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The Fouetté turn in classical ballet is performed repeatedly on one leg with swinging of the free limbs, producing a continued sequence of turns with one turn leading into the next. The purpose of this study was to determine the possible time history profiles of the twisting torque between the supporting leg and the remainder of the body that will allow continued performances of the Fouetté turn. Simulations were performed using a model which comprised the supporting leg and the remainder of the body to find torque profiles that maintain the initial angular velocity so that the state after one revolution is the same as the initial state. The solution space of torque profiles was determined for various rotation times and coefficients of friction between foot and floor. As the time for one revolution became shorter the solution space became smaller and for a given turn time there was a lower limit on the coefficient of friction. As the frictional coefficient became smaller the solution space became smaller and for a given coefficient there was a lower limit on the turn time. Turns of a given tempo can be performed on floors with different friction by modifying the twisting torque profile. When a turn is completed with a net change in angular velocity this can be compensated for in the next turn by adjusting the twisting torque profile.

Introduction

Skilled ballet dancers can continuously perform repeated Fouetté turns (Fig. 1) and while there are various performance styles, such as Italian and Russian Fouetté turns according to the ballet style of the dancer [START_REF] Warren | Classical ballet technique[END_REF], the basic technique is the same. The turn is started from one or two revolutions of the pirouette which is initiated with both feet in contact with the floor to produce the initial angular momentum. The dancer then keeps turning to music, swinging the arms and the free leg while the supporting foot is stationary in full contact with the floor (Figs. 1 A-D).

After the swinging, the dancer adopts the pirouette position during which the foot slips (Fig. 1 E-I) before starting to swing the free leg again (Fig. 1 J-K). The dancer regains the angular momentum lost due to friction during the slipping phase by swinging the free limbs when the foot is stationary, which enables the floor to exert a large frictional torque T F on the foot in the same direction as the swinging [START_REF] Laws | The physics of dance[END_REF][START_REF] Laws | Momentum transfer in dance movement[END_REF][START_REF] Imura | Biomechanics of the continuity and speed change during one revolution of the Fouetté turn[END_REF]. The dancer can keep turning for more than 30 revolutions by repeating these movements.

The frictional torque T F is the only external torque during the Fouetté turn and consequently determines the changes in the angular momentum of the whole body.

This frictional torque is dependent on the limiting frictional torque (limiting T F ) and the twisting torque T used to swing the free limbs. The supporting foot during the Fouetté turn is essentially on tiptoe during the slipping or in full contact with the floor when the foot stops turning. *** insert Fig. 1 here *** Dancers have to perform the Fouetté turn in time to the music in the choreography, facing the front at the same position for the aesthetics of ballet [START_REF] Laws | The physics of dance[END_REF]. However, they sometimes turn to music tempo that is too fast or too slow and struggle with performing successful turns. The friction coefficient between the shoes and the floor of the performance stage may be different to that of the practice studio and this will require technique to be modified.

The purpose of this study was to determine the possible time history profiles of the twisting torque between the supporting leg and the remainder of the body that will allow continued performances of the Fouetté turn. Techniques for coping with changes in tempo and friction were also investigated.

Methods

A computer simulation model of the Fouetté turn was used to investigate the solution space of twisting torque profiles that permitted performances of successful turns for various coefficients of friction between foot and floor and various time periods of turn. The body (mass 49.5 kg) of a typical dancer who participated in a previous study [START_REF] Imura | Biomechanics of the continuity and speed change during one revolution of the Fouetté turn[END_REF] was modeled as two cylinders (Fig. 2): the supporting leg L and the remainder of the body B whose moment of inertia I B about a vertical axis changed according to the positions of the free leg and arms. The time profiles of the foot radius r, the moment of inertia I B , and the normal ground reaction force N were based on experimental data from the study of [START_REF] Imura | Biomechanics of the continuity and speed change during one revolution of the Fouetté turn[END_REF] and were represented by joining adjacent maximum and minimum values using monotonic quintic functions with zero first and second time derivatives at the endpoints (Fig. 3). *** insert Fig. 2 here ***

The radius r was taken to be 0.12 m at the maximum when the supporting foot is fully in contact with the floor and to be 0.05 m at the minimum when the dancer stands on tiptoe (Fig. 3a). These bounding values were determined using the distance between the toe and the center of the pressure (CoP) from the experimental data of [START_REF] Imura | Biomechanics of the continuity and speed change during one revolution of the Fouetté turn[END_REF]. The foot radius time profile was matched to the experimental data with time normalized to the turn time, recognizing that CoP locations were unreliable when the normal reaction force was small.

The time profile of I B (Fig. 3b) was calculated using the theorem of parallel axes by scaling inertia data [START_REF] Ae | Estimation of inertia properties of the body segments in Japanese athletes (in Japanese)[END_REF]) of a subject with similar body mass as the model and using arm and leg positions based upon those exhibited in the experimental study of [START_REF] Imura | Biomechanics of the continuity and speed change during one revolution of the Fouetté turn[END_REF]. The maximum and minimum I B were calculated to be 2.67 and 1.06 kg.m 2 , respectively. The moment of inertia of the leg I L was assumed to be constant during the turn and was calculated to be 0.085 kg.m 2 . The normal ground reaction force N was determined by the following four values based on experimental data from the study of [START_REF] Imura | Biomechanics of the continuity and speed change during one revolution of the Fouetté turn[END_REF]: 2.68 body weights at the time of full foot contact, 0.0 body weights once slipping had started, 1.24 and 0.82 body weights during slipping on tiptoe. It was assumed that the fitted profile was symmetrical about the mid-turn time (Fig. 3c). The average N was one body weight during one turn.

The friction coefficient µ between the shoes and the floor was estimated to be 0.2, calculated from the slipping phase of the experimental data of [START_REF] Imura | Biomechanics of the continuity and speed change during one revolution of the Fouetté turn[END_REF] using the equation = T F / Nr. The leg L was rotated further than B (Fig. 2) by 0.22 radians at the start of the turn according to the experimental data of [START_REF] Imura | Biomechanics of the continuity and speed change during one revolution of the Fouetté turn[END_REF].

Simulations were performed for 1 s starting with the supporting foot in full contact with the floor (Fig. 1A), with the requirement that the dancer rotates 2 in 1 s using an appropriate twisting torque T. Three variables were used to define the time profile of T: T max the initial (positive) torque to swing the free limbs and trunk, T min the (negative) torque which is maintained during the sliding to reverse the swinging, and the time t 1 at which T becomes T min . T max , and T min were joined by monotonic quintic functions, assuming the profile of T to be symmetric since the dancer swings the limbs at the end of the turn as at the start (Fig. 3d). *** insert Fig. 3 here ***

The frictional torque T F while the dancer is slipping can be assumed to be the limiting T F , which is the product of the friction coefficient µ, the normal ground reaction force N, and the radius r of the foot contact area with the floor. When the foot is stationary, the frictional torque T F acting on the supporting foot is equal to T. The frictional torque T F was defined as T F = T when T µ Nr and T F = µ Nr once L slipped. Values for µ , N, r, I B , I L , and T were input into the equations of motion.

The angular momentum of the body B is given by h = I B B φ where B φ is the angle turned by the body B. The torque T applied to the body B by the supporting leg L is equal to the rate of change of h. Thus:

B B B B I I T φ + φ = from which: B B B B I / ) I T ( φ - = φ (1)
The net torque acting on the leg L in the direction of the turn is T F -T and so:

L L F I T T φ = - from which: L F L I / ) T T ( - = φ
(2)

The angles and angular velocities of B and L ( B B , φ φ and L L , φ φ

) were calculated from the accelerations derived in ( 1), (2) using stepwise integration.

A grid search was made for T max between 10 and 30 Nm, T min between -1 and -10 Nm and t 1 between 0.1 and 0.4 s to find the possible time profiles of T for turns which satisfied all of the following conditions. These were: (a) the leg L rotates 2 radians and stops by the end of the simulation, (b) the body B rotates 2 radians and the angular velocity of B at the end of the simulation is the same as at the start, (c) the foot does not slip more than 0.13 radians in the direction opposite to that of the turn (as for the experimental data of [START_REF] Imura | Biomechanics of the continuity and speed change during one revolution of the Fouetté turn[END_REF]. The coefficient of friction µ = 0.2 and time for one turn was 1.0 s. After determining the bounding time profiles of minimum and maximum T max from the solution space of T, additional cases were considered in which the friction coefficient ranged from 0.1 to 0.3 (t end = 1.0 s) and the time for one turn ranged from 0.7 to 1.0 s ( µ = 0.2), spanning the experimentally determined values of µ = 0.2 and t end = 0.85 s.

Results

For each combination of frictional coefficient µ and turn time t end there were maximum and minimum values for the initial (maximum) value T max of the twisting torque T (Tables 1234). Each pair of max-min solutions gave rotation angle time histories similar to experimental data and had similar angular velocity time histories (Figs. 4 and5). For each value of T max lying between the maximum and minimum values there existed unique values of T min and t 1 for which the body and supporting leg each rotated one revolution and any counter-slipping was less than 0.13 radians as shown in the example (Table 2, Fig. 6). With µ fixed at 0.2, smaller values of t end lead to larger values of minimum T max and consequently to a smaller range of solutions (Table 1). For t end = 0.76 there was a narrow range of solutions with T max lying between 28.1 Nm and 28.3 Nm and for t end = 0.75, or smaller, there were no solutions. For decreasing t end the maximum angle difference d φ between the body and the supporting leg increased (Table 1). T min (Table 3). As µ decreased the maximum and minimum values of T max , T min , and t 1 became closer (Table 3), giving a narrower range of solutions and for µ < 0.12 there were no solutions. The initial angular velocity B φ remained essentially constant for the various values of µ .

For each solution with given values of µ and t end , there existed solutions with equivalent torque profiles for different combinations of µ and t end . For example if µ increased from 0.20 to 0.25, t end decreased from 1.0 to 0.9 in the equivalent solution (Table 4). The torque profiles of these equivalent solutions have the same t 1 /t end values and merely have different scaling factors for torque and time.

*** insert Table 3 here 

Discussion

The purpose of this study was to determine the possible time history profiles of T for various tempos and friction. For each combination of time of turn and frictional coefficient there is a range of solutions for T (Tables 1234). The solutions for T satisfy the requirement that the net change in the angular velocity of the body B is zero and that the leg L and body B each rotate 2 at t end . Because the body B rotates under the action of only T, the time integral of T should be zero after one revolution so that there is no net change in angular momentum. The rotation of the leg L is dependent on the net torque T F -T, so the foot should rotate 2 during slipping as a consequence of sufficient acceleration produced by the net torque. Again the time integral of T F -T must be zero since the start and end velocities are zero. Hence, T max , T min , and t 1 are such that the integral of T is zero and T F -T rotates L just one revolution during slipping. For a given value of T max these two constraints give a unique solution for the remaining two degrees of freedom (T min and t 1 ). Thus for a given set of conditions ( µ , t end ) there is a set of torque profiles defined by T max , T min , and t 1 each of which lie within the bounds shown in Tables 1234. While there is a range of solutions for a given set of conditions ( µ , t end ), the tight specification of any individual solution may make the Fouetté turn difficult to perform in a steady state since precise timing would be required by the dancer. On the other hand since there are various time histories within the general profiles which produce one revolution of the Fouetté turn (Fig. 6), such time profiles may represent the different styles from different schools.

*** insert Fig. 6 here *** Initially the twisting torque is positive and less than the limiting frictional torque, accelerating the upper body in the direction of twist while the supporting leg remains stationary with the twisting torque and frictional torque cancelling each other (Figs. 4a and5a). If the twisting torque exceeds the limiting frictional torque in this phase (T > 0) the foot will slip in the direction opposite to that of the twist. Soon after the upper body starts to decelerate relative to the supporting leg and T becomes negative, the magnitude of T exceeds that of limiting T F and the foot slips in the direction of twist (Figs. 4a and5a). Once the magnitude of T falls below that of limiting T F , the angular velocity of the foot decreases until the foot stops rotating at which time T = T F .

For a given coefficient of friction there is a lower bound on the time of the turn since faster turns require larger torques (Table 1) and these are bounded by the limiting frictional torque. This explains why the range of solutions narrows for faster turns (Table 1). There will also be an upper bound on the turn time arising from the assumed time profile of the vertical reaction force N (Fig. 3) since the supporting leg must flex in order to reduce N below one body weight and there is a limit to the amount of flexion possible. The average angular velocity of the body will be inversely proportional to the turn time, and since the angular velocity profiles of the body are similar in different solutions (Figs. 4c and5c) the initial angular velocity B φ will be approximately inversely proportional to t end (Table 1). Thus if a dancer completes a turn with a net decrease in B φ this could be compensated for in the next turn by choosing to continue to turn at the new angular velocity and selecting a twisting torque profile with the corresponding t end . Alternatively, a larger T max for the same T min could be used to produce a net gain in angular momentum in the next turn while keeping the same turn time. Real time adjustments for B φ and L φ could also be made by modifying the time profiles of I B and r.

As the friction coefficient becomes smaller, the magnitude of T also decreases but so does the range of possible profiles for T so that for a given t end there is a lower limit for µ below which there are no solutions. This is a consequence of not having sufficient T F -T to produce the required rotation of the foot. For values of µ below this limit there are solutions with longer turn times since for a given solution there are equivalent solutions with smaller µ and larger t end (Table 4). For larger values of µ , solutions require larger values of T (Table 3), and so there will be an upper limit on µ imposed by the ability of the dancer to exert large torques. For floors with different µ it will be possible to turn at a given tempo providing µ lies within a certain range.

For µ below the lower bound slower turns will be possible and for µ above the upper bound faster turns will be possible up to a limit.

For a given pair of values of µ and t end and a particular solution there are other corresponding pairs of values with an equivalent solution for which t 1 /t end is the same (Table 4). In comparing these solutions a change of t end by a scaling factor k will correspond to a change in each of B I , B φ , and L φ by a factor of 1/k and a change in each of B φ and L φ by a factor 1/k 2 . As a consequence of equations ( 1) and ( 2) T and T F will change by a factor 1/k 2 .

There are a number of simplifications associated with the model. The moment of inertia about the longitudinal axis of the supporting leg is assumed to be constant. In an actual performance the knee bends and extends in order to stand on tiptoe and so the moment of inertia will vary. However knee flexion occurs primarily during full foot contact and changing the moment of inertia in this phase would have minimal effect on a simulation since the foot slips very little during this phase. During the majority of the slipping phase the leg is straight and the assumption of constant moment of inertia is reasonable. Although the time profiles of the variables r, I B , and N are simplifications they were based on the experimental data of a dancer and the calculated leg and body rotation angles were similar to performance data (Figs. 4 and5). The coefficient of static friction has been assumed to be the same as that of dynamic friction rather than a little larger. The effect of this will have been to reduce the range of possible solutions slightly. The limit of 0.13 radians on foot slippage in the direction opposite to the turn constrains the maximum angle difference between body and support leg to anatomically feasible values of around 1 radian or less in the simulations (Tables 1234).

If this constraint is removed the solution space is much larger but includes simulations with large relative rotations between body and support leg which are beyond anatomical limits.

This simple model has been used to describe the solution space of the possible time profiles of the twisting torque T that produce the required rotation about the longitudinal axis in a Fouetté turn. A change of floor to one with increased friction will require a larger twisting torque to turn at the same tempo. A net reduction in the angular velocity of the body B after one turn can be compensated for by increasing T max for the same T min . The model could be applied not only to the Fouetté turn but also to other ballet turns such as the pirouette and Grand Fouetté Italien. φ is the maximum difference between leg and body angles, B φ is the initial angular velocity of the body B Fig. 6. An example of an intermediate twisting torque profile (dashed line) between maximum T max (thick line) and minimum T max (thin line) corresponding to Table 2. 
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Table 1 .

 1 Ranges of the twisting torque parameters T max , T min , t 1 for which the dancer can turn in steady state ( µ = 0.2)

	T	t end	T max -T min t 1 /t end	φ	d	φ	B
	max 1.00 28.3	4.9	0.15 0.66 4.49
	min 1.00 18.4	5.5	0.23 0.76 4.49
	max 0.90 28.3	5.4	0.16 0.68 4.97
	min 0.90 20.2	6.0	0.23 0.80 4.97
	max 0.80 28.3	6.0	0.18 0.75 5.57
	min 0.80 23.9	6.7	0.22 0.91 5.58
	Notes: d φ is the maximum difference between leg and body angles,
	B φ is the initial angular velocity of the body B

Table 3 .

 3 Ranges of the twisting torque parameters T max , T min , and t 1 for which the dancer can turn in steady state (t end = 1.0 s)

	T	µ T max -T min t 1	φ	d	φ	B
	max	0.15	21.2	4.2	0.16	0.69	4.46
	min	0.15	15.9	4.7	0.23	0.86	4.47
	max	0.20	28.3	4.9	0.15	0.66	4.49
	min	0.20	18.4	5.5	0.23	0.76	4.49
	max	0.25	35.3	5.7	0.14	0.65	4.51
	min	0.25	20.1	6.8	0.25	0.89	4.52
	max	0.30	42.4	6.5	0.13	0.65	4.52
	min	0.30	22.2	8.1	0.27	1.05	4.55
	Notes: d φ is the maximum difference between leg and body angles,
	B φ is the initial angular velocity of the body B