

It entails that T = C(C1[T1]),C2[T2] which can also be written C[T2] with
C[•] = C(C1[T1]),C2[•].

[case (C.1)n] Suppose:

P →֒π0
T Q →֒π1• S π0π1 = π

P ‖ Q →֒π• T, S

By induction hypothesis on Q →֒π1• S one has S = C[Tn] which in turn
implies:

P ‖ Q →֒π• T,C[Tn]

By defining C
′[•]

def
= T, •, one obtains P ‖ Q →֒π• C

′[Tn]

[case (C.2)n] Suppose:

P →֒•π0
T Q →֒π1

S π0π1 = π

P ‖ Q →֒•π T, S

One proceeds as before using induction hypothesis on P →֒•π0
T .

[case (C.3)n] Suppose P →֒πMM T . There are two sub-cases:

29

Damgaard, Højsgaard and Krivine

[case (wrap)] The derivation was:

P →֒π′M T
′

P →֒Lπ′MM C(T ′)
(wrap)

Again we have two possible cases for π′:

[case π′ = π′′M] We have P →֒π′′MM T
′. Using the induction hypothesis we

deduce:
P →֒π′MM C[C

k(Tn)] = T ′

P →֒Lπ′MM Ck+1(Tn)
(wrap)

which gives the desired form.

[case π′ = π′′•] Thanks to Lemma C.1.(C.5) we know that P →֒π′′•M T
′

implies T ′ = C1[C(C2(Tn)]. Hence we obtain P →֒Lπ′MM C
2(Tn) as required.

[case (comp)] The derivation was:

P →֒π0
T Q →֒π1

S π0π1 = π′MM

P ‖ Q →֒π′MM T, S
(comp)

It results that π1 = π′
1MM for some π′

1 since no derivation may produce
Q →֒MM S or Q →֒M S. We can apply induction hypothesis to Q →֒π′

1
MM S

from which we get the derivation:

P ‖ Q →֒π′MM T,C
k(Tn)

Defining C[•] = T, • one has P ‖ Q →֒π′MM C[C
k(Tn)] which is in the de-

sired form.

[case (C.4)n] The inductive step for P →֒LLπ T is symmetric to the pre-
vious case.

[case (C.5)n] Suppose:

P →֒π0
T Q →֒π1

S π0π1 = π•M

P ‖ Q →֒π•M T, S

From π0π1 = π•M it results that π1 = π′
1•M since π1 =M or π1 = •M is not a

valid derivation. One may now apply induction hypothesis to Q →֒π1
S

30

Damgaard, Højsgaard and Krivine

from which we get the derivation:

P →֒π0
T Q →֒π1

C1[C(C2[Tn])]

P ‖ Q →֒π•M T,C1[C(C2[Tn])]

Defining C
′
1[•]

def
= C1[C(C2[Tn])], •, one obtains the desired form:

P ‖ Q →֒π•M C
′
1[C(C2[Tn])]

[case (C.6)n] Suppose:

P →֒π0
T Q →֒π1

S π0π1 = L•π

P ‖ Q →֒L•π T, S

and the case is similar to [case (C.5)n] using induction hypothesis on
P →֒L•π′

0
T .

[case (C.7)n] Suppose:

P →֒π0
T Q →֒π1

S π0π1 = L•M • π

P ‖ Q →֒L•M•π T, S

Then either π0 = L•M•π′
0 for some π′

0 in which case, by induction hypoth-
esis we have T = C[T2] and we can conclude, or π0 = L•M and π1 = •π.
If so, we have P = T1 and T = C(C1[T1]) and by Lemma C.1.(C.7) we
have S = C2[T2]. It follows that T, S = C(C1[T1]),C2[T2] which can be
written in the desired form with C[•] = C(C1[T1]),C2[•]. ✷

✷

We proceed now with the proof of the completeness theorem.

Proof. [Completeness] Let P = T1 ‖ · · · ‖ Tk and T = C
k[T1 ‖ · · · ‖ Tk] with

∆Ti,Tj
(P) = ∆T1,Tj

(T) for all i, j ∈ {1, . . . , k}. We prove P →֒π T for some π

31

Damgaard, Højsgaard and Krivine

by induction on s(T), the size of T , defined inductively as:

s(0)
def
= 0

s(D)
def
= 1

s(I)
def
= 1

s(X)
def
= 1

s(C(T))
def
= 1 + s(T)

s(T, S)
def
= s(T) + s(S)

For simplicity we consider here terms without restriction on names, without
loss of generality.

[case s(T) = 0] We have P = 0 →֒• 0 thanks to the (ax.) rule and the
trivial local context C[•] = •.

[case s(T) = n] By hypothesis we have P = T1 ‖ · · · ‖ Tk and a context
C

k with exactly k-holes such that Ck[T1, . . . , Tk] = T for some local term
T with ∆(P) = ∆(T). We need to prove P →֒π T for some π. There are
two cases, either:

T = C(Ck[T1, . . . , Tk]) (C.8)

or there are two contexts Ci,Ck−(i+1) with exactly i and k− (i+1) holes
such that:

T = C
i[T1, . . . , Ti],C

k−(i+1)[Ti+1, Tk] (C.9)

[case (C.8)] According to Definition 4.2:

∆(C(Ck[T1, . . . , Tk]))
def
= ∆(Ck[T1, . . . , Tk])

= ∆(P)

In addition, Ck[T1, . . . , Tk]) <s T so we apply induction hypothesis to
deduce P →֒π C

k[T1, . . . , Tk] and we can conclude using (wrap):

P →֒π C
k[T1, . . . , Tk]

P →֒LπM C(Ck[T1, . . . , Tk])

[case (C.9)] Let P
def
= (P ′ ‖ Q) with P ′ def

= (T1 ‖ · · · ‖ Ti) and Q
def
=

32

Damgaard, Højsgaard and Krivine

(Ti+1 ‖ · · · ‖ Tk). According to Definition 4.2, for all Tq, Tl ∈ P ′ we have:

∆Tq ,Tl
(T)

def
= ∆Tq ,Tl

(Ci[T1, . . . , Ti])

∆Tq ,Tl
(P)

def
= ∆Tq ,Tl

(P ′)

It follows that ∆(P ′) = ∆(Ci[T1, . . . , Ti]). By the same reasoning we also
have that ∆(Q) = ∆(Ck−(i+1)[Ti+1, . . . , Tk]). Therefore, by induction
hypothesis we have:

P ′ →֒π0
C

i[T1, . . . , Ti] (C.10)

and
Q →֒π1

C
k−(i+1)[Ti+1, . . . , Tk] (C.11)

Recall that according to definition 4.2, ∆Ti,Ti+1
(P ′ ‖ Q)

def
= 1. We show

that π0π1 → ⊥ implies a contradiction. We have four cases to check:

(i) π0 = π•

(ii) π0 = π•M

(iii) π0 = πMM

(iv) π1 = LLπ

[case (i)] Using Lemma C.1.(C.1) one has

C
i[T1, . . . , Ti] = C[Ti]

Now there are two possibilities in order to have π0π1 = ⊥:

[case π1 = •π
′
1] using Lemma C.1.(C.2) one has

C
k−(i+1)[Ti+1, . . . , Tk] = C[Ti+1]

from which we deduce ∆Ti,Ti+1
(T) = 0 which contradicts hypothesis

∆(P) = ∆(T).

[case π1 = L•M • π′
1] Using Lemma C.1.(C.7) we have:

C
k−(i+1)[Ti+1, . . . , Tk] = C[Ti+2]

from which we deduce ∆Ti,Ti+2
(T) = 0 which contradicts hypothesis

∆(P) = ∆(T).

33

Damgaard, Højsgaard and Krivine

[case (ii)] Using Lemma C.1.(C.5) one has

C
i[T1, . . . , Ti] = C1[C(C2[Ti])]

and using Lemma C.1.(C.6) one has:

C
k−(i+1)[Ti+1, . . . , Tk] = C3[C(C4[Ti+1])]

It results that ∆Ti,Ti+1
(T) = 2 which contradicts hypothesis ∆(P) =

∆(T).

[case (iii)] Lemma C.1.(C.3) implies:

C
i[T1, . . . , Ti] = Ck(Ti), k ≥ 2

It results that ∆Ti,Ti+1
(T) ≥ 2 which contradicts hypothesis ∆(P) =

∆(T).

[case (iv)] Lemma C.1.(C.4) implies:

C
k−(i+1)[Ti+1, . . . , Tk] = Ck(Ti+1), k ≥ 2

It results that ∆Ti,Ti+1
(T) ≥ 2 which contradicts hypothesis ∆(P) =

∆(T).
Therefore we must have π0π1 6→ ⊥. We can thus conclude using the
(comp) rule:

P ′ →֒π0
C

i[T1, . . . , Ti] Q →֒π1
C

k−(i+1)[Ti+1, . . . , Tk] π0π1 6→ ⊥

P →֒π0π1
Ci[T1, . . . , Ti],Ck−(i+1)[Ti+1, . . . , Tk]

✷

✷

34

	Introduction
	C0: forming molecules
	Terms
	Graphical notation
	Pattern matching and dynamics
	Generators
	Discussion

	C1: naming molecules
	Terms
	Graphical notation
	Discussion

	C2: placing molecules
	Terms
	Pattern matching
	Generators

	C3: moving molecules
	Terms
	Generators

	Conclusion
	References
	Retrieving the -calculus.
	The -calculus
	The -calculus in C1
	Expressiveness of C3

	Proof of the soundness Theorem
	Proof of the completeness Theorem

