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Abstract

The Fouetté turn in classical ballet is performed repeatedly on one leg with swinging of the

free limbs, producing a continued sequence of turns with one turn leading into the next. The

purpose of this study was to determine the possible time history profiles of the twisting

torque between the supporting leg and the remainder of the body that will allow continued

performances of the Fouetté turn. Simulations were performed using a model which

comprised the supporting leg and the remainder of the body to find torque profiles that

maintain the initial angular velocity so that the state after one revolution is the same as the

initial state. The solution space of torque profiles was determined for various rotation times

and coefficients of friction between foot and floor. As the time for one revolution became

shorter the solution.space became smaller and for a given turn time there was a lower limit

on the coefficient of friction. As the frictional coefficient became smaller the solution space

became smaller and for a given coefficient there was a lower limit on the turn time. Turns of

a given tempo can be performed on floors with different friction by modifying the twisting

torque profile. When a turn is completed with a net change in angular velocity this can be

compensated for in the next turn by adjusting the twisting torque profile.

KEY WORDS: Turn; Simulation; Angular Momentum; Ballet.

PsycINFO classification code: 2330, 3720, 3740
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1. Introduction

Skilled ballet dancers can continuously perform repeated Fouetté turns (Fig. 1)

and while there are various performance styles, such as Italian and Russian Fouetté

turns according to the ballet style of the dancer (Warren, 1990), the basic technique is

the same. The turn is started from one or two revolutions of the pirouette which is

initiated with both feet in contact with the floor to producethe initial angular

momentum. The dancer then keeps turning to music, swinging the arms and the free

leg while the supporting foot is stationary in full contact with the floor (Figs.1 A-D).

After the swinging, the dancer adopts the pirouette position during which the foot slips

(Fig.1 E-D) before starting to swing the free leg again (Fig. 1 J-K). The dancer regains

the angular momentum-lost due to friction during the slipping phase by swinging the

free limbs when the foot is stationary, which enables the floor to exert a large frictional

torque Tg on the foot in the same direction as the swinging (Laws, 1984, 1998; Imura,

lino, & Kojima, 2008). The dancer can keep turning for more than 30 revolutions by

repeating these movements.

The frictional torque Ty is the only external torque during the Fouetté turn and

consequently determines the changes in the angular momentum of the whole body.

This frictional torque is dependent on the limiting frictional torque (limiting Tr) and
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the twisting torque T used to swing the free limbs. The supporting foot during the

Fouetté turn is essentially on tiptoe during the slipping or in full contact with the floor

when the foot stops turning.

*#% insert Fig. 1 here ***

Dancers have to perform the Fouetté turn in time to the music in the

choreography, facing the front at the same position for the aesthetics of ballet (Laws,

1984). However, they sometimes turn to music tempo that is too fast or too slow and

struggle with performing successful turns. The friction coefficient between the shoes

and the floor of the performance stage may be different to that of the practice studio

and this will require technique to be modified.

The purpose of this study was to determine the possible time history profiles of

the twisting torque between the supporting leg and the remainder of the body that will

allow continued performances of the Fouetté turn. Techniques for coping with changes

in tempo and friction were also investigated.

2. Methods

A computer simulation model of the Fouetté turn was used to investigate the

solution space of twisting torque profiles that permitted performances of successful
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turns for various coefficients of friction between foot and floor and various time

periods of turn. The body (mass 49.5 kg) of a typical dancer who participated in a

previous study (Imura et al., 2008) was modeled as two cylinders (Fig. 2): ‘the

supporting leg L and the remainder of the body B whose moment of inertia Iy about a

vertical axis changed according to the positions of the free leg and arms. The time

profiles of the foot radius r, the moment of inertia Iy, and the normal ground reaction

force N were based on experimental data from the study of Imura et al. (2008) and

were represented by joining adjacent maximum and minimum values using monotonic

quintic functions with zero first and second time derivatives at the endpoints (Fig. 3).

*%% insert Fig. 2 here ***

The radius r was taken to be 0.12 m at the maximum when the supporting foot

is fully in contact with the floor and to be 0.05 m at the minimum when the dancer

stands on tiptoe (Fig. 3a). These bounding values were determined using the distance

between the toe and the center of the pressure (CoP) from the experimental data of

Imura et al. (2008). The foot radius time profile was matched to the experimental data

with time normalized to the turn time, recognizing that CoP locations were unreliable

when the normal reaction force was small.

The time profile of Iz (Fig. 3b) was calculated using the theorem of parallel



73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

axes by scaling inertia data (Ae, Tang, & Yokoi, 1992) of a subject with similar body
mass as the model and using arm and leg positions based upon those exhibited in the
experimental study of Imura et al. (2008). The maximum and minimum Ig were
calculated to be 2.67 and 1.06 kg.mz, respectively. The moment of inertia of the leg I},
was assumed to be constant during the turn and was calculated to be 0.085 kg.mz. The
normal ground reaction force N was determined by the following four values based on
experimental data from the study of Imura et al. (2008): 2.68 body weights at the time
of full foot contact, 0.0 body weights once slipping had started, 1.24 and 0.82 body
weights during slipping on tiptoe. It was assumed that the fitted profile was
symmetrical about the mid-turn time (Fig. 3c). The average N was one body weight
during one turn.

The friction coefficient | between the shoes and the floor was estimated to be
0.2, calculated from the slipping phase of the experimental data of Imura et al. (2008)
using the equation p = Tp / Nr. The leg L was rotated further than B (Fig. 2) by 0.22
radians at the start of the turn according to the experimental data of Imura et al. (2008).

Simulations were performed for 1 s starting with the supporting foot in full
contact with the floor (Fig. 1A), with the requirement that the dancer rotates 2w in 1 s

using an appropriate twisting torque T. Three variables were used to define the time
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profile of T: Ty« the initial (positive) torque to swing the free limbs and trunk, Ty, the
(negative) torque which is maintained during the sliding to reverse the swinging, and
the time t; at which T becomes Tyin. Thax, and Tpin, were joined by monotonic quintic
functions, assuming the profile of T to be symmetric since the dancer swings the limbs
at the end of the turn as at the start (Fig. 3d).

*#% insert Fig. 3 here ***

The frictional torque Tr while the dancer is slipping can be assumed to be the
limiting Tg, which is the product of the friction coefficient u, the normal ground
reaction force N, and the radius r of the foot contact area with the floor. When the foot
is stationary, the frictional torque T acting on the supporting foot is equal to T. The
frictional torque Ty was defined as Tr = T when T < uNr and Tr = uNr once L
slipped. Values for W, N, 1, I, I, and T were input into the equations of motion.

The angular momentum of the body B is given by h = I3 d)B where ¢, is the
angle turned by the body B. The torque T applied to the body B by the supporting leg L
is equal to the rate of change of h. Thus:

T=1,0, +1,0, from which:
0y =(T—1,04)/1, (1)

The net torque acting on the leg L in the direction of the turn is Tr - T and so:
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T.-T= ILif)L from which:

¢, = (T =T)/1, @)
The angles and angular velocities of B and L (¢, ,(i)B and q)L,d)L) were calculated from
the accelerations derived in (1), (2) using stepwise integration.

A grid search was made for Ty,,x between 10 and 30 Nm, Ty, between —1 and

—10 Nm and t; between 0.1 and 0.4 s to find the possible time profiles of T for turns
which satisfied all of the following conditions. These were: (a) the leg L rotates 2n
radians and stops by the end of the simulation, (b) the body B rotates 2r radians and
the angular velocity of B at the end of the simulation is the same as at the start, (c) the
foot does not slip more than 0.13 radians in the direction opposite to that of the turn (as
for the experimental data of Imura et al., 2008). The coefficient of friction p = 0.2
and time for one turn was 1.0 s. After determining the bounding time profiles of
minimum and maximum Ty« from the solution space of T, additional cases were
considered in which the friction coefficient ranged from 0.1 to 0.3 (teng = 1.0 s) and the

time for one turn ranged from 0.7 to 1.0 s (L = 0.2), spanning the experimentally

determined values of p =0.2 and tepg = 0.85 s.

3. Results
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For each combination of frictional coefficient @ and turn time t.,q there were
maximum and minimum values for the initial (maximum) value Ty,x of the twisting
torque T (Tables 1-4). Each pair of max-min solutions gave rotation angle time
histories similar to experimental data and had similar angular velocity time histories
(Figs. 4 and 5). For each value of Ty lying between the maximum and minimum
values there existed unique values of Ty, and t; for which the body and supporting leg
each rotated one revolution and any counter-slipping was less than 0.13 radians as
shown in the example (Table 2, Fig. 6). With W fixedat 0.2, smaller values of t.,q lead
to larger values of minimum Ty« and consequently to a smaller range of solutions
(Table 1). For te,q = 0.76 there was a narrow range of solutions with Ty,,x lying between
28.1 Nm and 28.3 Nm and for t.,q = 0.75, or smaller, there were no solutions. For
decreasing te,q the maximum angle difference o, between the body and the
supporting leg -increased (Table 1). The initial angular velocity d)B of the body
remained essentially constant for a given t.,q and was inversely proportional to teng
(Table 1).

*#** insert Table 1 here ***
*#** insert Table 2 here ***

With tenq fixed at 1.0 s smaller values of U lead to smaller values of Ty, and
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Thmin (Table 3). As W decreased the maximum and minimum values of Tyax, Tmin, and
t; became closer (Table 3), giving a narrower range of solutions and for p < 0.12
there were no solutions. The initial angular velocity (i)B remained essentially constant
for the various values of L.

For each solution with given values of W and t.,q, there existed solutions with
equivalent torque profiles for different combinations of W and t.,g- For example if p
increased from 0.20 to 0.25, te,q decreased from 1.0 to 0.9 in the equivalent solution
(Table 4). The torque profiles of these equivalent solutions have the same t/t.,q values
and merely have different scaling factors for torque and time.

*%%* insert Table 3 here ***

*#%% insert Table 4 here ***

*#*%* insert Fig. 4 here ***
*#*%* insert Fig. 5 here ***
4. Discussion
The purpose of this study was to determine the possible time history profiles of
T for various tempos and friction. For each combination of time of turn and frictional

coefficient there is a range of solutions for T (Tables 1-4). The solutions for T satisfy
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the requirement that the net change in the angular velocity of the body B is zero and

that the leg L and body B each rotate 2z at t.,q. Because the body B rotates under the

action of only T, the time integral of T should be zero after one revolution so that there

is no net change in angular momentum. The rotation of the leg L is dependent on the

net torque Tg- T, so the foot should rotate 2r during slipping as a consequence of

sufficient acceleration produced by the net torque. Again the time integral of Tr- T

must be zero since the start and end velocities are zero. Hence, Tyax, Tmin, and t; are

such that the integral of T is zero and Tr - T rotates L just one revolution during

slipping. For a given value of Ty« these two constraints give a unique solution for the

remaining two degrees of freedom (Tp, and t;). Thus for a given set of conditions (U,

teng) there is a set of torque profiles defined by Tk, Tmin, and t; each of which lie

within the bounds shown in Tables 1-4. While there is a range of solutions for a given

set of conditions (UL, tena), the tight specification of any individual solution may make

the Fouetté turn difficult to perform in a steady state since precise timing would be

required by the dancer. On the other hand since there are various time histories within

the general profiles which produce one revolution of the Fouetté turn (Fig. 6), such

time profiles may represent the different styles from different schools.

*#*%* insert Fig. 6 here ***
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Initially the twisting torque is positive and less than the limiting frictional

torque, accelerating the upper body in the direction of twist while the supporting leg

remains stationary with the twisting torque and frictional torque cancelling each other

(Figs. 4a and 5a). If the twisting torque exceeds the limiting frictional torque in this

phase (T > 0) the foot will slip in the direction opposite to that of the twist. Soon after

the upper body starts to decelerate relative to the supporting leg and T becomes

negative, the magnitude of T exceeds that of limiting Tr and the foot slips in the

direction of twist (Figs. 4a and 5a). Once the magnitude of T falls below that of

limiting Ty, the angular velocity of the foot decreases until the foot stops rotating at

which time T = Tg.

For a given coefficient of friction there is a lower bound on the time of the turn

since faster turns require larger torques (Table 1) and these are bounded by the limiting

frictional torque. This explains why the range of solutions narrows for faster turns

(Table 1). There will also be an upper bound on the turn time arising from the assumed

time profile of the vertical reaction force N (Fig. 3) since the supporting leg must flex

in order to reduce N below one body weight and there is a limit to the amount of

flexion possible. The average angular velocity of the body will be inversely

proportional to the turn time, and since the angular velocity profiles of the body are
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similar in different solutions (Figs. 4c and 5c) the initial angular velocity (i)B will be
approximately inversely proportional to te,q (Table 1). Thus if a dancer completes a
turn with a net decrease in (i)B this could be compensated for in the next turn by
choosing to continue to turn at the new angular velocity and selecting a twisting torque
profile with the corresponding t.,q. Alternatively, a larger Tp,x for the same Ty, could
be used to produce a net gain in angular momentum in the next turn while keeping the
same turn time. Real time adjustments for ¢, and ¢, could also be made by
modifying the time profiles of Iy and r.

As the friction coefficient becomes smaller, the magnitude of T also decreases
but so does the range of possible profiles for T so that for a given t.,q there is a lower
limit for p below which there are no solutions. This is a consequence of not having
sufficient Tr- T to produce the required rotation of the foot. For values of [ below
this limit there are solutions with longer turn times since for a given solution there are
equivalent solutions with smaller p and larger t.,q (Table 4). For larger values of ,
solutions require larger values of T (Table 3), and so there will be an upper limit on L
imposed by the ability of the dancer to exert large torques. For floors with different p
it will be possible to turn at a given tempo providing L lies within a certain range.

For p below the lower bound slower turns will be possible and for p above the
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upper bound faster turns will be possible up to a limit.

For a given pair of values of | and t.,q and a particular solution there are
other corresponding pairs of values with an equivalent solution for which t;/te,q is‘the
same (Table 4). In comparing these solutions a change of t.,q by a scaling factor k will
correspond to a change in each of iB , d)B, and d)L by a factor of 1/k and a change in
each of if)B and if)L by a factor 1/k*. As a consequence of equations (1) and (2) T and
T will change by a factor /K%,

There are a number of simplifications associated with the model. The moment
of inertia about the longitudinal axis of the supporting leg is assumed to be constant. In
an actual performance the knee bends and extends in order to stand on tiptoe and so the
moment of inertia will.vary. However knee flexion occurs primarily during full foot
contact and changing the moment of inertia in this phase would have minimal effect on
a simulation since the foot slips very little during this phase. During the majority of the
slipping phase the leg is straight and the assumption of constant moment of inertia is
reasonable. Although the time profiles of the variables 1, Iz, and N are simplifications
they were based on the experimental data of a dancer and the calculated leg and body
rotation angles were similar to performance data (Figs. 4 and 5). The coefficient of

static friction has been assumed to be the same as that of dynamic friction rather than a
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little larger. The effect of this will have been to reduce the range of possible solutions

slightly. The limit of 0.13 radians on foot slippage in the direction opposite to the turn

constrains the maximum angle difference between body and support leg< to

anatomically feasible values of around 1 radian or less in the simulations (Tables 1-4).

If this constraint is removed the solution space is much larger but includes simulations

with large relative rotations between body and support: leg -which are beyond

anatomical limits.

This simple model has been used to describe the solution space of the possible

time profiles of the twisting torque T that produce the required rotation about the

longitudinal axis in a Fouetté turn. A change of floor to one with increased friction will

require a larger twisting torque to turn at the same tempo. A net reduction in the

angular velocity of the body B after one turn can be compensated for by increasing

Thax for the same Ty, The model could be applied not only to the Fouetté turn but

also to other ballet turns such as the pirouette and Grand Fouetté Italien.
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Table 1. Ranges of the twisting torque parameters T, Tpin, t for
which the dancer can turn in steady state (L =0.2)

T fend Tmax 'Tmin tl/tend (I)d q)B

max | 1.00 283 49 0.15 066 449

min | 1.00 184 55 023 0.76 4.49

max | 090 283 54 0.16 0.68 497
min | 0.90 202 6.0 023 0.80 4.97

max | 0.80 283 6.0 0.18 075 5.57
min | 0.80 239 67 022 091 5.58

Notes: ¢ d is the maximum difference between leg and body angles,

¢B is the initial angular velocity of the body B
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Table 2. An example of an intermediate twisting torque profile
lying between maximum and minimum solutions

T IJ' tend Tmax 'Tm.in 4 ¢d ¢B
max | 030 1.0 424 65 0.13 0.65 452

int | 030 1.0 323 66 017 0.65 4.53

min | 030 1.0 222 81 027 105 455 \

Notes: q) 4 is the maximum difference between leg and body angles,

(])B is the initial angular velocity of the body B



Table 3. Ranges of the twisting torque parameters Ty, Tmin, and t
for which the dancer can turn in steady state (t.,q = 1.0 s)

T IJ' Tmax 'Tmin G (I) d (I) B

max | 0.15 212 42 016 0.69 446

min | 0.15 159 47 023 086 447

max | 020 283 49 015 0.66 449
min | 0.20 184 55 023 0.76 449

max | 025 353 57 014 0.65 451
min | 025 20.1 6.8 025 089 452

max | 0.30 424 65 0.3 0.65 452
min | 0.30 222 81 027 1.05 4.55

Notes: ¢d is the maximum difference between leg and body angles,

¢B is the initial angular velocity of the body B
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Table 4. Equivalent solutions for twisting torque profiles
with different combinations of friction and turn
time

T ”‘ fend Tmax 'Tmin tI/ Cend q) d q) B

max | 020 1.0 283 49 0.15 0.66 449

min | 020 10 184 55 023 0.76 4.49

max | 025 09 354 62 0.5 0.66 5.02 \
i 025 09 229 68 023 076 5.02

Notes: q) 4 is the maximum difference between leg and body angles,

(i)B is the initial angular velocity of the body
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List of Figure Captions

Fig. 1. Sequential view of one revolution of Fouetté turn. Each picture is shown every
10% time of one revolution (adapted from Imura et al., 2008).

Fig. 2. The model comprises the supporting leg L and the remainder of the body B.
Initial torque directions are shown.

Fig. 3. Time profiles of (a) radius of the foot contact area, (b) moment inertia of body
B, (c) normal ground reaction force, and (d) a representative example of the
twisting torque T. The abscissae show one time unit for one revolution of
the turn and experimental data (normalized to the time of the turn) are
shown using dashed lines.

Fig. 4. Time profiles of a successful Fouetté turn (i = 0.2) for which the twisting
torque parameter Tp.x is minimum: (a) twisting torque (dashed line),
frictional torque (thick line), limiting frictional torques (both directions,
thin lines), (b) rotation angles of body B (thin line) and leg L (thick line)
with experimental data (dashed lines), and (c) angular velocity of body B
(thin line) and leg L (thick line).

Fig. 5. Time profiles of a successful Fouetté turn (1 = 0.2) for which the twisting
torque parameter Tp,x is maximum: (a) twisting torque (dashed line),
frictional torque (thick line), limiting frictional torques (both directions,
thin lines), (b) rotation angles of body B (thin line) and leg L (thick line)
with experimental data (dashed lines™), and (c) angular velocity of body B
(thin line) and leg L (thick line).

Fig. 6. An example of an intermediate twisting torque profile (dashed line) between

maximum T, (thick line) and minimum Ty« (thin line) corresponding to Table
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