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The machining of titanium alloys is critical because of high temperature reached at the tool nose, the segmentation of chip that causes chipping of the tool. The strategy used in the job shop is to use low cutting speed (50-70 m/min) and high feed rate (0.1-0.2 mm/tooth) in flooding condition in order to reduce the tool temperature and avoiding chipping. The edge preparation and the coating play an important role from thermal point of view. In particular a right compromise between sharp edge and the needs of the coating has to be taken into account.

A reliable thermal model of cutting process of titanium alloy is useful in order to design the cutting edge, calculate the optimal quantity of coolant, and analyze the effect of the coatings.

In this paper a new methodology to the temperature prediction of milling is proposed. The temperature of the workpiece, during the milling operation, has been measured using infrared camera. During the experiments cutting speed and feed rate have been changed. After data analysis a FEM model of cutting process during milling has been developed. The rheological model is calibrated using different milling tests. The results of the model have been compared with the experimental data, obtaining a good agreement. The approach can be useful to the insert tool designer in order to improve the cutting tool performance.

1.

Introduction

Titanium and its alloys are lightweight, corrosion resistant and high temperature materials. Titanium has the highest strength-to-weight ratio of all commonly used metals up to 550 °C. Titanium and its alloys are used extensively in aerospace because of their excellent combination of high specific strength, which is maintained at elevated temperature, their fracture resistant characteristics, and their exceptional resistance to corrosion. Titanium milling is widely used in the aerospace industry, i.e. pocket realization, and are also used increasingly in other industrial and commercial applications, such as military, racing and medical.

The machining of Ti is critical because of high temperature in a small, concentrated area at the tool tip and the segmented chip formation with adiabatic shear band due to mechanical instability. The high tool temperature produces tool diffusion wear and limits the cutting speed. The chip shear band formation creates the fluctuation in cutting forces and the associated chipping at tool cutting edges. Ti machining has been studied extensively in the past as reported in Ezugwu and Wang [START_REF] Ezugwu | Titanium alloys and their machinability -a review[END_REF].

An important effect of temperature is on the tool wear. It is generally known that the progressive tool wear is produced by temperature dependent mechanism as explained in Wanigarathne et al. [START_REF] Wanigarathne | Progressive toolwear in machining with coated grooved tools and its correlation with cutting temperature[END_REF].

Many researchers have worked on temperature measurement and prediction. A review of some experimental measurement can be found in Komanduri and Hou [START_REF] Komanduri | A review of the experimental techniques for the measurement of heat and temperatures generated in some manufacturing processes and tribology[END_REF]. Davies et al. [4] used the pyrometers and Dewes et al. [START_REF] Dewes | Temperature measurement when high speed machining hardened mould/die steel[END_REF] has analyzed the machining of hardened mould/die steel. Brandao et al. [START_REF] Brandao | Experimental and theoretical study of workpiece temperature when end milling hardened steels using (TiAl)N-coated and PcBN-tipped tools[END_REF] presents an experimental and theoretical study on heat flow when end milling hardened steels at high-speed. The temperatures on the workpiece have been measured. The heat transferred to the workpiece and the average convection coefficient for the cooling system have been evaluated in order to minimize the error between theoretical and experimental results.

Ceretti et al. [START_REF] Ceretti | ALE Simulation of Orthogonal Cutting: a New Approach to Model Heat Transfer Phenomena at the Tool-Chip Interface[END_REF] have determined the global heat coefficient as function of the local pressure and temperature at the tool-workpiece interface. The global heat coefficient is determined by an iterative procedure, until the error between the theoretical and the experimental temperature is negligible. Dinc et al. [START_REF] Dinc | Analysis of thermal fields in orthogonal machining with infrared imaging[END_REF] have been performed a validation of finite difference temperature model considering the temperature measured by a high precision infrared camera.

Grzesik [START_REF] Grzesik | Experimental investigation of the cutting temperature when turning with coated indexable inserts[END_REF] has used a standard K-type thermocouple embedded in the workpiece.

Lin [START_REF] Lin | Inverse estimation of the tool-work interface temperature in end milling[END_REF] has studied the end milling operation of AISI 1050, and Al 6061-T6. The temperature was measured by an infrared (IR) pyrometer. The predictions were performed using the finite element method, that was calibrated by an inverse method. tool temperature by thermocouple, during high speed milling aluminum alloy. M'Saoubi and Chandrasekran [START_REF] Saoubi | Investigation of the effects of tool micro-geometry and coating on tool temperature during orthogonal turning of quenched and tempered steel[END_REF] investigated the effects of tool micro-geometry and coating on tool temperature during orthogonal turning of quenched and tempered steel.

Abukhshim et al. [START_REF] Abukhshim | Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining[END_REF] presents the measurement of temperature by a thermal imaging camera when high speed cutting of high strength alloy.

A two-color pyrometer with a chalcogenide opical fiber was used from Ueda et al. [START_REF] Ueda | Temperature on flank face of cutting tool in high speed milling[END_REF] in order to measure the temperature on the flank face of a cutting tool in high speed milling of AISI 1045.

Filice et al. [START_REF] Filice | On the FE codes capability for tool temperature calculation in machining processes[END_REF] have measured the tool temperature by a thermocouple based approach and a thermographic analysis.

Radio radiation (two color) thermometry was used from Lazoglu et al. [START_REF] Lazoglu | Forces and temperatures in hard turning[END_REF].

The measurement of temperature in the machining of titanium was performed from Hong and Ding [START_REF] Hong | Cooling approaches and cutting temperatures in cryogenic machining if Ti-6Al-4V[END_REF] by embedded thermocouple technique, from Muller et al. [START_REF] Muller | Radiation thermometry at a high-speed turning process[END_REF] by a two-color pyrometer with high spatial and temporal resolution, and from Kitigawa et al. [START_REF] Kitigawa | Temperature and wear of cutting tools in highspeed machining of Inconel 718 and Ti-6Al-6V-2Sn[END_REF] by the tool-work thermocouple.

The prediction of the performance of cutting process and the influence of the process parameters on the product quality is important for tool and process design.

The prediction of temperature remains challenging due to the complexity of the contact phenomena in the metal cutting process as explained in Abukhshim et al. [START_REF] Abukhshim | Investigation of heat partition in high sped turning of high strength alloy steel[END_REF].

Yvonnet et al. [START_REF] Yvonnet | A simple inverse procedure to determine heat flux on the tool in orthogonal cutting[END_REF] have determined the heat flux flowing into the tool through the rake face and the heat transfer coefficient between the tool and the environment during a typical orthogonal cutting process. The followed approach is based on an inverse method.

Richardson et al. [START_REF] Richardson | Modelling of cutting induced workpiece temperatures for dry milling[END_REF] have predicted the temperature in dry milling using an analytical approach, considering the analytical moving heat source method.

In this paper the simulation of temperature field of the workpiece during face milling of Ti6Al4V using DEFORM TM-2D and DEFORM TM -3D has been performed. The rheological model has been calibrated on the basis of milling tests. Finally a sensitivity analyses about the material model is carried out in order to know their effect on the solution. The results have been compared with the experimental temperatures, measured by an infrared thermal imager.

Experimental set up

The tests are carried out on four-axis milling centre.

A Mitsubishi cutter body, APX3000R284WA25SA, is used to hold four inserts. The diameter is 28 mm. The coated WC-Co tool insert, Mitsubishi AOMT123620PEER-M with 2 mm nose radius, honed cutting edge, and VP15TF grade material (a PVD thin (Al,Ti)N coating) is used in this study.

The rake angle is 0° and the relief angle is 11°. The edge radius is 0.05 mm.

The three components of the cutting forces on the workpiece are measured by Kistler 9255B 3-axis piezoelectric dynamometer. The force signals were processed using the charge amplifiers and recorded by a PC-based data acquisition system.

The temperature has been measured using an infrared thermal imager FLIR ThermaCAM SC3000, a long wave, self-cooling analysis system with a cool down time of < 6 min. It has a temperature range of -2' to +2000 °C with an accuracy ±2% or 2°C for measurement above 150°C. This camera can acquire images and data at high rates of up to 750 Hz PAL/900 Hz NTSC with ThermaCAM

ResearcherTM HS package. The emissivity of the workpiece material was evaluated matching the temperature with a known temperature.

The ThermaCAM SC3000 is positioned as indicated in the Fig. 1. The camera was positioned at a distance of 30 cm from the tool workpiece and it is inside a protective box in order to avoid any damage by the chips, as shown in the Fig. 2.

The milling experiments were performed dry. The cutting speeds (v c ) were 35 and 70 m/min and the feed rates (f z ) were 0.05 and 0.1 mm/tooth. The depth of cut (a p ) is 2 mm. The length of cut is 50 mm. The cutting conditions are summarized in the Table 1. 

Rheological model and friction set up

In this section the rheological model set up is presented. The theoretical background, design of milling experiments and the results are explained.

Approach

An analytical-based computer program called OXCUT [START_REF] Sartkulvanich | Determination of flow stress for metal cutting simulation-a progress report[END_REF], developed at the Engineering Research Center for Net Shape Manufacturing at the Ohio State University, has been used to obtain flow stress parameters. It is based on Oxley machining theory, and compares the experimental data with the predictions and minimize the error by adjusting flow stress parameters. The program stops its calculation if the results match within a certain, predefined tolerance. In particular a modified Johnson Cook (Eq. 1) has been used for the calibration.

(

with A = 0.

The use of these constitutive equations is for reducing the problem of non-uniqueness.

The first term of modified J-C equations which represents strain hardening behavior of the material is consisted of parameter B and n, namely strength coefficient and strain hardening. The initial stress parameter A is disregarded due to no initial stress assumption addressed in Oxley's theory and that small number of parameters are preferred for reducing the less computational time and obtaining uniqueness of the solution. The second term which represents the effect of strain rate is assumed to be similar to that of Johnson & Cook's model.

The third term is the temperature factor defined differently for different materials.

The criterion used in matching the predictions and the measurements is the total of the least mean square error between predicted force and measured forces at each rotation angle, and the weighted error of deformation zone ratio at 90th degree rotation angle between experiments and predictions.

The error function is summarized in the equations [START_REF] Wanigarathne | Progressive toolwear in machining with coated grooved tools and its correlation with cutting temperature[END_REF]. 

Where:

Tangential force.

Radial force.

= Primary deformation zone ratio ( ).

= Secondary deformation plastic zone ratio.

= Weighted Constant for the error of .

= Weighted Constant for the error of ( ).

= Number of cutting conditions .

The symbols are shown in the Fig. 3. The program was extensively used in the orthogonal cutting and orthogonal slot milling. Pittalà and

Monno [START_REF] Pittalà | 3D finite element modeling of face milling of continuous chip material[END_REF] have used it in the face milling of aluminum.

The thickness of secondary plastic zone is difficult to measure. A theoretical approach has been followed in this paper.

The thickness of the shear zone changes little with speed but a great deal with undeformed chip thickness (Oxley [START_REF] Oxley | Mechanics of Machining, An Analytical approach to Assessing Machinability[END_REF]).

AB is assumed to be a direction of maximum shear strain rate and it is given by:

(

For the parallel-sided shear zone theory the shear strain-rate is assumed to be constant throughout the shear zone and to be given:

Where is the shear velocity. Then = = 1/C.

In general can be considered constant for usual cutting conditions. In the parallel-sided shear zone theory C = 10. Finally C is 10 and is 0.05.

Experimental set up

The milling tests, performed in order to set up the material model, are different from those where the temperature has been measured. The workpiece is made of the same material and has the shape The design of experiment is indicated in the Table 2. The cutting forces on the workpiece are measured by Kistler 9255B 3-axis piezoelectric dynamometer. The force signal was processed using the charge amplifiers and recorded by a PCbased data acquisition system.

Results

The results of OXCUT software are shown in the Table 3: The ranges of validity are:

1. Strain = 0.65 to 0.71.

Strain rate = 2.2 to ;

3. Temperature = 374 °C to 1129 °C.

Different material models have been used in order to analyze their influence on the predicted temperature. They are shown in the Table 4. Regard to the M2, M3 and M4 the Cockcroft&Latham damage model has been used. The D values for M2 and M3 have been obtained from Umbrello [START_REF] Umbrello | Finite element simulation of conventional and high speed machining of Ti6Al4V alloy[END_REF]. These are D=200 MPa, 100 MPa, 100

MPa respectively. Some sensibility analyses have shown that the mean value of the cutting forces and the workpiece temperature are not significantly influenced from the D parameter.

The friction model used is the shear constant model. The friction coefficient is assumed m = 0.70-0.80, based on previous face milling tests, using single tooth milling tool (Pittalà [32]).

FEM Model

The milling operation has been split in several angular steps (Fig. 5) and a 2D FEM simulation for each step has been executed. In this way the cutting forces are tangential and radial, or fixed to the tool reference. With the known equations, the feed and perpendicular to feed components, for each insert i, can be obtained.

(5) , along the feed rate direction.

(6), normal to the feed rate direction.

Where is the rotation angle of the insert i.

The total force can be obtained with the equation:

(7) (8) 
, [START_REF] Grzesik | Experimental investigation of the cutting temperature when turning with coated indexable inserts[END_REF], the total resultant cutting force.

With z number of inserts.

The commercial FEA software Deform TM -2D v. 9.0, a lagrangian implicit solutor, was used to simulate the operation. The workpiece has 1500 elements, and the tool has 700 elements.

The tool is considered a rigid body and the material is WC.

The FEM permits to obtain the relation between cutting forces and chip thickness for different cutting speed and feedrates.

(
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The geometry of cutting tool in proximity of the cutting zone, has been modeled as in the Fig. 6.

Fig. 6 -Schematic diagram of the tool

The depth of cut is increased to the value 3.14 mm, to take into account the nose radius.

The boundary conditions are presented in the Fig. 7. The thermal characteristics of WC is listed in the Table 5:

Table 5. Thermal characteristics of WC used in the simulation

Conductivity ( ))

Heat capacity ( 59 15

The virtual cutting coefficients have been identified in order to calculate the cutting forces. The results for the material M5 is shown in the Table 6. 

Thermal model

The thermal characteristics of titanium is shown in the Table 7. The 3D model of the workpiece has been prepared, and the boundary conditions are shown in the The temperature along the depth of cut is assumed constant. Several 2D simulations have been performed in order to take into account the chip thicknesses from zero to the maximum chip thickness.

A sensitivity analysis was performed in order to estimate the influence of the discretization of thermal boundary condition. It was tested: 1) 2 chip thicknesses 2) 3 chip thicknesses, 3) 5 chip thicknesses and 4) 2 chip thicknesses with no temperature at the initial and exit phase.

The four thermal profiles are shown in the Fig. 9. The temperature was estimated with 2D FEM simulation.

In this case , and the cutting velocity is 35 m/min. The material model is the

M5 model

The results are presented in the Fig. 10. The thermal profile and 3 give the same result. Subsequently only the profile n. 2 will be considered. It is interesting to note that it is important the thermal conditions for the low chip thickness. If this is neglected, the maximum temperature is underestimated, as shown the Fig. 10 e).

Deserves consideration apart the effect of the cobalt content and coating. Some sensibility analysis have been performed. The thermal properties have been taken from the software DEFORM 2D TM .

In the study 24%, 19% and 15% of cobalt content and the coating TiAlN (thickness 5 µm) have been taken into account.

The results show that the temperature of the workpiece changes around 5-6%. A considerable difference, of course, can be found for the maximum temperature of the cutting tool.

Finally, the experimental determination of thermal properties of the coating and cutting tool in the state of cutting process need further study. The determination of the thermal conductivity and thermal capacity of tungsten carbide with different cobalt content and coating is not the object of this paper. Anyway the sensitivity analysis shows that the effect on the temperature workpiece is not very remarkable.

Results

In this section the results in of the mean values of the cutting forces and the maximum temperature reached on the workpiece have been taken into account.

In the Fig. 11 the resultant cutting forces on the cutting is shown. In the figure is also shown the experimental error (the dotted line). It can be noted that for the material models M1, M2, M3, M4 the cutting forces are overestimated for all the cutting conditions. The M5 provides a good agreement with the experimental results.

The maximum temperature on the workpiece (where the temperature has been measured) is presented in the Fig. 12 (the dotted line indicates the experimental error). The M5 model is, among all models, one that provides the best agreement between theoretical results and experimental ones.

Conclusions

In this paper the thermal prediction of Ti6Al4V milling has been considered. Face milling tests were carried out on a milling centre using a milling tool with four inserts.

A methodology was set up in order to predict the of the workpiece due to the face milling. The approach is based on the 2D FEM in order to estimate the thermal field due to the cutting process, and thermal simulation using 3D FEM to obtain the temperature on the workpiece.

Sensitivity analyses about the boundary conditions of the thermal simulation were performed and the best set up was determined.

The procedure is consistent because it provides a good agreement of theoretical and experimental temperature.

The analysis shows the need to calibrate the material directly from face milling operations. In fact the better agreement, regard to the cutting forces and temperatures, is obtained when the rheological model is derived from milling test.

This work can be useful to estimate the thermal field on the workpiece and then the distortions of its. This is useful to analyze the effect of cutting fluid, and then optimize the flow rate.
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 12 Fig. 1 -Schema of the experimental set up.

  From the equation, f function refers to the nonlinear function representing Oxley's theory with arbitrary flow stress parameter inputs (B, C, n, and m) for predicting forces, deformation, etc. Weighted constants for the error of deformation zone ratios are set as 1000 for W 1 and 2000 for W 2 since they give less computational time during minimization of the error. Minimize
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 3 Fig. 3 -Parallel sided shear zone model

indicated in the Fig. 4 .

 4 The milling tool is a Mitsubishi VC-MHDRB 22XR1.5X20; it has four teeth and the diameter is 22 mm. The depth of cut is maintained constant to 2.3 mm. The cutting speed assumes two values (40 and 70 m/min), in order to have different values of the strain rate in the shear plane.
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 42 Fig. 4 -Draw of the workpiece used to set up of the material model.
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 5 Fig. 5 -Different positions of milling tool with the inserts n. 1, n. 2, n. 3

Fig. 7 -

 7 Fig. 7 -Scheme of boundary condition of 2D FEM model.

Fig. 8 a

 8 Fig.8 a). It is assumed that the thermal contact between the tool and the workpiece is not intermittent, since there is enough time to evacuate the heat generated from cutting process. The temperature on the arc of contact is obtained from 2D simulation, as presented in the Fig.8 b). The interface heat coefficient between tool and chip was assumed 10000 N/s/mm/°C, considering the thermal contact perfect. As shown in the Fig.8 b) the thermal gradient on the workpiece is high. It is assumed that the mean value of temperature over a region, indicated in the figure, governs the heat flux.
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 8 Fig. 8 -Boundary conditions of the thermal model a) and the temperature of the 2D FEM b).
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 9 Fig. 9 -Different thermal profiles
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 10 Fig. 10 -Experimental measurement for the temperature a) and simulation results for different thermal profiles 1 b), 2 in c), 3 in d), 4 in e)
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 11 Fig. 11 -Mean value of the resultant cutting forces on the cutting plane changing the cutting conditions.
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 12 Fig. 12 -Maximum temperature on the workpiece changing the cutting conditions for different material models.

  

Table 1 -Design of milling tests using the thermocamera.
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Table 3 -Flow Stress Parameters of the simplified Johnson-Cook model
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Table 4 . Material models

 4 

	B (MPa)	C	n	m
	1508	0.067	0.049	0.71

Table 6 -Virtual cutting coefficients for the M5 material
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	Cutting speed (m/min)				
	40	1700	30	570	60
	70	1600	30	600	60

Table 7 . Thermal data of titanium alloy -TiAl6V4 (Deform-User Manual [33])

 7 

	Heat capacity (x10 6 J/(m 3 K))	Conductivity
		(	)
	2.35 (0 °C)	7 (0 °C)
	2.52 (200 °C)	8.6 (200 °C)
	2.76 (400 °C)	11.5 (400 °C)
	3.5 (600 °C)	14.4 (600 °C)
	3.9 (800 °C)	17.2 (800 °C)

Table 8 -Values of the chip thickness of the different positions.
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	Position Rotation angle (degree)	Chip thickness
	A	22.5
	B	45
	C	67.5
	D	10
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