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Investigation on heat transfer evaluation for a more efficient two-zone 

combustion model in the case of natural gas SI engines 
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              Laboratoire des Systèmes Energétiques et Environnement, Emn, 44307 Nantes Cedex 3, France. 
              Laboratoire de Dynamique des Moteurs et Vibroacoustique,  Umbb, Boumerdes, 35000, Algeria. 

* Tel: 0033251858282, Fax : 0033251858299, e-mail: mslounici@hotmail.com,  
 
__________________________________________________________________________ 
 
Abstract 
 
Two-zone model is one of the most interesting engine simulation tools, especially for SI 

engines.  However, the pertinence of the simulation depends on the accuracy of the heat 

transfer model. In fact, an important part of the fuel energy is transformed to heat loss from 

the chamber walls. Also, knock appearance is closely related to heat exchange. However, in 

the previous studies using two-zone models, many choices are made for heat transfer 

evaluation and no choice influence study has been carried out, in the literature.   The current 

study aims to investigate the effect of the choice of both the heat transfer correlation and 

burned zone heat transfer area calculation method and provide an optimized choice for a more 

efficient two-zone thermodynamic model, in the case of natural gas SI engines. For this 

purpose, a computer simulation is developed. Experimental measurements are carried out for 

comparison and validation. The effect of correlation choice has been first studied. The most 

known correlations have been tested and compared. Our experimental pressure results, 

supported for more general and reliable conclusions, by a literature survey of many other 

studies, based on measured heat transfer rates for several SI engines, are used for correlation 

selection.  It is found that Hohenberg’s correlation is the best choice. However, the influence 

of the burned zone heat transfer area calculation method is negligible.  

 
Keywords: Heat transfer; Two-zone model; Natural gas; SI engines. 
___________________________________________________________________ 
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1. Introduction 

 

Natural gas is one of the most interesting and promising available fuels for internal 

combustion engines. It has been recently used as an alternative to conventional fuels in order 

to satisfy some environmental and economical concerns. Moreover, governments have been 

motivated to expand in natural gas infrastructures in order to be feasible to passenger vehicles 

as well as stationary engines [1]. However, to be more attractive and feasible, many aspects 

have to be improved for best performance and emissions.  

On the other hand, optimization of engine design requires extensive engine testing. Therefore, 

engine modeling codes are generally preferred for evaluating initial designs. Computer 

models of engine processes are valuable tools for analysis and optimization of engine 

performance and allow exploration of many engine design alternatives in an inexpensive way.  

Internal combustion engine modeling has been a continuing effort over the years and many 

models have been developed to predict engine performance parameters. 

Zero Dimensional (Zero-D) models are the most commonly preferred analytical tools for 

internal combustion engine development [2]. They are one of the simplest and fastest methods 

to model engine combustion processes. Engine designers may find that experimentally based 

Zero-D codes are more useful for design and development applications. If an experimental 

model is developed based on an engine’s experimental data, this model can be used for new 

engines with similar design in a predictive manner to provide some qualitative trends.  

Furthermore, two-zone model can represent a very interesting simulation tool especially for 

SI engines, due to the combustion type in this case. In fact, the flame front separates the 

chamber into a burned hot zone and a much cooler unburned zone.  
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On the other hand, heat transfer is particularly important in the combustion chamber energy 

balance. The gases temperatures can reach about 2800 K and heat flux induced can reach 

several tens megawatts per square meter for some engines [3]. Heat transfers occupy a capital 

place in the combustion chamber heat release analysis, since they account for approximately 

30 to 40 % of the energies in consideration [3].  For a small–scale 125 cm3 two strokes SI 

engine, Franco [4] found that approximately 50% of the fuel energy is converted to heat loss.  

Therefore, heat transfer evaluation has a significant effect in the model accuracy. 

However, in the previous studies, using two-zone model for natural gas SI engines, many 

choices are made for heat transfer evaluation. For instance, Ibrahim and co-workers [1,5] used 

Woschni correlation, Caillol and co-workers [6]  used Hohenberg correlation and Soylu and 

co-workers [2,7], used Annand’s.  Also for heat exchange area estimation for the burned and 

unburned gases, several methods have been used. However, no justification for the choice has 

been given in the literature. Thus, this study aims to investigate the effect of the choice of 

both the heat transfer correlation and area calculation and provide an optimized choice for a 

more convenient two-zone combustion model in the case of natural gas SI engines. For this 

purpose, a computer simulation is developed, and experimental measurements are carried out 

for comparison and validation.   

 

2. Numerical model description 

 

2.1 Model assumptions 

 

The following assumptions and approximations are considered in the present work: 
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1. The contents of the cylinder are fully mixed and spatially homogeneous in terms of 

composition and properties during intake, compression, expansion, and exhaust 

processes.  

2. For the combustion process, two zones (each is spatially homogeneous) are used. The 

two zones are the burned and the unburned zones. The two zones are always separated 

by an infinitesimally thin flame. 

3. Until the start of combustion, the model is a single zone and undergoes no pre-flame 

reactions. 

4. All gases are considered to be ideal gases during the engine thermodynamic cycle. 

Thermal properties are determined by assuming ideal gas behavior for air-natural gas 

mixtures. Temperature variation is taken into account by using NASA polynomial 

expressions for each gas [3]. 

5. The cylinder pressure is assumed to be the same for the burned and unburned zones. 

6. The heat transfer between the two zones is neglected. 

7. The cylinder walls temperature is assumed to be uniform and constant (400 K) [1,8]. 

The temperature’s variations of inner cylinder surface during the thermodynamic cycle 

are weak compared to the temperature’s variations of the combustion gases [9]. In 

fact, the temperature of the wall can be considered as constant according to the results 

of Rakapoulos et al. [10]. 

8. The intake and exhaust manifolds are assumed to be infinite plenums containing gases 

at constant temperature and pressure.  

9. All crevice effects are ignored, and the blow-by is assumed to be zero. 
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10. The engine is in steady state such that the thermodynamic state at the beginning of 

each thermodynamic cycle (two crankshaft revolutions) is the same as the end state of 

the cycle. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Schematic representation of the two-zone combustion modeling 

 
2.2 Model equations 
 
The main equations governing the two-zone model are the energy conservation equation 

applied to an open system (burned and unburned zones), the equation of ideal gases, the 

conservation of the mass, the evolution of volumes and different sub-models allowing the 

simulation of the thermodynamic cycle (sub-models of combustion, heat transfer, mass 

transfer during the open phases of the combustion chamber and formation of pollutant) 

[1, 11,12].  

The total mass is assumed to be constant, since valve leakage and blow-by are neglected. 

bu mmm +=                           (1) 
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The volume of the two zones is equal to the total cylinder volume, which is a function of the 

cylinder geometry and crank angle.  

bu VVV +=                           (2) 

In each zone, assuming ideal gases and the same pressure, the equation of state gives. 

uuuu TRmVP ⋅⋅=⋅                          (3) 

bbbb TRmVP ⋅⋅=⋅                          (4)  

The energy equations were written for each zone as follows. 
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Where ∑
i

is the summation of the heat transfer rates through the different engine’s parts 

surfaces in contact with the cylinder gases. 

 

Combustion sub-model  

 

The Wiebe function is often used to determine the burning rate. For SI engines, a simple 

function with four parameters allows to describe the different configurations of 

application [12]. 
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where θ is the crank angle, θ0 is the crank angle at the start of combustion, ∆θb is the total 

combustion duration (from xb = 0 to xb ≈ 1), and aw and mw are adjustable parameters which 

fix the shape of the curve. 

 

Heat transfer sub-model (a review) 

Heat transfers inside internal combustion engines are convective and radiative nature. 

However, for SI engines, the radiative transfers are negligible since they account for only 3 to 

4% of the total heat transfer [8]. This cannot be applicable to diesel engines where the 

radiative transfers can represent up to 10 % of the heat exchanges due to soot formation 

during combustion [8].  

During combustion, the burned gas temperature increases significantly with maximum which 

can reach about 2800 K. This induces gases expansion and thus an increase in their 

movement. It is during this period that heat transfers are the most important. Heat flux 

induced can reach several tens megawatts per square meter for some engines [3].  

These heat transfers between gases and the chamber walls are non-uniform and unsteady, 

hence generally complex to evaluate. Many approaches can be used, depending on the kind of 

results required.  

However, it is frequent to simplify the formulation, and use the Newton relation (8). It is the 

approach adopted in zero-dimensional models.  

  

)TT(ShQ wgwgw −⋅⋅=&                       (8) 

where  Tg   is the gases  temperature,  Tw  the wall temperature  and  hg  the  gas-wall heat 

transfer coefficient . Like Tg, hg is supposed to be uniform in all the parts of the chamber with 

same gas (burned or unburned). 
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Accordingly, the main parameter to determine, in order to evaluate the parietal losses during 

an engine cycle, is the heat transfer coefficient hg.  

A wealth of literature has been published over the years regarding the gas-to-wall heat 

transfer process in SI and CI engines and a number of correlations have been proposed for 

calculating the instantaneous heat transfer coefficient [13-20].  

These correlations provide a heat transfer coefficient representing a spatially-averaged value 

for the cylinder. Therefore, they are commonly referred to as global heat transfer models [13]. 

The most known ones were inventoried by Trapy [19], Borman and Nishiwaki [20], Guibert 

[3] and Ollivier [8]. 

Those correlations can be classified into two categories, according to the assumption retained 

for the heat transfer origin. However, we will detail only the ones which will be examined.  

 

Natural convection assumption 

 

The first correlations established for the heat transfer evaluation in engines, adopted the 

assumption of natural convection. The heat transfer coefficient, is then, written, in a 

dimensionless form, according to the relation:  

                                      nPr)Gr(CsteNu ⋅⋅=                      (9) 

The first model dates back to 1923 and was established by Nüsselt.  It consists of an empirical 

correlation established by tests carried out in spherical bomb. This model was followed and 

adjusted by Brilling , and Eichelberg; by using the experimental test results carried out on 

internal combustion engines [3]. 

These models had the advantage of describing, for the first time, the influence of engine 

parameters such as gas temperature, pressure and engine speed. But this approach has quickly 
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reached its limits.  Woschni [16] explains, furthermore, why these formulas are finally only 

very approximate. This approach was thus discussed until being abandoned in favor of the use 

of dimensional analysis considering forced convection. 

However, Eichelberg’s correlation, even though categorized in this family [8] still gives good 

estimation for heat transfer calculation. 

  

• Eichelberg’s  Correlation  (1939) [14] 

2/1
g

3/1
mp

3
g )T.P()V(1067.7h ⋅⋅= −                                            (10) 

 

Forced convection assumption  

 

Because of the inadequacy of the natural convection assumption, correlations based on this 

assumption apply with difficulty to other engines. Thus, some experimenters (Annand, 

Woschni,  Hohenberg, …) adopted the forced convection assumption [8]. This one is more 

realistic because the fluid movements in the chamber are the consequence of external 

mechanical actions.  

These studies have generally relied on dimensional analysis for turbulent flow that correlates 

the Nusselt, Reynolds, and Prandtl numbers. Using experiments in engines and applying the 

assumption of quasi-steady conditions has led to empirical correlations for both SI and CI 

engine heat transfer. 

The general formulation of the Nusselt number, considering some assumptions, is then 

written:   

nm PrReaNu ⋅⋅=                               (11) 
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Substituting Nu and Re with physical properties, the global heat transfer coefficient depends 

on characteristic length, transport properties, pressure, temperature, and characteristic 

velocity. A scaling factor is used for tuning of the coefficient to match specific engine 

geometry. A value for the exponent m has been proposed by several authors, for example, m = 

0.5 for Elser and Oguri, 0.7 for Annand and Sitkei, 0.75 for Taylor and Toong, and 0.8 for 

Woschni and Hohenberg. Except for the Woschni’s correlation, most of these correlations use 

a time-averaged gas velocity proportional to the mean piston speed. However, Woschni 

separated the gas velocity into two parts: the unfired gas velocity that is proportional to the 

mean piston speed, and the time-dependent, combustion induced gas velocity that is a 

function of the difference between the motoring and firing pressures. 

The Woschni’s and Hohenberg’s correlations are the most known of this category.  

 

• Woschni’s Correlation (1965-68)  [16] 
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P is the instantaneous pressure, in bar. C0 = 110-130. C1 and C2 are given in table 1 
    
 
Table 1: C1 and C2 Coefficients for  Woschni’s Correlation 

Phase C1 [-] C2 [m/s.K] 

Intake-Exhaust 6.18 0 

Compression 2.28 0 

Combustion-Expansion 2.28 3.24 10-3 
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• Hohenberg’s  Correlation  (1979) [18] 

 

Hohenberg [18] noted that the Woschni correlation underestimates the heat transfer 

coefficient during compression and over-estimates it during combustion. This leads to an 

over-estimate of the average heat flux during a cycle. Moreover, he underlines its difficulty of 

use. This leads him to propose the following correlation 

 

8.0
mp2

4.08.006.0
u1g )VC(TPCCh +⋅⋅⋅= −−                   (13) 

 

P is the instantaneous pressure, in bar. The numerical values C1=130 and C2=1.4, appearing in 

equation (13), are constants established on base of six representative engines. 

 

• Sitkei’s  Correlation [17] 

 

This correlation belongs to the same family as Woschni and Hohenberg correlations. This 

correlation is also established on base of Diesel engine experiments. It is expressed according 

to the equation (14): 

3.02.0
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With b = 0 - 0.35 

 

Specific correlations for SI engines  

The correlations given previously are typically established on base of diesel engines 

experiments. Consequently, they are theoretically not suitable to model the in-cylinder heat 
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transfer process for SI engines, because their combustion principles and operating ranges are 

very different. However, many studies used those correlations for SI engines. For instance, 

Oguri [21] used Eichelberg’s model to predict the heat transfer rate of a 1400 cm3 SI engine, 

yielding predicted results that agreed with the experimental results for the expansion stroke, 

but not for the compression stroke. Shayler [22] calculated heat transfer using Woschni’s, 

Annand’s, and Eichelberg’s experimental models. It was found that Eichelberg’s model could 

produce prediction results closest to the experimental data. 

Correlations were established especially for this type of engine, but they are fewer. Trapy’s 

Correlation [19] is one belonging to this category. Unlike those defined previously, this 

correlation does not have a universal character and the constant coefficients appearing in it, 

differ from an engine to another.  

Finally, Annand’s correlation has been established for both SI and CI engines, the constant b 

differs depending on the type of engine. 

 

• Annand’s Correlation [15] 

        
)(

)(
Re

44
7.0

wg

wgg
g TT
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With  a = 0.35-0.8 and   b =  4.3*10-9 W/m2.K-4 for SI engines. 

 

Note that when the expression of the previous correlations is different depending on the 

engine cycle phase, the appropriate formula is specified.  Otherwise, the expression is unique 
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2.3 Model Integration 

The preceding equations produce a system of first order differential equations of the form:                       

M (t, y) . y ′ = F (t, y)      

The numerical integration of this system, during the combustion process, with crank angle as 

the independent variable, is obtained by using a  Runge-Kutta type method,  to determine the 

following variables  mu(θ) , mb (θ) ,Vu(θ) , Vb (θ) , P(θ) ,Tu(θ)  and  Tb (θ).    

A Matlab program is developed to simulate the engine operation. The program allows the use 

of a variable increment to allow an acceptable accuracy with a minimized calculation time.  

For the initial values, at inlet valve opening, the thermodynamic cycle simulation starts with 

assumed guesses of the values of pressure and temperature of the contents within the cylinder. 

Those values are used in order to estimate the initial value for the mass of the content within 

the cylinder, via the ideal gases equation applied to the burned gas mass. At each crank angle, 

the flow rate of inlet fresh gases and exhaust gases are calculated. Hence, the mixture within 

the cylinder is well defined for each angle.   After two crankshaft revolutions, the calculated 

values of pressure and temperature are compared to the initial guesses. If the calculated values 

are not within an acceptable tolerance to the initial guesses, the simulation is repeated using 

the final calculated values as initial guesses [1,2,5]. Moreover, experimental data are used for 

model validation. 

 

3. Experimental setup description 

3.1. Description of facilities 

For comparison and validation, experimental data are used. The experimental setup consists 

of a single cylinder Lister Peter direct injection Diesel engine, adapted for gas carburetion 

(Fig. 2). The combustion chamber is a bowl-in-piston type (Fig. 3).  
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Fig. 2.  Lister-Petter Bench engine 
 
 
The engine specifications and bowl dimensions are provided in Table 2. The engine is 

naturally aspired. Tests were conducted at a constant speed (1500 rpm). 

 
Table 2:  Engine Specifications 
 

Constructor LISTER-PETER 

Engine type 
Four strokes Spark 

ignition 
Number of cylinders Single cylinder 

Cooling Air cooled 
Bore x stroke 95.5 x 88.7  mm 

Volumetric capacity 635 cm3 
Dead volume 53 cm3 

Compression ratio 12.98 : 1 
Connecting road length 165.3  mm 

IVO   44°  c.a. before TDC 
IVC      71°  c.a  after    BDC 
EVO    86°  c.a. before BDC 
EVC 58°  c.a   after   TDC 

Inlet valve diameter 45.4 mm 
Inlet valve max lift 10 mm 

     Exhaust valve diameter 37.8 mm 
Exhaust valve max lift 10 mm    

Bowl diameter 45 mm 
Bowl depth 15 mm 

Bowl eccentricity 6.25 mm 
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Fig. 3. Illustration of the geometrical configuration of the piston (a)  

and the cylinder head (b). 
 
 
 
3.2. Experimental data acquisition system 
 
Two acquisition modes are used (Fig. 4): 
 

       
 

Fig. 4. Experimental measures acquisition system synoptic 
 

• Slow acquisition (0.5 Hz): The data concerned by this type of acquisition are the air 

and fuel flow rates.  

(a) (b) 
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Natural gas flow rate is measured using a thermal mass flowmeter (Instrutec F112AC-HB-

55V). This type of flowmeter allows 1% precision measure. Flow rate measure takes into 

consideration the gas composition. Like for the burned gas flow, the air intake is in 

pulsated mode.  The existence of this mode requires the use of a buffer volume in order to 

deaden the flow pulsations. Consequently, the use of an orifice flowmeter becomes 

possible to measure the air flow.  This one is made of a diaphragm of 70 mm diameter 

installed at the buffer volume inlet.  

The equivalent air fuel ratio is calculated in two ways:  either from the gas to air ratio, or 

from the exhaust gas analysis.   

• Quick acquisition (90 kHz): This type of acquisition is used for the intake and in 

cylinder pressures. It is also used for the crank angle measures.  

The in-cylinder pressure is measured using a piezoelectric sensor AVL QH32D installed 

on the cylinder head. The range of this sensor is 0-200 bar. The crank angle determination 

is realized with an angular encoder (AVL 364C), installed on the crankshaft. This encoder 

type allows 0.1 ° CA resolution.  This acquisition management is ensured by Indiwin 

software of AVL. The intake pressure is measured using a piezoresistive sensor 0-2.5 bar, 

installed in the intake port.  

The capacitive TDC-Sensor (AVL 428) is used to determine TDC dynamically in a 

motored engine. The TDC position is determined with crank angle accuracy less than 

0.1° CA [23]. 
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4. Study purposes and strategy 

 

In the previous studies, using two-zone models, many choices are made for heat transfer 

evaluation and no choice influence study has been carried out, in the literature. The current 

study aims to investigate the effect of the choice of both the heat transfer correlation and 

burned zone heat transfer area calculation method and provide an optimized choice for a more 

efficient two-zone thermodynamic model,   in the case of natural gas SI engines. 

Firstly, in order to investigate the importance of the heat transfer correlation choice, the 

influence of the correlation selection on the calculated performances is studied. After that, the 

influence of the correlation accuracy in the pertinence of a two-zone model, by selection of 

realistic Wiebe function parameters is highlighted. Lastly, in order to provide an optimized 

correlation choice for SI engines, our experimental results are used to explore for an 

optimized choice of the heat transfer correlation. The results showed a same tendency for all 

the cases investigated despite the limited experimental setup. The engine used for comparison 

is just one at a single rotation speed. Therefore, in order to get more general and reliable 

conclusions, a literature survey of many other studies [18,22,24], which were based on 

measured heat transfer rates for different SI engines, is conducted.  Their results are in 

concordance with our experimental results. Hence, conclusions based on our experimental 

results and on a literature investigation are deduced. 

Finally, the influence of the heat transfer area calculation method is investigated. Two, 

practical methods are examined. 

 

 

 



 

 18 

5. Results and discussion 

 

5.1 Heat transfer correlation choice  

 

a. Influence of the heat transfer correlation choice on calculated performances 

In order to show the effect of the heat transfer correlation on the calculated engine's 

performances, two cases are exhibited (Fig. 5 a, b). 

To highlight this influence, the main parameter used, is the cylinder pressure.  This choice is 

not fortuitous.  It is justified by two reasons.  First, it is one of the main outputs of a two- zone 

model, which is the calculation tool under consideration.  Also, it is the calculation base for 

several other engine performances.  A mean pressure cycle was obtained by averaging 

100 cycles acquired in sequence [25]. 

Moreover, a good prediction of the cylinder pressure during combustion can be used to detect 

the risk of the knock phenomenon. The in cylinder temperature can also be used for this 

purpose. Knock is an abnormal combustion in the cylinder of spark ignition (SI) engines. It is 

the result of autoignition of one part of the end gas because of the rise in temperature and 

pressure due to propagation of the primary flame front [26]. This phenomenon is very 

undesirable because it results in lower engine efficiency, an increase of some emissions and 

even leads to destruction of the engine under heavy knock operation.  

Thus, It appears clearly (Fig. 5, 6, 7), the influence of the heat transfer correlation choice in 

the resulting engine cycle performances. To explain this influence, the heat transfer 

coefficient and the burned gas zone heat flux have been traced (Fig. 8, 9). The details are 

given while discussing each correlation alone, hereafter.   
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Also, if the engine is subject to high mechanical and thermal loads, it can lead to its damage. 

Prediction of such risks is of a great importance.  Predicted maximum pressure and maximum 

temperature can be used for this objective. However, the cases exhibited (Fig. 6, 7) show 

visibly the influence of the correlation choice on the predicted Maximum pressure and 

maximum temperature. In fact, the difference in the maximum pressure exceeds 5 bars, and is 

around 100 °C for the maximum temperature.  

Even though, it’s well known that 2 zone models cannot pretend for big prediction accuracy,   

but they can be a good first investigation tool, if well constructed. However, if the above 

mentioned differences are added to the inaccuracies produced by the model approximations, 

this will diminish considerably the model value.  

 

b. Influence of the correlation accuracy on the two-zone model pertinence  

Two-zone model is one of the experimentally based simulation tools. Generally, for SI 

engines, Wiebe function (Eq. 7) is used for heat release evaluation. In this function, aw and mw 

are adjustable parameters which fix the shape of the curve [12].  The parameter aw interprets 

the burned fuel mass fraction compared to the introduced fuel mass.  Considered 99.9% of the 

fuel introduced as burned, gives a value of 6.908 for aw. The variation of the form factor mw, 

involves a dissymmetry of the distribution, therefore of the heat release. A low value involves 

very violent combustion beginning. The increase in m generates late combustions and a shift 

of the combustion peak [11].   

Model calibration implies choice of those parameters. The calibration is as more efficient as 

those parameters are realistic. The use of the calibrated model for new engines, in a predictive 

manner, to provide some qualitative trends, is then more efficient. However, those parameters 

are more realistic when the calibration is carried while using a more accurate heat transfer 
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model. Hence, the two-zone model pertinence depends on the heat transfer correlation 

convenience.  

 

c- Heat transfer correlation choice optimization  

Correlation choice for an optimized two-zone model must take into consideration the results 

accuracy, but also its practical convenience and calculation time.  

Our experimental pressure results are used to explore for an optimized choice of the heat 

transfer correlation.  

Actually, the cylinder pressure prediction depends on the heat transfer and the heat release 

rates estimations, for of course, same engine design and operating conditions. However, for a 

given heat release rate, the cylinder pressure depends only on the heat transfer correlation 

choice. 

For the investigated cases, in order to see the influence of the heat transfer correlation choice, 

the Wiebe function parameters are taken the same for all examined correlations. Moreover, to 

use realistic parameters, physical considerations and several previous studies [1,3,8] for 

similar cases are used for their selection. Also, they are the suitable values for the majority of 

the correlations. Naturally, a check and validation is carried out on the engine. The values 

used for the investigated cases are: aw = 2.1, mw = 6.9 

Several operating conditions have been explored. The results showed a same tendency for all 

the cases studied even though with limited experimental setup. Two cases are exhibited     

(Fig. 5 a, b). 

However, in order to provide more reliable and general conclusions, results of many other 

studies [18,22,24] in the literature, which were based on measured heat transfer rates for 

different SI engines are investigated.  They are in concordance with our experimental results.  

They are given while discussing each correlation separately, hereafter.  
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• Woschni: Like noted by Hohenberg [18], this correlation underestimates the heat 

transfer coefficient during compression and over-estimates it during combustion. 

However, the effect on the cycle performance is negligible.  

This correlation separates the referenced gas velocity into two parts: the unfired gas 

velocity that is proportional to the mean piston speed; and the time-dependent, 

combustion induced gas velocity that is a function of the difference between the 

motoring and firing pressures. Its need to motoring pressure makes it difficult to use. It 

also needs more calculation time comparing to other correlations. 

• Hohenberg: It gives the closest results to our experimental data. Besides, like 

mentioned before, Hohenberg [18] proposed this correlation, as an improvement, to 

mitigate some lacks noted on the Woschni correlation. Also, the deficiency of the 

Eichelberg correlation during compression is no more found with the results of this 

correlation (Fig. 8 a, b). Moreover, it is easy to use, and the calculation time is 

minimized. Almost no tuning has to be performed. It is our best choice. 

• Eichelberg: Except for compression stroke (Fig. 8), as mentioned in reference [24], 

this correlation results are acceptable. Moreover, Shayler [22] calculated heat transfer 

using Woschni’s, Annand’s, and Eichelberg’s experimental models for SI engines. It 

was found that Eichelberg’s model could produce prediction results closest to the 

experimental data. 

Like Hohenberg’s correlation, it’s easy to use, and the calculation time is minimized. 

Almost no tuning has to be performed. So, it’s a second choice 

• Annand: This correlation, comparing to others, includes radiation term. However, this 

term doesn’t have a big influence in SI engines. 
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On the other hand, tuning coefficient has a big effect on the heat transfer coefficient 

and the corresponding engine cycle performance. In fact, if the (a) parameter is set to 

0.8, the heat transfer coefficient is overestimated (Fig. 8) and hence the engine cycle 

performance is underestimated (Fig. 5, 6, 7).  This makes it not very interesting to use 

in thermodynamic models.   

• Sitkei: The heat transfer coefficient is underestimated (Fig. 8) and the engine cycle 

performance is consequently overestimated (Fig. 5, 6, 7).  The accuracy in this case is 

not acceptable. 

The following table summarizes the previous comparing elements. It is an interesting tool. It 

can be used as a guide for correlation choice, basing on several criteria, for SI engines. 

 
 
           Table 3:  Correlations comparison 

 Accuracy Use 
Calculation 

time 
Tuning 

 
Hohenberg 

 
Good Easy Good No tuning 

 
Eichelberg 

 
Acceptable Easy Good No tuning 

 
Woschni 

 
Acceptable Difficult More Need 

 
Annand 

 

Depends on 
tuning 

Easy Good 
Big 

influence 

 
Sitkei 

 

Not 
acceptable  

Easy Good Need 
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Fig. 5. Pressure comparison for different correlations within two cases:  
(a)  Ø=1,α=9° c.a, Full load         (b)  Ø=1,α=9° c.a, Partial load          

 
                                                                                                                                     

Maximum Pressure variation according to 
Correlation

50

51

52

53

54

55

56

57

58

59

60

1

P
m

ax
 (

b
ar

)

Experience
Hohenberg
Woschni
Sitkei
Annand035
Annand08
Eichelberg

             

Maximum Pressure variation according to 
Correlation

37

38

39

40

41

42

43

44

1

P
m

ax
 (

b
ar

)

Experience
Hohenberg
Woschni
Sitkei
Annand035
Annand08
Eichelberg

 
(a) (b) 

Fig. 6. Maximum Pressure comparison for different correlations within two cases:  
(a)  Ø=1,α=9° c.a, Full load         (b)  Ø=1,α=9° c.a, Partial load 
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Fig. 7. Maximum temperature comparison for different correlations within two cases: 
(a)  Ø=1,α=9° c.a, Full load         (b)  Ø=1,α=9° c.a, Partial load 
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Fig. 8. Average heat transfer coefficient comparison for different correlations within two cases: 
(a)  Ø=1,α=9° c.a, Full load         (b)  Ø=1,α=9° c.a, Partial load          
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(a)       (b) 

Fig. 9. Burned gas zone heat flux density comparison for different correlations within two cases: 
(a)  Ø=1,α=9° c.a, Full load         (b)  Ø=1,α=9° c.a, Partial load          
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5.2 Heat transfer area calculation method influence  

 

Two calculation methods used in previous studies have been compared 

   

• First method 

 

The heat transfer rates for both zones were determined as if each of the zones filled the entire 

cylinder. 

Then, the heat transfer rates were multiplied by the fraction of the cylinder volume that is 

occupied by the zone. This method of volume weighting was used by Shapiro and Van 

Gerpen [27] and by Soylu [2]. 

 

                              A
VV

V
A

bu

b
b ⋅

+
=               (16)              A

VV

V
A

bu

u
u ⋅

+
=  (17) 

 

• Second method 

 

The combustion chamber wall area in contact with the burned gases is assumed to be 

proportional to the square root of the burned mass fraction to account for the greater volume 

filled by burned gases against the unburned volume as suggested by Ferguson [28]. This 

method is also used by Ibrahim and Bari [1]. 

 

                              AxA 2/1
bb ⋅=              (18)                     AxA bu ⋅−= )1( 2/1       (19) 
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In order to compare the results of area estimation methods, different engine operating 

conditions have been considered. Two cases are exhibited (Fig. 10, 11). The heat transfer 

correlation used is Hohenberg’s. The difference of heat flux is negligible (Fig. 11). Almost no 

effect of the estimation method on the engine cycle performance is distinguishable (Fig. 10)  

 

200 250 300 350 400 450
0

1

2

3

4

5

6
x 10

6

Crank angle (°V)

P
re

ss
ur

e 
( 

P
a 

)

340 360 380 400 420

4

4.5

5

5.5

x 10
6

Method 1

Method 2

   
250 300 350 400 450
0

1

2

3

4

5

6
x 10

6

Crank angle ( °V)

P
re

ss
ur

e 
( 

P
a 

)
340 360 380 400

3.5

4

4.5

5

5.5
x 10

6
 Method 1

 Method 2

 

(a)       (b) 

Fig. 10. Pressure comparison for different heat transfer area calculation methods within two cases: 
(a)  Ø=1, α=9° c.a, Full load         (b) Ø=0.85, α=17° c.a, Partial load 
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Fig. 11. Heat flux comparison for different heat transfer area calculation methods within two cases: 

(a)  Ø=1,α=9° c.a, Full load         (b)  Ø=0.85,α=17° c.a, Partial load          
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6. Conclusion 
 
 
In previous works using two-zone model for natural gas SI engines, many heat transfer 

correlations and heat transfer area estimation methods have been used and no choice 

justification has been given. 

In order to provide an optimized tool for future studies, using thermodynamic modeling for SI 

natural gas engines, the two aspects have been investigated in the present work. First, the 

effect of heat transfer correlation choice has been studied. The most known correlations have 

been tested and compared considering different aspects. Our experimental pressure results, 

supported for more general and reliable conclusions, by a literature survey of many other 

studies, based on measured heat transfer rates for several SI engines, are used for correlation 

selection. It is found that Hohenberg’s correlation is the best choice. It gives the more 

accurate results. It is easy to use, and the calculation time is minimized. Almost no tuning has 

to be performed. Even though not like the first one, Eichelberg’s correlation is also an 

acceptable choice.   

For the heat transfer area calculation, two estimation methods, used in previous studies, have 

been tested. Even though the volume weighting method seems to be more logical, it is found 

that the influence of the method is negligible.  

 
Notation 
 
A          Instantaneous surface area exposed to heat transfer, [m2] 
B          Cylinder bore or diameter, [m] 
Gr        Grasshof number, [-]     

h  Enthalpy, [J.kg-1]  
hg         Gas-wall  heat transfer coefficient, [W/m2 K] 
kg         Thermal conductivity of the gas, [W/m K] 
m          Mass of the gas,  [kg] 
N          Engine rotational speed, [rpm] 
Nu       Nusselt number, [-] 
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P          Instantaneous cylinder gas pressure, [Pa] 
Pr        Prandtl number, [-] 

q           Heat flux rate (heat transfer per unit area), [W/m2] 
Q          Exchanged Heat, [J] 
Re        Reynolds number, [-] 
Sw  The area of the surface in contact with the gases, [m2] 
t            Time, [s] 
T           Temperature, [K] 
Tw         Wall surface temperature, [K] 
u   Internal energy, [J.kg-1]  
V           Instantaneous cylinder volume, [m3] 
Vd  Volumetric capacity, [m3] 
Vmp        Mean piston speed, [m/s] 
xb  Burned gas mass fraction, [-] 

 
Greek Symbols  
 
α Ignition advance, [° c.a] 
θ  Crank angle , [° c.a]   
∆θb Combustion duration, [° c.a] 
λ Quotient of Connecting road length to crank radius, [-] 
Ø         Equivalent air-fuel ratio, [-] 

 
Subscript and Superscript  
 
a Admission 
b Burned 
e  Exhaust 
mot Motoring 
u  Unburned 
 
Abbreviations  
 
EVO  Exhaust valve opening  
EVC   Exhaust valve closing 
IVO   Inlet valve opening  
IVC   Inlet valve closing 
CA(V)   Crank angle 
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