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cUniversité Paris-Est, IGM and UMR-CNRS 8049, Champs-sur-Marne, 77454
Marne-la-Vallée, France

Abstract

Many existing works related to lossy-to-lossless multiresolution image compression are

based on the lifting concept. It is worth noting that a separable lifting scheme may not

appear very efficient to cope with the two-dimensional characteristics of edges which are

neither horizontal nor vertical. In this paper, we propose to use 2D non separable lifting

schemes that still enable progressive reconstruction and exact decoding of images. Their

relevant advantage is to yield a tractable optimization of all the involved decomposition

operators. More precisely, we design the prediction operators by minimizing the variance

of the detail coefficients. Concerning the update filters, we propose a new optimization

criterion which aims at reducing the inherent aliasing artifacts. A theoretical analysis

of the proposed method is conducted in terms of the adaptation criterion considered in

the optimization of the update filter. Simulations carried out on still images and residual

ones generated from stereo pairs show the benefits which can be drawn from the proposed

optimization of the lifting operators.
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1. Introduction

During the two past decades, much attention has been paid to the theory of fil-

ter banks and subband coding. Very efficient compression methods for still images can

be built, which take advantage of multiresolution representation features, good energy

compaction and decorrelation properties [1, 2]. Image coding techniques have been ex-

tensively studied for various application requirements [3, 4]. For instance, lossless com-

pression techniques are required in some fields like remote sensing imaging or medical

imaging for which any distortion in the reconstructed image may lead to an erroneous

interpretation of the image [5]. Moreover, the scalability property is a highly desirable

functionality for telebrowsing applications since the refinement of the decoded image de-

pends on the user needs and/or the available network bandwidth. The challenge in many

lossy-to-lossless coding schemes is the design of a sparse multiresolution representation

of the original image. Lifting Schemes (LS) have proved to be efficient tools for this

purpose [6, 7]. A generic LS applied to a 1D signal consists of three modules referred

to as split, predict and update. In the first step, the even indexed samples are separated

from the odd indexed ones. Then, each sample of one of the two resulting subsets (say

the even one) is predicted from the odd indexed samples and a prediction error or detail

coefficient is computed. Finally, the update step generates a coarser approximation of

the initial signal thanks to a smoothing of the odd indexed samples based on the detail

coefficients. Generally, for 2D signals, the LS is handled in a separable way by cascading

1D LS along the horizontal direction, then along the vertical one. It is worth noting that

a separable LS may not appear very efficient to cope with the two-dimensional charac-

teristics of edges which are neither horizontal nor vertical [8]. In addition to monocular

images, LS have been extensively used for stereo image coding [9, 10]. Indeed, most of the

existing works rely on disparity compensation techniques due to their similarity with the

motion compensation techniques which are popular for video coding [11]. The first step

in this approach consists of estimating the disparity map. Then, one image is considered

as a reference image and the other is predicted in order to generate a prediction error

referred to as a residual image. Finally, the disparity field, the reference image and the

residual one are encoded [10, 12]. In this context, Moellenhoff and Maier [13] analyzed

the characteristics of the residual image and proved that such images have properties
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different from natural images. This suggests that transforms working well for natural

images may not be as well-suited for residual images.

These shortcomings have motivated the development of several alternatives in order to

improve the coding efficiency of lifting-based coding methods. The reported solutions

fall into the two following categories:

• A first approach consists of designing Non Separable Lifting Schemes (NSLS) in

order to better capture the actual two-dimensional contents of the image [8, 14, 15,

16, 17].

• A second alternative aims at adapting the operators of the conventional separable

lifting scheme to the characteristics of the input image [18]-[31].

In the first approach, instead of using samples from the same rows (resp. columns) while

processing the image along the lines (resp. columns), 2D NSLS provide more choices in

the selection of the samples by using horizontal, vertical and oblique directions at the

prediction step [8]. Quincunx lifting schemes constitute another example of NSLS which

was proposed in the context of image coding [14, 15]. It is worth mentioning that the 2D

operators in a NSLS can satisfy some appealing properties (e.g. orthogonality) unlike

those related to a separable LS [16]. The orthogonality property may be interesting in

the framework of image coding since the mean square reconstruction error in the spatial

domain is then equal to the mean square quantization error of the wavelet coefficients.

Furthermore, in [17], 2D NSLS were proposed with a reduced number of rounding op-

erations w.r.t. their equivalent separable LS. Therefore, the coding performance can be

improved both in the lossless and the lossy modes.

In parallel to these works on NSLS, a second approach was also investigated in order

to exploit the directional correlation in the image by the operators involved in a sep-

arable LS. To the best of our knowledge, most existing works have mainly focused on

the optimization of the prediction operators. For instance, Gerek and al. [19] proposed

a 2D edge-adaptive lifting scheme by considering three direction angles of prediction

(0◦, 45◦ and 135◦) and by selecting the orientation which leads to the minimum predic-

tion error. In [20], three separable prediction filters with different numbers of vanishing

moments are employed, and then the best prediction is chosen according to the local fea-
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tures. Recently, Ding et al. [21] have built an adaptive directional lifting structure with

perfect reconstruction: the prediction is performed in local windows in the direction of

high pixel correlation. A good directional resolution is achieved by employing fractional

pixel precision level. A similar approach was also adopted in [22]. An improvement was

proposed in [23] thanks to a directional adaptive interpolation. In [25], the prediction

filter is optimized according to the image statistics based on the value of the conditional

probability density function (pdf) at the current sample to be predicted given its two

neighbors. Consequently, an estimation of the pdf should be available at the coder and

the decoder side. Note that the main drawback of this method as well as directional

wavelet transform ones [21, 22, 23, 24, 26] is that they require to transmit losslessly a

side information to the decoder which may affect the whole compression performance

especially at low bitrates. Furthermore, such adaptive methods lead to an increase of

the computational load required for the selection of the best direction of prediction. Be-

sides, it can be noticed that there are few works which have discussed the problem of

the update filter. Among these works, in [27, 28], the update operator of a separable

LS is adaptively computed thanks to a non linear decision rule using the local gradi-

ent information. An extension of this method to 2D non separable schemes that have

a spatially adaptive low-pass filter is proposed in [29]. Another alternative is to adapt

the update so that the reconstruction error is minimized when the detail coefficients are

canceled [30, 31]. Recently, an adaptation procedure was proposed in [32]. It consists

of designing an update and prediction Neville filters whose corresponding primal and

dual wavelets have the desired number of vanishing moments. The remaining degrees

of freedom are used to optimize a criterion depending on the underlying application. In

their paper, the authors were interested in finding the wavelet basis that maximizes the

retrieval performance for content-based image retrieval applications.

In this paper, we aim at fully exploiting the flexibility of a NSLS through an adaptation of

all the involved operators. In that sense, we are interested in combining the advantages of

the two aforementioned approaches. Note that adaptive NSLS were already investigated

[15, 31, 33] by putting emphasis on the optimization of the predictor. One of the main

contributions of this paper is the optimization of the update filter by using a criterion

which allows us to reduce aliasing effects. In this way, we build a fully-optimized NSLS
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which is better adapted to the characteristics of the input image. Moreover, we show

that the proposed optimization method leads to the same optimal update filter when

the optimization is performed either before or after the decimation step. Another major

contribution of our work consists of deriving theoretical expressions of the optimal filter

coefficients based on the correlation factors of the input field. These expressions may be

interesting in the implementation process of the proposed optimization method. An ad-

vantage of our adaptive method is that the side information required for the transmission

of all the filter coefficients is negligible compared to the global bitrate. Furthermore, our

method guarantees a perfect reconstruction of the original image.

The remainder of this paper is organized as follows. In Section 2, a 2D non separable

lifting structure is presented and its link with some existing 1D LS is emphasized. In Sec-

tion 3, we describe the proposed approach for the design of both optimal prediction and

update filters. In Section 4, we conduct a theoretical analysis of the proposed method in

order to evaluate the gain achieved by the proposed update filter optimization together

with a simple statistical modeling of images. We show that in the case of a first order 2D

autoregressive model for the input images, the filters can be easily deduced only based on

the spatial correlation coefficients. Section 5 discusses the transmission problem of the

resulting wavelet coefficients as well as the adaptive filter weights. Finally, in Section 6,

experimental results are given and some conclusions are drawn in Section 7.

2. 2D non separable LS structure

2.1. Principle

Let x denote the digital image to be coded. At each resolution level j and each pixel

location (m,n), its approximation coefficient is denoted by xj(m, n) and the associated

four polyphase components by x0,j(m, n) = xj(2m, 2n), x1,j(m,n) = xj(2m, 2n + 1),

x2,j(m, n) = xj(2m + 1, 2n), and x3,j(m,n) = xj(2m + 1, 2n + 1). Without loss of gen-

erality, we assume that the polyphase components are the input coefficients of the 2D

NSLS described in [17] and depicted in Fig. 1, where P
(HH)
j , P

(LH)
j , P

(HL)
j and Uj rep-

resent the four analysis filters employed to generate the detail coefficients x
(HH)
j+1 oriented

diagonally, x
(LH)
j+1 oriented vertically, x

(HL)
j+1 oriented horizontally, and the approximation

coefficients xj+1. It is easy to derive the expressions of the resulting coefficients in the 2D
5
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Figure 1: NSLS decomposition structure.

z-transform domain1. Indeed, the z-transforms of the output coefficients can be written

as follows:

X
(HH)
j+1 (z1, z2) = X3,j(z1, z2) − ⌊P

(HH)
0,j (z1, z2)X0,j(z1, z2) + P

(HH)
1,j (z1, z2)X1,j(z1, z2)

+ P
(HH)
2,j (z1, z2)X2,j(z1, z2)⌋, (1)

X
(LH)
j+1 (z1, z2) = X2,j(z1, z2) − ⌊P

(LH)
0,j (z1, z2)X0,j(z1, z2) + P

(LH)
1,j (z1, z2)X

(HH)
j+1 (z1, z2)⌋,

(2)

X
(HL)
j+1 (z1, z2) = X1,j(z1, z2) − ⌊P

(HL)
0,j (z1, z2)X0,j(z1, z2) + P

(HL)
1,j (z1, z2)X

(HH)
j+1 (z1, z2)⌋,

(3)

Xj+1(z1, z2) = X0,j(z1, z2) + ⌊U
(HL)
j (z1, z2)X

(HL)
j+1 (z1, z2) + U

(LH)
j (z1, z2)X

(LH)
j+1 (z1, z2)

+ U
(HH)
j (z1, z2)X

(HH)
j+1 (z1, z2)⌋ (4)

where, for every i ∈ {0, 1, 2} and o ∈ {HH,HL,LH},

P
(o)
i,j (z1, z2) =

∑

(k,l)∈P
(o)
i,j

p
(o)
i,j (k, l)z−k

1 z−l
2 , (5)

U
(o)
j (z1, z2) =

∑

(k,l)∈U
(o)
j

u
(o)
j (k, l)z−k

1 z−l
2 . (6)

1The z-transform of a signal x will be denoted in capital letters by X.
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The set P
(o)
i,j (resp. U

(o)
j ) and the coefficients p

(o)
i,j (k, l) (resp. u

(o)
j (k, l)) denote the support

and the weights of the three prediction filters (resp. of the update filter). Note that we

introduced the rounding operations ⌊.⌋ in order to allow lossy-to-lossless encoding of

the coefficients. Once the considered NSLS structure has been defined, it may appear

instructive to see how it is related to some conventional separable lifting structures.

2.2. Links with conventional separable lifting structures

It can be checked that the conventional 5/3 transform and the Haar one are particular

cases of the structure illustrated in Fig. 1. For example, for the separable 5/3 transform

which was selected for the lossless mode of the JPEG2000 standard [4], we get:

P
(HH)
0,j (z1, z2) = −

1

4
(1 + z1 + z2 + z1z2),

P
(HH)
1,j (z1, z2) =

1

2
(1 + z1), P

(HH)
2,j (z1, z2) =

1

2
(1 + z2), (7)

P
(LH)
0,j (z1, z2) =

1

2
(1 + z1), P

(LH)
1,j (z1, z2) = −

1

4
(1 + z−1

2 ), (8)

P
(HL)
0,j (z1, z2) =

1

2
(1 + z2), P

(HL)
1,j (z1, z2) = −

1

4
(1 + z−1

1 ), (9)

U
(HL)
j (z1, z2) =

1

4
(1 + z−1

1 ), U
(LH)
j (z1, z2) =

1

4
(1 + z−1

2 ),

U
(HH)
j (z1, z2) = −

1

16
(1 + z−1

1 + z−1
2 + z−1

1 z−1
2 ). (10)

After similar manipulations, it is possible to check that any separable predict-update LS

(P-U structure) as those tabulated in [7] has an equivalent 2D-NSLS counterpart [17].

Subsequently, we will show that this equivalence facilitates the derivation of adaptive

extensions of the associated operators. Indeed, in a coding framework, the sparseness of

any LS-based multiresolution representation clearly depends on the choice of the predic-

tion and update operators. In the next section, we address the issue of an optimal design

of the NSLS operators for coding purposes.

3. Proposed optimization method

In what follows, for the sake of simplicity, we assume that the initial image x (after

subtracting its mean value) is modeled as the realization of a zero-mean wide-sense

stationary random process. If we omit the rounding operations, at a given resolution
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level j, the approximation image xj is also the realization of a 2D wide sense stationary

process with autocorrelation function Rxj
:

∀(k, l) ∈ Z
2, Rxj (k, l) = E[xj(m,n)xj(m − k, n − l)]. (11)

3.1. Optimization of the predictors

Since the detail coefficients are defined as prediction errors, the prediction operators

can be optimized so as to minimize the variance of the coefficients at each resolution

level. The rounding operators being omitted, it is readily shown that the minimum

variance predictors must satisfy the well-known Yule-Walker equations. For example, for

the prediction vector p
(HH)
j , the normal equations read

E[x̃j(m,n)x̃j(m, n)⊤]p
(HH)
j = E[x3,j(m,n)x̃j(m,n)] (12)

where

• p
(HH)
j = (p

(HH)
0,j ,p

(HH)
1,j ,p

(HH)
2,j )⊤ is the prediction vector where, for each i ∈

{0, 1, 2},

p
(HH)
i,j =

(
p
(HH)
i,j (k, l)

)

(k,l)∈P
(HH)
i,j

,

• x̃j(m,n) = (x0,j(m,n),x1,j(m,n),x2,j(m,n))⊤ is the reference vector with

xi,j(m,n) =
(
xi,j(m − k, n − l)

)

(k,l)∈P
(HH)
i,j

.

The other optimal prediction filters p
(HL)
j and p

(LH)
j are obtained in a similar way.

3.2. Optimization of the update operator

Optimizing the update operator is less obvious than optimizing the predictions. Re-

cently, an update optimization method has been proposed by Gouze et al. [30, 31]. It

consists of designing the update operator in order to minimize a reconstruction error.

In other words, the update operator is optimized by minimizing the distortion between

the original image xj and the reconstructed image x̂j , when the detail coefficients are

8



canceled. In the case of the NSLS, this criterion is given by:

JGouze = E[(xj(m,n) − x̂j(m,n))2]

=
1

4

(
E[(x0,j(m, n) − x̂0,j(m,n))2] + E[(x1,j(m,n) − x̂1,j(m,n))2]

+ E[(x2,j(m,n) − x̂2,j(m,n))2] + E[(x3,j(m, n) − x̂3,j(m,n))2]
)
. (13)

Then, the minimization of the criterion (13) provides the optimal update operator. Due

to the complexity of the resulting linear system of equations when a NSLS is considered,

we will not describe it, the reader being referred to [31] for more details.

In this paper, we propose to employ an optimization criterion, which aims at reducing

the inherent aliasing artefacts (see also our preliminary work in [34]). Firstly, it can be

noticed that the transfer function of the low-pass filter relating xj to the undecimated

version of xj+1 can be expressed as

Fj(z1, z2) = 1 +
∑

o∈{HL,LH,HH}

∑

(k,l)∈U
(o)
j

u
(o)
j (k, l)z−2k

1 z−2l
2 A

(o)
j (z1, z2) (14)

where A
(o)
j (z1, z2) is a transfer function which depends on the prediction coefficients.

Since Fj aims at computing a smooth version of the image xj , we propose to design

the update filter in order to reduce the aliasing effects. More precisely, we adopt a new

criterion J̃ which accounts for the difference between the output of the Fj filter and the

output of an ideal low-pass filter

J̃ (uj) =

∫ π

−π

∣∣∣Fj(e
ıω1 , eıω2) − H(eıω1 , eıω2)

∣∣∣
2

Sxj (ω1, ω2)dω1dω2 (15)

where Sxj is the power spectrum density of xj and H denotes the transfer function of

the ideal filter (h will subsequently designate its impulse response). Note that J̃ is not

limited to a simple quadratic mean square error between the update filter and the ideal

low-pass filter: the proposed criterion exploits the characteristics of the input signals,

so making the method adaptive. By cancelling the gradient of J̃ , the optimal update
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weights satisfy, for each (k′, l′) ∈ U
(o′)
j and o′ ∈ {HL, LH,HH}, the following condition:

∑

o∈{HL,LH,HH}

∑

(k,l)∈U
(o)
j

u
(o)
j (k, l)

∑

(p,q)

∑

(p′,q′)

a
(o)
j (p, q)a

(o′)
j (p′, q′)

× Rxj (p
′ − p + 2k′ − 2k, q′ − q + 2l′ − 2l)

=
∑

(p,q)

∑

(p′,q′)

h(p, q)a
(o′)
j (p′, q′)Rxj

(p′ − p + 2k′, q′ − q + 2l′)

−
∑

(p′,q′)

a
(o′)
j (p′, q′)Rxj

(p′ + 2k′, q′ + 2l′). (16)

It must be emphasized that this criterion J̃ measures the quadratic error between the

output of the low-pass filter Fj and the ideal one H before decimation. However, it may

also be interesting to minimize the error after the decimation step. For this purpose, we

propose to use an alternative criterion which measures the error between the decimated

versions:

J (uj) = E

[(
xj+1(m,n) − yj+1(m,n)

)2]

= E

[(
x0,j(m,n) +

∑

o∈{HL,LH,HH}

∑

(k,l)∈U
(o)
j

u
(o)
j (k, l)x

(o)
j+1(m − k, n − l)

− yj+1(m,n)
)2]

(17)

where yj+1(m, n) = ỹj(2m, 2n) = (h ∗ xj)(2m, 2n).

Recall that the 2D ideal rectangular low-pass filter is defined in the spatial domain by:

∀(m,n) ∈ Z
2, h(m,n) =

1

4
sinc

(mπ

2

)
sinc

(nπ

2

)
. (18)

The optimal update coefficients minimizing the second criterion J verify, for each (k′, l′) ∈

U
(o′)
j and o′ ∈ {HL,LH, HH}, the following equation:

∑

o∈{HL,LH,HH}

∑

(k,l)∈U
(o)
j

u
(o)
j (k, l)E[x

(o)
j+1(m − k, n − l)x

(o′)
j+1(m − k′, n − l′)]

= E[yj+1(m,n)x
(o′)
j+1(m − k′, n − l′)] − E[x0,j(m,n)x

(o′)
j+1(m − k′, n − l′)]. (19)

It is worth pointing out that the resulting solution (19) is equivalent to the one obtained

by minimizing J̃ (16). Indeed, by using (4) and (14), it can be checked that:

x
(o)
j+1(m,n) =

∑

(p,q)

a
(o)
j (p, q)xj(2m − p, 2n − q) (20)

10



where a
(o)
j (p, q) are the coefficients of the transfer function A

(o)
j (z1, z2). Thus, by substi-

tuting this expression into (19), we deduce that the minimizations of criteria J̃ and J

lead to the same optimal solution.

As computing an error between the decimated versions of the image allows us to reduce

the complexity of our optimization method, we propose to use the second criterion J .

In this case, it can be noticed that (19) can be rewritten concisely as follows:

E[xj+1(m, n)xj+1(m,n)⊤]uj =E[yj+1(m, n)xj+1(m,n)] − E[x0,j(m,n)xj+1(m, n)] (21)

where

• uj =
(
u

(o)
j (k, l)

)⊤

(k,l)∈U
(o)
j ,o∈{HL,LH,HH}

is the update weight vector,

• xj+1(m, n) =
(
x

(o)
j+1(m − k, n − l)

)⊤

(k,l)∈P
(o)
i,j ,o∈{HL,LH,HH}

is the update reference

vector containing the detail signals.

Consequently, the optimal update weights are solutions of a linear system of equations

given the second order characteristics of the involved signals. More specifically, in order

to solve (21), we need to compute

• the autocorrelation matrix Γj = E[xj+1(m, n)xj+1(m,n)⊤],

• the cross-correlation vector cxj = E[x0,j(m, n)xj+1(m,n)] and,

• the cross-correlation vector cxj ỹj = E[yj+1(m, n)xj+1(m,n)].

It is important to note that (12) and (21) can be solved if on the one hand, the NSLS

decomposition is explicitly defined through the reference prediction and update vectors

and, on the other hand, the autocorrelation function Rxj
and cross-correlation one Rxj ỹj

are known at each resolution level j. Figures 2 and 3 display the magnitude plots of

the frequency responses of the low-pass filter F0 for the 5/3 wavelet transform obtained

before and after each optimization step applied respectively on a monocular image and

a residual one. It is clearly seen that the optimization of the update filter yields an

optimal low-pass filter which attenuates better the high frequency components than that

obtained without the update optimization step. Furthermore, it is worth pointing out

that the optimal low-pass filters corresponding respectively to the texture image and the
11



residual one are different since the update filter depends on the contents of the input

image to be encoded.
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Figure 2: Frequency responses of the low-pass filter F0 when the prediction filters are optimized by

minimizing the variance of the detail coefficients, and (b) the update filter is not optimized, (c) the

update filter is optimized using Gouze’s method (d) the update filter is optimized using the proposed

method.
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Figure 3: Frequency responses of the low-pass filter F0 when the prediction filters are optimized by

minimizing the variance of the detail coefficients, and (b) the update filter is not optimized, (c) the

update filter is optimized using Gouze’s method (d) the update filter is optimized using the proposed

method.

4. Theoretical analysis

In this part, we perform a statistical analysis of our method in terms of the adaptation

criterion used in the optimization of the update filter. Firstly, we give explicit expressions

13



of the optimal update coefficients for a given class of input signals. Then, we confirm that

optimizing the update filter leads to lower values of criterion J than the ones obtained

with non-optimized coefficients.

4.1. Notations

In order to study the theoretical performance of the optimization method, we will

consider the optimization of the 2D non separable 5/3 transform whose underlying op-

erators are given by (7)-(10). This amounts to choosing the following spatial supports

for the prediction and update filters:

P
(HH)
0,j = {(0, 0), (0,−1), (−1, 0), (−1,−1)},

P
(HH)
1,j = {(0, 0), (−1, 0)},P

(HH)
2,j = {(0, 0), (0,−1)}, (22)

P
(LH)
0,j = {(0, 0), (−1, 0)},P

(LH)
1,j = {(0, 0), (0, 1)}, (23)

P
(HL)
0,j = {(0, 0), (0,−1)},P

(HL)
1,j = {(0, 0), (1, 0)}, (24)

U
(HL)
j = {(0, 0), (0, 1)},U

(LH)
j = {(0, 0), (1, 0)}, (25)

U
(HH)
j = {(0, 0), (0, 1), (1, 0), (1, 1)}. (26)

To obtain tractable expressions, we assume that, at a given resolution level j, the ap-

proximation image xj is modeled as the realization of a first order 2D autoregressive

process, the auto-correlation function of which is given by:

∀(k, l) ∈ Z
2, Rxj

(k, l) = E[xj(m,n)xj(m − k, n − l)] = σ2
j ρ

|k|
1,jρ

|l|
2,j (27)

where σj ∈ R
∗
+, and ρ1,j and ρ2,j ∈ [−1, 1] are the correlation factors along the vertical

and horizontal directions.

It is worth noticing that such a model has been widely used to represent a large class of

textured images. Furthermore, it is convenient to derive simple theoretical expressions of

the filter coefficients. However, the main limitation of this autoregressive model is that

it is separable.

4.2. Optimal prediction coefficients

Concerning the prediction filter p
(HH)
j , its optimal coefficients are obtained by solv-

ing (12) as described at the beginning of Section 3. Thus, once the autocorrelation
14



matrix E[x̃j(m,n)x̃j(m, n)⊤] and the cross-correlation vector E[x3,j(m,n)x̃j(m,n)] are

calculated using (27), the optimal weights of p
(HH)
j are deduced as follows:

p
(HH)
0,j (0, 0) = p

(HH)
0,j (0,−1) = p

(HH)
0,j (−1, 0) = p

(HH)
0,j (−1,−1) = −

ρ1,jρ2,j

(1 + ρ2
1,j)(1 + ρ2

2,j)

p
(HH)
1,j (0, 0) = p

(HH)
1,j (−1, 0) =

ρ1,j

1 + ρ2
1,j

p
(HH)
2,j (0, 0) = p

(HH)
2,j (0,−1) =

ρ2,j

1 + ρ2
2,j

. (28)

By applying the same optimization method to the other prediction filters p
(LH)
j and

p
(HL)
j , we get that their optimal weights are given by:

p
(HL)
0,j (0, 0) = p

(HL)
0,j (0,−1) =

ρ2,j

1 + ρ2
2,j

p
(LH)
0,j (0, 0) = p

(LH)
0,j (−1, 0) =

ρ1,j

1 + ρ2
1,j

p
(HL)
1,j (0, 0) = p

(HL)
1,j (1, 0) = p

(LH)
1,j (0, 0) = p

(LH)
1,j (0, 1) = 0. (29)

Once the optimal prediction filters are determined, we have to find the optimal weights

for the update filter.

4.3. Optimal update coefficients

As mentioned above, the optimal update coefficients are optimized by solving (21)

where the reference vector xj+1(m,n) is defined as:

xj+1(m,n) =
(
x

(HL)
j+1 (m,n), x

(HL)
j+1 (m, n − 1), x

(LH)
j+1 (m,n), x

(LH)
j+1 (m − 1, n),

x
(HH)
j+1 (m,n), x

(HH)
j+1 (m,n − 1), x

(HH)
j+1 (m − 1, n), x

(HH)
j+1 (m − 1, n − 1)

)⊤
.

(30)

The components of Γj and cxj
can be easily found by using (27). To derive the expression

of cxj ỹj , we have to calculate the cross-correlation between the input signal xj and the

output of the ideal low-pass filter ỹj :

Rxj ỹj (k, l) = E[ỹj(m,n)xj(m − k, n − l)] =

p=+∞∑

p=−∞

q=+∞∑

q=−∞

h(p, q)Rxj (k − p, l − q)

= σ2
j

p=∞∑

p=−∞

q=+∞∑

q=−∞

h(p, q)ρ
|k−p|
1,j ρ

|l−q|
2,j . (31)
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At this point, from (18), we note that h(p, q) has a separable form in p and q:

h(p, q) = h(p)h(q) (32)

where

h(p) =
1

2
sinc(

pπ

2
) =






1
2 if p = 0

0 if p is even

(−1)(p−1)/2

pπ
if p is odd.

(33)

As a result, the expression of Rxj ỹj
(k, l) can be rewritten in a separable way as:

Rxj ỹj (k, l) = σ2
j R1

xj ỹj
(k)R2

xj ỹj
(l) (34)

where

R1
xj ỹj

(k) =

p=+∞∑

p=−∞

h(p)ρ
|k−p|
1,j , (35)

R2
xj ỹj

(l) =

q=+∞∑

q=−∞

h(q)ρ
|l−q|
2,j . (36)

In addition, from (35) and (33), we deduce that:

R1
xj ỹj

(0) =
1

2
+

2

π
arctg(ρ1,j),

R1
xj ỹj

(−1) =
ρ1,j

2
+

(ρ−1
1,j + ρ1,j

π

)
arctg(ρ1,j),

R1D
xj ỹj

(2k) =
ρ2k
1,j

2
+

ρ2k
1,j

π

(
arctg(ρ1,j) +

−1∑

p=−k

(−1)pρ2p+1
1,j

2p + 1

)

+
ρ−2k
1,j

π

(
arctg(ρ1,j) −

k−1∑

p=0

(−1)pρ2p+1
1,j

2p + 1

)
if k > 0,

R1
xj ỹj

(2k) =
ρ−2k
1,j

2
+

ρ2k
1,j

π

(
arctg(ρ1,j) −

−k−1∑

p=0

(−1)pρ2p+1
1,j

2p + 1

)

+
ρ−2k
1,j

π

(
arctg(ρ1,j) +

−1∑

p=k

(−1)pρ2p+1
1,j

2p + 1

)
if k < 0
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R1
xj ỹj

(2k + 1) =
ρ2k+1
1,j

2
+

ρ2k+1
1,j

π

(
arctg(ρ1,j) +

−1∑

p=−k−1

(−1)pρ2p+1
1,j

2p + 1

)

+
ρ
−(2k+1)
1,j

π

(
arctg(ρ1,j) −

−k∑

p=0

(−1)pρ2p+1
1,j

2p + 1

)
if k > −1,

R1
xj ỹj

(2k + 1) =
ρ
−(2k+1)
1,j

2
+

ρ2k+1
1,j

π

(
arctg(ρ1,j) −

−k−2∑

p=0

(−1)pρ2p+1
1,j

2p + 1

)

+
ρ
−(2k+1)
j

π

(
arctg(ρ1,j) +

−1∑

p=k+1

(−1)pρ2p+1
1,j

2p + 1

)
if k < −1. (37)

The expressions of R2
xj ỹj

(l) are easily derived by replacing ρ1,j by ρ2,j in the above

equalities. Altogether, we obtain Rxj ỹj (k, l) by using (34).

Once Γj , cxj and cxj ỹj are determined, after some calculations, the optimal update

coefficients are simply given by:

u
(HL)
j (0, 0) = u

(HL)
j (0, 1) =

π + 4 arctg(ρ1,j)

2π2

u
(LH)
j (0, 0) = u

(LH)
j (1, 0) =

π + 4 arctg(ρ2,j)

2π2

u
(HH)
j (0, 0) = u

(HH)
j (0, 1) = u

(HH)
j (1, 0) = u

(HH)
j (1, 1) =

1

π2
. (38)

Note that, although the simple separable autoregressive modeling which was adopted

induces a separable form of the optimized prediction and update filters, the resulting

NSLS cannot be put under the classical form of a separable lifting structure. Indeed, the

vector u
(HH)
j is not equal to the Kronecker product of u

(HL)
j and u

(LH)
j . The necessary

conditions for satisfying the equivalence between a non separable scheme and a separable

one can be found in [17].

4.4. Adaptation criterion values

In order to show the interest of our optimization approach, we aim at comparing the

values of the criterion J in the two following cases:

• Case I: the update vector u
nonopt
j has non optimized weights corresponding to the

conventional 5/3 transform, given in (10):

u
nonopt
j = [1/4, 1/4, 1/4, 1/4,−1/16,−1/16,−1/16,−1/16].

• Case II: the update vector u
opt
j corresponds to weights minimizing J .
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Our objective is to evaluate the gain resulting from the optimization of J by calculating

J (unonopt
j ) and J (uopt

j ). To this respect, we recall that the optimal value of J can be

expressed as:

J (uopt
j ) =E

[
x0,j(m, n)2

]
+ E

[
yj+1(m, n)2

]
− 2E

[
x0,j(m, n)yj+1(m,n)

]

+ (uopt
j )⊤E

[
x0,j(m,n)xj+1(m,n)

]
− (uopt

j )⊤E
[
yj+1(m,n)xj+1(m,n)

]
. (39)

Eq. (39) indicates that the evaluation of J requires to find the expressions of Rxj
(k, l),

Rxj ỹj (k, l), and the value Ryj+1(0, 0) of the autocorrelation of yj+1 at (0, 0). The first

two expressions are readily given by (27) and (37) whereas the third one is easily derived:

Ryj+1(0, 0) = σ2
j

(1

2
+

2

π
arctg(ρ1,j)

)2(1

2
+

2

π
arctg(ρ2,j)

)2

. (40)

It is worth pointing out that the calculation of the adaptation criterion has not led

to a simple expression as a function of ρ1,j and ρ2,j . In order to obtain more easily

interpretable results, we propose to consider the case of an approximation image that

presents strong correlations in the horizontal and vertical directions. In other words, we

focus on the case when the couple (ρ1,j , ρ2,j) is close to (1,1). Hence, we propose to

approximate J by its second-order Taylor expansion Ĵ when (ρ1,j , ρ2,j) is around (1,1):

Ĵ
(
u

nonopt
j

)
=

σ2
j

2

[1

4
(2 − ρ1,j − ρ2,j) +

1

8
(1 − ρ1,j)

2 +
1

8
(1 − ρ2,j)

2

+ (
3

π2
+

1

32
)(1 − ρ1,j)(1 − ρ2,j)

]

Ĵ
(
u

opt
j

)
=

σ2
j

π2

[
(π − 2)(2 − ρ1,j − ρ2,j) +

π − 2

2
(1 − ρ1,j)

2

+
π − 2

2
(1 − ρ2,j)

2 +
π2 − 8π + 4

π2
(1 − ρ1,j)(1 − ρ2,j)

]
. (41)

4.5. Discussion

In order to emphasize the usefulness of the optimization of the update filter, we

illustrate in Fig. 4 the variations of the criterion in (41) with respect to ρj where we

have assumed that ρ1,j = ρ2,j = ρj . At first, Fig. 4 shows that the Taylor expansion

closely approximates the criterion when ρj ≥ 0.85.

Note that in practice, for natural images, values of ρj are within such a range [35].

Besides, by adapting the update filter coefficients to the image statistical characteristics,

18



0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Figure 4: Variations of the adaptation criterion w.r.t ρj : J (unonopt) in solid blue line, J (uopt) in solid

red line, Ĵ (unonopt) in dotted blue line, Ĵ (uopt) in dotted red line.

we can see that the optimized scheme leads to an improvement compared with the non-

optimized one. In summary, the interest of this theoretical study is twofold. First,

it allows us to better understand the benefit that can be drawn from the proposed

optimization method. Furthermore, it provides closed form expressions of the prediction

and update filters which can be used in order to simplify the implementation of the

proposed optimization method.

5. Coding techniques

5.1. Coding of the wavelet coefficients

After applying our decomposition, the generated coefficients must be encoded. How-

ever, the coding scheme should enable quality scalability for progressive reconstruction

purposes. This is basically achieved by sending the coefficients in decreasing order of

their importance. In other words, the most significant ones are first encoded at a re-

duced accuracy. So, a first approximation image is produced, which is further gradually

refined by decoding the less significant coefficients. To this end, several scalable codecs

have been developed [36, 37, 38, 39]. The main advantage of these embedded codecs

is that the encoder can terminate the encoding at any point, thereby allowing a target

bitrate to be met exactly. Similarly, the decoder can also stop decoding at any point

resulting in the image that would have been produced at the rate corresponding to the

truncated bitstream. Among these various codecs, it is shown in [39] that EZBC and
19



JPEG 2000 codecs are the most effective in terms of compression and reconstruction

quality. In this paper, we have chosen the JPEG 2000 codec [38] which yields excellent

performances in terms of compression efficiency and quality of reconstruction.

5.2. Transmission cost of the filter coefficients

The entire set of optimal weights for the update and the three prediction filters

corresponds to an amount of op,u = (Lp + Lu)J floating point coefficients, where Lp

and Lu denote respectively the number of prediction and update weights in the adaptive

NSLS and J represents the number of resolution levels. For an image of size N1 × N2,

the transmission cost of the filters coefficients will increase the bitrate achieved by the

proposed optimization method, by
32 op,u

N1N2
bits per pixel. For example, if we consider the

supports of the prediction and update filters corresponding to the 2D 5/3 transform with

Lp = 16 and Lu = 8 (see (7)-(10)) , when N1 = N2 = 512, J = 2 and if the weights

are stored on 32 bits, the bitrate will be increased by 0.0059 bpp which is a very small

fraction of the overall data bitrate. However, if we use the explicit expressions of the filter

coefficients given by the theoretical analysis, it is enough to send only the correlation

factors ρ1,j and ρ2,j . This leads to a significant reduction of the transmission cost of the

filter coefficients, which becomes 0.0004 bpp.

6. Experimental results

Simulations were carried out on two kinds of still images originally quantized on 8 bpp

which are either monocular single views2 or stereoscopic ones3. The gain related to the

optimization of the NSLS operators was evaluated in these contexts.

Since we are mainly interested in lossy-to-lossless coding schemes, we will consider the

integer-to-integer 5/3 transform recommended for the lossless mode of JPEG2000 [4]. In

order to show the benefits of the optimization of all the involved operators, we provide

the results for the following decompositions carried out over two resolution levels:

• The first one is the lifting scheme corresponding to the 5/3 transform, which is known

as the (2,2) integer wavelet transform [7]. Its underlying decomposition operators are

2http://sipi.usc.edu/database
3http://vasc.ri.cmu.edu/idb/html/stereo/index.html
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given by (7)-(10). In the following, this method will be designated by NSLS(2,2).

• The second variant consists of optimizing only the prediction filters of the NSLS(2,2)

while the update filter is kept unchanged. Note that the prediction support is preserved.

This method will be denoted by NSLS(2,2)-OPT1.

• The third method consists of optimizing both the prediction and update operators. In

what follows, our proposed method will be designated by NSLS(2,2)-OPT2-PM1 (resp.

NSLS(2,2)-OPT2-PM2) when using the experimental (resp. theoretical) optimal update

coefficients.

• We have also tested for comparison the update optimization method of Gouze et al.

which aims at designing the update filter in order to minimize a reconstruction error

[30, 31]. This optimization method will be designated by NSLS(2,2)-OPT2-GM.

As mentioned earlier, the proposed method for the design of all filters can be applied

to any classical P-U lifting structure. To illustrate the performance of the optimization

method when using longer filters, we will consider a simple example corresponding to the

(4,2) integer wavelet transform. Indeed, after applying this transform to the lines then

to the columns, it is easy to show that the corresponding support of the two-dimensional

prediction and update filters are given by:

P
(HH)
0,j = {(k, l)−2≤k≤1,−2≤l≤1},P

(HH)
1,j = {(k, 0)−2≤k≤1},P

(HH)
2,j = {(0, l)−2≤l≤1},

(42)

P
(LH)
0,j = {(k, l)−2≤k≤1,−2≤l≤1},P

(LH)
1,j = {(0, 0), (0, 1)}, (43)

P
(HL)
0,j = {(k, l)−2≤k≤1,−2≤l≤1},P

(HL)
1,j = {(0, 0), (1, 0)}, (44)

U
(0)
j = {(0, 0), (0, 1)},U

(1)
j = {(0, 0), (1, 0)},U

(2)
j = {(0, 0), (0, 1), (1, 0), (1, 1)}. (45)

In what follows, NSLS(4,2)-OPT1 and NSLS(4,2)-OPT2-PM1 will designate respectively

the decompositions before and after the optimization of the update filter.

First of all, the performance of the proposed method has been assessed on monocular

images. Starting with the evaluation of these decompositions in a progressive reconstruc-

tion context, Figures 5 and 6 give the variations of the PSNR versus the bitrate for the

images “lena” and “castle”.
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image.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
25

26

27

28

29

30

31

32

33

Bitrate (bpp)

P
S

N
R

 (
d

B
)

NSLS(2,2)
NSLS(2,2)−OPT1
NSLS(2,2)−OPT2−GM
NSLS(2,2)−OPT2−PM1
NSLS(2,2)−OPT2−PM2
NSLS(4,2)−OPT1
NSLS(4,2)−OPT2−PM1

Figure 6: PSNR (in dB) versus the bitrate (bpp) after JPEG2000 progressive encoding for the “castle”

image.
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It is worth pointing out that NSLS(2,2)-OPT2-PM1 outperforms NSLS(2,2) by 0.2-

0.9 dB and NSLS(2,2)-OPT1 by about 0.4 dB. It can be noticed that the proposed

update optimization method NSLS(2,2)-OPT2-PM1 and Gouze’s method NSLS(2,2)-

OPT2-GM have similar performances in terms of quality of reconstruction. However,

it is worth pointing out that our work present two advantages with respect to Gouze’s

work. Firstly, the proposed method reduces significantly the complexity of the optimiza-

tion algorithm. Indeed, although both minimization approaches amount to solving a

linear system Ajuj = bj , it is worth noting that calculating Aj and bj is more intricate

and requires more operations in the case of Gouze’s method [30, 31]. More precisely, in

this case, the matrix Aj (resp. vector bj) is completely defined by the computation of

four matrices of size 8 × 8 (resp. four vectors of dimension 8) since the reconstruction

error is evaluated for each of the four polyphase components (see (13)). Our optimiza-

tion method requires only the computation of one matrix of size 8 × 8 and two vectors

of dimension 8 as shown in (21). To better illustrate this fact, we propose to compare

these two optimization methods in terms of computation time.

Table 1: Computation time of the optimization method of the update filter (in seconds).

Image lena einst castle elaine

Gouze’s method 3.14 3.11 3.09 3.11

Our method 1.06 1.07 1.08 1.06

Table 1 presents the computation time of a Matlab implementation of the optimization

methods of the update filter for some images of size 512 × 512. Simulations are car-

ried out by using an Intel Core 2 (3 GHz) computer. We can note that the proposed

method is three times faster than Gouze’s method based on the minimization of the re-

construction error. Secondly, the main advantage of the current work is that it provides

explicit expressions of the optimal filter coefficients based only on the horizontal and

vertical correlation factors. In order to show the benefit of the statistical analysis we

conducted, we evaluate our method when using directly the obtained theoretical filter

coefficient expressions. We can see in Figures 5 and 6 that using the theoretical values

of the optimal filters NSLS(2,2)-OPT2-PM2 yields results comparable with the method

based on experimental filter coefficients NSLS(2,2)-OPT2-PM1. This confirms that the
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considered autoregressive model allows us to obtain theoretical results which are close

to the experimental ones. We however noticed that the simple autoregressive model

becomes inaccurate in the case of some specific images showing a strong correlation in

another direction than the horizontal or vertical ones. For example, Table 2 illustrates

the optimized filter coefficients for the “castle” and “straw” images. An additional gain

of 0.3 dB can be achieved by using longer filters NSLS(4,2)-OPT2-PM1.

Table 2: Experimental and theoretical results of filter coefficients for the “castle” and “straw” images

Image Filter Experimental optimized coefficients Theoretical optimized coefficients

castle p
(HH)
0 [−0.2153,−0.2041,−0.2081,−0.2139, [−0.2496,−0.2496,−0.2496,−0.2496,

0.4749, 0.4798, 0.4457, 0.4419]⊤ 0.4997, 0.4997, 0.4997, 0.4997]⊤

p
(HL)
0 [0.5041, 0.5054,−0.1192,−0.1081]⊤ [0.4994, 0.4994, 0, 0]⊤

p
(LH)
0 [0.4983, 0.5039,−0.1494,−0.1542]⊤ [0.4997, 0.4997, 0, 0]⊤

u0 [0.2897, 0.2855, 0.2839, 0.2771, [0.3150, 0.3150, 0.3132, 0.3132,

0.0906, 0.0753, 0.0827, 0.0849]⊤ 0.1013, 0.1013, 0.1013, 0.1013]⊤

straw p
(HH)
0 [−0.2410, 0.0855, 0.0676,−0.2505, [−0.2293,−0.2293,−0.2293,−0.2293,

0.3446, 0.3360, 0.3160, 0.3289]⊤ 0.4769, 0.4769, 0.4808, 0.4808]⊤

p
(HL)
0 [0.5206, 0.5298,−0.0763,−0.0659]⊤ [0.4808, 0.4808, 0, 0]⊤

p
(LH)
0 [0.5568, 0.4904,−0.1051,−0.1554]⊤ [0.4769, 0.4769, 0, 0]⊤

u0 [0.1990, 0.1881, 0.1744, 0.1949, [0.2874, 0.2874, 0.2901, 0.2901,

0.2118,−0.0928,−0.0949, 0.2110]⊤ 0.1013, 0.1013, 0.1013, 0.1013]⊤

Figures 7, 8 and 9 display the reconstructed images of “airport” and “lena” and “elaine”.

The quality of these images is compared both in terms of PSNR and Structural SIMi-

larity (SSIM) [40]. It can be observed that optimizing both the prediction and update

filters significantly improves the quality of reconstruction. The difference in PSNR (resp.

SSIM) ranges from 0.35 dB to 0.4 dB (resp. from 0.03 to 0.07) compared with the de-

compositions in which only the prediction filters are optimized. In addition, we have

tested these methods in a lossless coding context and the related final bitrates are given

in Table 3. Slight improvements (about 0.02 bpp compared to the Gouze’s method) are

obtained when our optimization method is employed in a lossless coding scheme.
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(a): Original image (b): PSNR=28.42 dB, SSIM=0.734

(c): PSNR=28.45 dB, SSIM=0.738 (d): PSNR=28.80 dB, SSIM=0.741

Figure 7: Zoom applied on the reconstructed “airport” image at 0.35 bpp using: (b) NSLS(2,2)

(c) NSLS(2,2)-OPT1 (d) NSLS(2,2)-OPT2-PM1.
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(a): Original image (b): PSNR=31.81 dB, SSIM=0.860

(c): PSNR=32.49 dB, SSIM=0.872 (d): PSNR=32.92 dB, SSIM=0.877

Figure 8: The reconstructed “lena” image at 0.25 bpp using: (b) NSLS(2,2) (c) NSLS(2,2)-OPT1 (d)

NSLS(2,2)-OPT2-PM1.
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(a): Original image (b): PSNR=30.64 dB, SSIM=0.733

(c): PSNR=30.99 dB, SSIM=0.741 (d): PSNR=31.37 dB, SSIM=0.748

Figure 9: The reconstructed “elaine” image at 0.2 bpp using: (b) NSLS(2,2) (c) NSLS(2,2)-OPT1 (d)

NSLS(2,2)-OPT2-PM1.
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Table 3: Performance of the lossless decompositions in terms of bitrate (bpp) using JPEG2000.

Image NSLS(2,2) NSLS(2,2) NSLS(2,2)- NSLS(2,2)-

OPT1 OPT2-GM OPT2-PM1

spot5-1 3.94 3.87 3.88 3.85

spot5-2 4.17 4.09 4.09 4.06

spot5-3 4.15 4.07 4.08 4.04

lena 4.31 4.31 4.31 4.31

straw 6.35 6.34 6.34 6.34

airport 5.49 5.48 5.48 5.48

earthquake 6.48 6.30 6.33 6.30

castle 3.70 3.66 3.66 3.66

Average 4.82 4.76 4.77 4.75

The second part of the experiments is concerned with stereo images. More pre-

cisely, we also evaluate our optimization method for coding residual image obtained after

disparity-compensation between the right and the left views. Figures 10 and 11 illustrate

the evolution of the PSNR versus the bitrate of the residual image generated respectively

from the “shrub” and “spot5-3” stereo image. An improvement of 0.1-0.25 dB is obtained

by optimizing the update filter. The gain becomes more important (up to 0.6 dB) when

compared with the non-optimized NSLS(2,2) wavelet transform. Furthermore, we show

that using the theoretical filter coefficient expressions, NSLS(2,2)-OPT2-PM2 yields per-

formances similar to the NSLS(2,2)-OPT2-PM1 scheme. An additional gain of 0.3 dB is

achieved by using NSLS(4,2)-OPT2-PM1. Figure 12 displays the reconstructed images

of the residual one generated from the “pentagone” stereo pair. It can be observed that

optimizing both the prediction and update filters leads to an improvement of 0.22 dB

(resp. 0.04) in PSNR (resp. SSIM) compared with the decomposition in which only the

prediction filters are optimized.
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Figure 10: PSNR (in dB) versus the bitrate (bpp) after JPEG2000 progressive encoding for the “shrub”

residual image.
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Figure 11: PSNR (in dB) versus the bitrate (bpp) after JPEG2000 progressive encoding for the “spot5-3”

residual image.
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(a): Original residual image (b): PSNR=29.60 dB, SSIM=0.484

(c): PSNR=29.65 dB, SSIM=0.515 (d): PSNR=29.87 dB, SSIM=0.541

Figure 12: The reconstructed “pentagone” residual image at 0.31 bpp using: (b) NSLS(2,2)

(c) NSLS(2,2)-OPT1 (d) NSLS(2,2)-OPT2-PM1.

A more exhaustive study was also conducted by applying the proposed optimization

method to 10 still images and 10 stereo images downloaded from the databases mentioned

at the beginning of this section. Figures 13 and 14 illustrate the average PSNR per-image
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in the case of still and stereo image coding.
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Figure 13: Average PSNR (in dB computed over 10 still images) versus the bitrate (bpp) after JPEG2000

progressive encoding.
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Figure 14: Average PSNR (in dB computed over 10 residual images) versus the bitrate (bpp) after

JPEG2000 progressive encoding. 31



All these results, obtained with monocular images and residual images of stereo pairs,

confirm the effectiveness of our method in terms of reconstruction quality.

7. Conclusions

In this paper, we have exploited the flexibility offered by non separable lifting schemes

to optimize their operators. A new criterion has been presented for the optimization of

the update filter in this context. The proposed method adapts the filters to the contents

of the input image while ensuring perfect reconstruction. A theoretical analysis in terms

of the retained adaptation criterion was conducted in order to show the benefits that

can be drawn from this optimization method. Furthermore, this study provides closed

form expressions of the optimal filter coefficients which, due to their simplicity, can

be exploited in the implementation process. Experimental results, carried out on still

images and residual images of stereo pairs have illustrated the good performance in

terms of bitrate and quality of reconstruction when optimizing both the prediction and

the update filters. In future work, we plan to extend this optimization method to lifting

schemes with more than two stages like the P-U-P structure and the P-U-P-U one.
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