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Abstract

The homogenization of nonlinear heterogeneous materials is much more difficult
than the homogenization of linear ones. This is mainly due to the fact that the
general form of the homogenized behavior of nonlinear heterogeneous materials is
unknown. At the same time, the prevailing numerical methods, such as concurrent
methods, require extensive computational efforts. A simple numerical approach is
proposed to compute the effective behavior of nonlinearly elastic heterogeneous ma-
terials at small strains. The proposed numerical approach comprises three steps. At
the first step, a representative volume element (RVE) for a given nonlinear het-
erogeneous material is defined, and a loading space consisting of all the boundary
conditions to be imposed on the RVE is discretized into a sufficiently large number
of points called nodes. At the second step, the boundary condition corresponding
to each node is prescribed on the surface of the RVE, and the resulting nonlinear
boundary value problem, is solved by the finite element method (FEM) so as to
determine the effective response of the heterogeneous material to the loading as-
sociated to each node of the loading space. At the third step, the nodal effective
responses are interpolated via appropriate interpolation functions, so that the effec-
tive strain energy, stress-strain relation and tangent stiffness tensor of the nonlinear
heterogeneous material are provided in a numerically explicit way. This leads to
a non-concurrent nonlinear multiscale approach to the computation of structures
made of nonlinearly heterogeneous materials. The first version of the proposed ap-
proach uses mutidimensional cubic splines to interpolate effective nodal responses
while the second version of the proposed approach takes advantage of an outer
product decomposition of multidimensional data into rank-one tensors to interpo-
late effective nodal responses and avoid high-rank data. These two versions of the
proposed approach are applied to a few examples where nonlinear composites whose
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phases are characterized by the power-law model are involved. The numerical re-
sults given by our approach are compared with available analytical estimates, exact
results and full FEM or concurrent multilevel FEM solutions.

Key words: Nonlinear composites, Separated representation, Numerically explicit
potentials, Constitutive models, Multiscale methods

1 Introduction

The homogenization of nonlinear heterogeneous materials is by an order of
magnitude tougher than the homogenization of linear ones. The main reason
is that: (a) in the linear case, the general form of the homogenized (or effec-
tive) behavior of heterogeneous materials is a priori known and it suffices to
determine a set of effective moduli by considering a finite number of macro-
scopic loading modes; (b) in contrast, in the nonlinear case, the general form
of the homogenized behavior of heterogeneous materials is unknown and the
determination of the homogenized behavior requires solving nonlinear partial
differential equations with random or periodic coefficients and entails consid-
ering, in principle, an infinite number of macroscopic loading modes. Many
analytical and numerical works have been devoted to the homogenization of
nonlinear heterogeneous materials

The analytical methods which have been proposed since the pioneer work of
Hill [1] aim at estimating or bounding the effective behavior of nonlinear het-
erogeneous materials. These methods, including the ones proposed by Willis
[2], Dvorak [3], Qiu and Weng [4], Ponte Castañeda [5], Hu [6], Milton and
Serkov [7], can be viewed as extending to the nonlinear case of some well-
established techniques available for estimating or bounding the effective be-
havior of linear heterogeneous materials (see., e.g., Nemat-Nasser & Hori [8];
Torquato [9]; Milton [10]). At the same time, a few exact results have been
obtained for nonlinear heterogeneous materials presenting simple microstruc-
tures and undergoing particular loadings [11–15]. The analytical estimates,
bounds and exact results reported in the literature on the homogenization of
nonlinear heterogeneous materials are of both theoretical and practical im-
portance. However, due to the difficulties inherent in analytically solving non-
linear homogenization problems, all of them have been obtained under rather
restrictive assumptions and are not sufficient for the computation of structures
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consisting of nonlinear heterogeneous materials of complex microstructure and
subjected to arbitrary macroscopic loadings.

In spite of the recent drastic increase in the performance of computers, full-field
(or direct) numerical simulations of a structure made of a nonlinear medium of
high heterogeneity remain expensive and may be beyond available computer
capacity. The basic idea underlying the currently prevailing computational
methods for dealing with a structure composed of a nonlinear heterogeneous
material is to first associate each macroscopic integration point with a rep-
resentative volume element (RVE) of the material, then prescribe the macro-
scopic strain relative to the integration point as the boundary conditions for
the RVE, and finally solve the relevant homogenization problem for every in-
crement of the macroscopic loading imposed on the structure. These methods,
found in the literature under the names such as ”Concurrent Multiscale Meth-
ods”, ”Multilevel Finite Element” and ”Computational Homogenization” (see,
e.g., [16–24]) show many attractive features in comparison with the aforemen-
tioned analytical approaches: (i) the local nonlinear constitutive laws of the
phases of the heterogeneous material can be of much more general form; (ii)
the microstructure of the heterogeneous material can be very complex and
evolving; (iii) loading modes can be arbitrary. However, their main shortcom-
ing is that the computational cost is still high even though use is made of
techniques like model reduction [22], [23] or parallel computing [17] to reduce
it. More recently, McVeigh et al. [25] developed an alternative approach based
on Multiresolution continuum theory to take into account non homogeneous
deformations at different scales.

In the present work, we propose a numerical approach to the homogeniza-
tion of nonlinear heterogeneous materials, which is completely different from
the ones reported in the literature and particularly suitable for the computa-
tion of structures. The basic idea of our approach is quite simple and can be
stated as follows. Given a nonlinear heterogeneous material, we first consider
an RVE of it and a loading space consisting of all the boundary conditions to
be imposed on the RVE. The loading space, or a domain of relevance of the
latter, is then discretized with the help of a sufficiently large number of points
called nodes. The boundary condition corresponding to each node is prescribed
on the surface of the RVE and the resulting nonlinear boundary value prob-
lem is solved by the finite element method (FEM). Thus, the effective energy
response of the nonlinear heterogeneous material in question is numerically
determined for each node of the loading space. Finally, the effective response
of the nonlinear heterogeneous material evaluated for any point of the loading
space is constructed by interpolating the nodal effective responses via appro-
priate interpolation functions and their derivatives. The effective behavior of
the nonlinear heterogeneous material thus obtained is numerically general and
explicit, allowing the replacement of the nonlinear heterogeneous material by
the homogenized one in the case of carrying out structural computation. Even
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though the basic idea of our approach is applicable to a large class of nonlin-
ear heterogeneous materials based on a smooth convex potential, the present
work is limited to nonlinearly elastic heterogeneous materials subjected to
small deformations.

The paper is organized as follows. In section 2, we recall the equations gov-
erning the homogenization of nonlinearly elastic heterogeneous materials at
small strains. Section 3 is dedicated to presenting the numerical approach pro-
posed to determine the effective strain-energy function for deriving the overall
stress-strain relation and tangent stiffness tensor. In section 4, the proposed
numerical approach is tested and illustrated through several examples where
nonlinear composites whose phases are characterized by the power-law model
are involved. The numerical results provided by our approach are compared
not only with the corresponding full-field simulations to assess its accuracy
and efficiency but also with the relevant estimates and exact results to show
its consistency. Our approach is also applied to the bending of a beam made
of a nonlinearly elastic heterogeneous material. A few concluding remarks are
drawn in the last section.

2 Homogenization of nonlinear elastic composites

This work is concerned with estimating the effective or homogenized behavior
of nonlinear elastic composites undergoing small deformations. We consider
a representative volume element (r.v.e) Ω of such a composite consisting of
N homogeneous elastic phases. The subdomain of Ω occupied by phase r ∈
{1, 2, ..., N} is denoted by Ωr and described by the characteristic function χ(r)

such that χ(r)(x) = 1 for x ∈ Ωr and χ(r)(x) = 0 for x /∈ Ωr. We shall symbolize
the volume average over Ωr by ⟨.⟩r and the one over Ω by ⟨.⟩. In particular,

c(r) =
⟨
χ(r)

⟩
is the volume fraction of phase r. The interfaces between the

phases of the composite are taken to be perfect.

Let be given the local strain-energy density function w of the composite under
investigation by

w(x, ε) =
N∑
r=1

χ(r)(x)w(r)(ε), (1)

where w(r) is the strain-energy density function of phase r and ε is the in-
finitesimal strain tensor related to the displacement vector u via

ε = ε(u) =
1

2
[∇u+ (∇u)T ]. (2)
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In what follows, each strain energy function w(r) is assumed to be convex but
not necessarily quadratic with respect to ε. The local stress-strain relation of
the composite is then provided by

σ =
∂w(x, ε)

∂ε
, (3)

where σ is the Cauchy stress tensor which must satisfy the equilibrium equa-
tion:

div(σ) = 0 (4)

in the absence of body forces.

As usual in micromechanics, the macroscopic (or overall) strain and stress
tensors, ε̄ and σ̄, are defined as the volume averages of the local counterparts:

ε̄ = ⟨ε⟩ , σ̄ = ⟨σ⟩ . (5)

In the case of a composite with cracks, voids and rigid inhomogeneities, the
foregoing definitions for the macroscopic strain and stress tensors have to be
extended. The boundary conditions (b.c.) considered in this work is either of
the following three ones:

(a) uniform traction b.c., i.e.,

σn = σ̄n on ∂Ω (6)

where n is the outward unit normal to ∂Ω;

(b) uniform strain b.c., i.e.,

u = ε̄x on ∂Ω; (7)

(c) periodical b.c., i.e.,

u− ε̄x is periodical and σn is anti-periodical on ∂Ω. (8)

In short, equations (1)-(5) with either of the b.c. (6)-(8) formulate the nonlin-
ear elastic boundary value problem for determining the effective stress-strain
relation of the composite. This problem can be conveniently formulated in
a variational way. For example, when the boundary conditions (7) are pre-
scribed, the effective strain-energy density function w̄ of the composite is ob-
tained by solving the following minimization problem:

w̄(ε̄) = inf
v∈K(ε̄)

⟨w(x,ε(v))⟩ (9)
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where K(ε̄) is the space of all displacements v defined over Ω and verifying
the boundary conditions u = ε̄x on ∂Ω. It can be shown that w̄ is a con-
vex function of ε̄ provided w is convex with respect to ε ([26]). Further, the
effective stress-strain relation is given by (see, e.g., [27])

σ̄ =
∂w̄(ε̄)

∂ε̄
. (10)

The main purpose of what follows is to provide a twice continuously differ-
entiable numerical estimation for the effective strain-energy density function
w̄.

3 Construction of numerically explicit potentials for the homoge-
nized behavior of nonlinear elastic composites

When a linearly elastic composite is concerned, the effective strain-energy
density w̄, referred to simply as potential, is a quadratic function defined
over the space E of macroscopic infinitesimal strain tensors ε̄, which is in the
most general case characterized by 21 effective elastic moduli. In this sense,
w̄ is said to have an exact discrete representation. When a nonlinearly elastic
composite is under investigation, the form of w̄ as a function defined over E is in
general unknown and cannot be exactly specified in terms of a finite number of
parameters. In other words, w̄ has not an exact finite representation. However,
once w̄ has been accurately evaluated for a sufficient number of points of E ,
we expect that, under certain regularity conditions for w̄, there is a good
continuous but finite approximation w̄∗ for w̄ such that w̄∗(ε̄) is close enough
to w̄(ε̄) for any point ε̄ of E .

In this work, we first consider an RVE Ω of the nonlinearly elastic composite
and accurately estimate w̄ for a sufficient number of points of E by the finite
element method. Then, a ”Numerically Explicit Potential” (NEXP for short),
i.e. a continuous finite approximation w̄∗ of w̄, is constructed by interpolat-
ing the computed discrete values of w̄. The interpolation functions used are
required to be twice continuously differentiable (or C2), so that we can finally
obtain the approximated effective stress-strain relation and tangent stiffness
tensor by calculating the first and second derivatives of w̄∗.

3.1 Notational preliminaries

The space E consisting of all macroscopic strain tensors ε̄ will be referred to as
the loading space, since, in the following, the macroscopic variable prescribed
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on the boundary ∂Ω of Ω is an element ε̄ of E . Let {e1, e2, e3} be a three-
dimension (3D) orthonormal basis. Usually, ε̄ is decomposed as follows

ε̄ = ε̄11e1 ⊗ e1 + ε̄22e2 ⊗ e2 + ε̄33e3 ⊗ e3 + ε̄23(e2 ⊗ e3 + e3 ⊗ e2)

+ε̄31(e1 ⊗ e3 + e3 ⊗ e1) + ε̄12(e1 ⊗ e2 + e2 ⊗ e1). (11)

For our purpose, it is more convenient to use another decomposition of ε̄:

ε̄ = ε̄1e1 ⊗ e1 + ε̄2e2 ⊗ e2 + ε̄3e3 ⊗ e3 +
ε̄4√
2
(e2 ⊗ e3 + e3 ⊗ e2)

+
ε̄5√
2
(e1 ⊗ e3 + e3 ⊗ e1) +

ε̄6√
2
(e1 ⊗ e2 + e2 ⊗ e1) . (12)

Comparing (11) with (12) gives rise to the relations:

ε̄1 = ε̄11, ε̄2 = ε̄22, ε̄3 = ε̄33, ε̄4 =
√
2ε̄23, ε̄5 =

√
2ε̄31, ε̄6 =

√
2ε̄12. (13)

It is well-known that this notation is mathematically more consistent than the
traditional Voigt one. In a similar way, we can introduce the components σ̄α

(α = 1, 2, ..., 6) and σ̄ij(i, j = 1, 2, 3) of the macroscopic stress tensor σ̄, which
are related by the relations similar to (13).

In the general situation, the potential w̄ is defined over E which can be viewed
as a six-dimension vector space, i.e.

w̄ = w̄(ε̄1, ε̄2, ..., ε̄6), (14)

and the effective stress-strain relation and the effective tangent stiffness matrix
L̄ = ∂2w̄/∂ε̄∂ε̄ are given by

σ̄α =
∂w̄

∂ε̄α
, L̄αβ = γL̂αβ , L̂αβ =

∂2w̄

∂ε̄α∂ε̄β
. (15)

where the values of γ for the different combinations of α and β are provided
in Appendix 2. However, we are sometimes interested only in a particular
problem, for example a plane-strain problem relative to the plane x1 − x2.
In such a case, w̄ depends only on ε̄1, ε̄2 and ε̄6, and the value range of the
suffixes α and β in (15) are {1, 2, 6}. In this section, we focus our attention
only on the general situation. When a specific problem is in question, it is
relatively easy to adapt the general method presented in this section.
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3.1.1 Discrete representation of the potential

First, we carry out the discretization of the six-dimension loading space E . A
general non-uniform discretization can be envisaged. However, for the sake of
simplicity, we only present the case of regular discretization in the following.
For this, the ε̄α-axe associated with the effective strain component ε̄α with
α = 1, 2, ..., 6 is uniformly graduated. Note that ε̄α has to vary between a
certain minimum value ε̄min

α and a certain maximum value ε̄max
α imposed by

the hypothesis of small strains made in this work. A uniform graduation of
any ε̄α-axe limited to the interval [ε̄min

α , ε̄max
α ] can be obtained by introducing

a set of points {ξα0 , ξα1 , ..., ξαmα
} such that ε̄min

α = ξα0 < ξα1 < ... < ξαmα
= ε̄max

α

and ξα1 − ξα0 = ξα2 − ξα1 = ... = ξαmα
− ξαmα−1. Thus, the subdomain ∆ =

[ε̄min
1 , ε̄max

1 ] × [ε̄min
2 , ε̄max

2 ] × ... × [ε̄min
6 , ε̄max

6 ] of E is discretized into a uniform
grid. A node of ∆ is a point (ξ1i1 , ξ

2
i2
, ..., ξ6i6) with 0 ≤ iα ≤ mα. In this work,

we set m1 + 1 = m2 + 1 = ... = m6 + 1 = p so that ∆ contains p6 nodes.

Next, we evaluate w̄ at each node of ∆ by FEM. More Precisely, given the
effective strain components (ξ1i1 , ξ

2
i2
, ..., ξ6i6) corresponding to the node i1i2...i6

with 0 ≤ iα ≤ p− 1, we apply FEM to solve the nonlinearly elastic boundary
value problem for an RVE Ω of the composite, which has been formulated in
the foregoing section. Let u(x; ξ1i1 , ξ

2
i2
, ..., ξ6i6) be the corresponding displace-

ment field obtained by FEM. Then, the evaluation of w̄ at the node i1i2...i6 is
given by

w̄(ξ1i1 , ξ
2
i2
, ..., ξ6i6) =< w[x, ε(u(x; ξ1i1 , ξ

2
i2
, ..., ξ6i6))] > . (16)

For later use, the value of w̄ evaluated at the node i1i2...i6 is designated by
w̄i1i2...i6 , via

w̄i1i2...i6 = w̄(ξ1i1 , ξ
2
i2
, ..., ξ6i6). (17)

Further, we introduce a ”hypermatrix” W̄ whose components are constituted
of all the elements w̄i1i2...i6 (1 ≤ iα ≤ mα), symbolically writing

W̄ = [w̄i1i2...i6 ] . (18)

In figure 1, an illustration of the discretized strain domain ∆ for a prob-
lem involving the three macroscopic strain components ε̄1 = ε̄11, ε̄2 = ε̄22,
ε̄6 =

√
2ε̄12 is provided. Some finite element solutions corresponding to the

associated deformation states are shown for illustration.

In sum, after solving p6 boundary value problems by FEM, we have the esti-
mations w̄i1i2...i6 of w̄ for p6 nodes. These estimations constitute the discrete
representation of w̄. By properly interpolating the nodal data w̄i1i2...i6 with
0 ≤ iα ≤ p − 1, we can obtain a continuous finite approximation w̄∗ of w̄.
Note that for a problem involving less macroscopic strain components (e.g.
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Fig. 1. Discretized strain domain ∆ for a problem involving three independent
macroscopic strain components. The deformation states associated to some finite
element solutions are shown for illustration.

2D problems), we only have to solve pd boundary value problems for pd nodes,
d being the number of macroscopic strain components. In the following, we
describe two techniques for carrying out the interpolation. The first resorts to
a multidimensional spline interpolation method. The second technique takes
advantage of an outer product decomposition of the data w̄i1i2...i6 and requires
only the storage of one-dimensional data among w̄i1i2...i6 .

3.2 Direct multidimensional interpolation approach

In this paragraph, we describe a direct interpolation approach (referred to
as NEXP1) of the data w̄i1i2...i6 using a multidimensional spline interpolation
technique. To satisfy the requirement that a continuous finite approximation
w̄∗ of w̄ be C2, we choose cubic spline functions. For the sake of the reader,
the one-dimensional cubic spline interpolation for regularly distributed nodes
is reviewed in Appendix 1. In the following, we apply the multidimensional
spline interpolation procedure as detailed in [28].

Given the aforementioned discretization of the domain ∆ of E and the nodal
estimations w̄i1i2...i6 of w̄, we are looking for a continuous approximation w̄∗
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of w̄ such that

w̄∗(ξ1i1 , ξ
2
i2
, ..., ξ6i6) = w̄i1i2...i6 , 0 ≤ iα ≤ p− 1. (19)

This is accomplished by interpolating the nodal estimations w̄i1i2...i6 with the
help of the cubic spline functions:

w̄∗(ε̄1, ε̄2, ..., ε̄6) =
p+2∑
i1=1

...
p+2∑
i6=1

ci1i2...i6

6∏
j=1

ϕj
ij(ε̄j). (20)

In this expression, the cubic spline functions ϕj
ij are defined by

ϕj
ij(ε̄j) = Φ

(
ε̄j − ε̄min

j

hj

+ 2− ij

)
(21)

where hj = (ε̄min
j − ε̄max

j )/mj and

Φ(t) =


(2− |t|)3, 1 ≤ |t| ≤ 2;

4− 6 |t|2 + 3 |t|3 , |t| ≤ 1;

0, elsewhere.

(22)

The coefficients ci1i2...i6 are obtained by exploiting the interpolation condi-
tions (19). The size of this problem is

∏d
j=1(mj + 3). An efficient algorithm

to determine the coefficients ci1i2...i6 is provided in [28]. Efficient routines for
multidimensional splines are readily available, e.g. in the Matlab R⃝ code (”in-
terpn.m” function with ”spline” argument).

We can then express the stress-strain relationship in a numerically explicit
way:

σ̄∗
k(ε̄1, ε̄2, ..., ε̄6) =

∂w̄∗(ε̄1, ε̄2, ..., ε̄6)

∂ε̄k
=

=
p+2∑
i1=1

...
p+2∑
i6=1

ci1i2...i6


6∏

j ̸=k

ϕj
ij(ε̄j)

 ∂ϕk
ik
(ε̄k)

∂ε̄k
. (23)

The effective elastic tangent moduli can then be calculated by Eq. (15) with

L̂∗
kl(ε̄1, ε̄2, ..., ε̄6) =

∂2w̄∗(ε̄1, ε̄2, ..., ε̄6)

∂ε̄k∂ε̄l
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=
p+2∑
i1=1

...
p+2∑
i6=1

ci1i2...i6


6∏

j ̸=k,l

ϕj
ij(ε̄j)

 ∂ϕk
ik
(ε̄k)

∂ε̄k

∂ϕl
il
(ε̄l)

∂ε̄l
if k ̸= l (24)

L̂∗
kl(ε̄1, ε̄2, ..., ε̄6) =

=
p+2∑
i1=1

...
p+2∑
i6=1

ci1i2...i6


6∏

j ̸=l

ϕj
ij(ε̄j)

 ∂2ϕl
il
(ε̄l)

∂ε̄2l
if k = l. (25)

The convergence of such an interpolation scheme with respect to the number
of points p is ensured by the classical polynomial approximation theory, and
is discussed in [29]. For 2D problems involving 2 or 3 strains components, this
first technique runs very fast, even for relatively fine grids. However, for 3D
problems involving 6 strain components, finding the coefficients ci1i2...i6 implies
solving a very large system of equations, and requires extensive computational
time and memory. In the next section, an alternative technique is proposed
which avoids these drawbacks.

3.3 Separated variables interpolation approach

The outer product decomposition of a multidimensional data grid into rank-
one tensors goes back to Hitchkock [30]. It was later rediscovered indepen-
dently and called differently such as Parallel Factors [31], Canonical Decompo-
sition [32], Topographic Component Model [33] or parallel factors (PARAFAC)
decomposition [34]. The PARAFAC decomposition factorizes a tensor into
a sum of rank-one tensors. Another tensor decomposition closely related is
the Higher-Order Singular Value Decomposition (HOSVD) [35], also called
N-mode principal components analysis [36], or three mode factor analysis
(3MFA/Tucker3) [37]. As compared to the PARAFAC decomposition, the
HOSVD introduces a core tensor in the tensor outer product (see [37]). Muti
and Bourennane [38] used the HOSVD for multidimensional signal analysis.
Beylkin and Molhenkamp [39] elaborated algorithms based on the separated
variable representation to solve high-dimensional linear systems and addressed
the issue of conditioning. They also developed techniques for dealing with an-
tisymmetric functions, as arising in the multiparticle Schrödinger equation in
quantum mechanics.

In this second approach (referred to as NEXP2), the hypermatrix W̄ defined
by (18) is approximated by its separated representation Ū:

W̄ ≈ Ū(ξ1i1 , ξ
2
i2
, ..., ξ6i6) =

R∑
r=1

ϕr
1 ⊗ ϕr

2 ⊗ ...⊗ ϕr
6 , (26)
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where ϕr
i (i = 1, ..., 6) is the real-valued vector associated with the macroscopic

strain tensor component ε̄i and R is an integer. In index notation Eq. (26)
reads:

w̄i1i2...i6 ≈ Ūi1i2...i6 =
R∑

r=1

{ϕr
1}i1 {ϕ

r
2}i2 ... {ϕ

r
6}i6 , (27)

where
{
ϕr
j

}
k
denotes the k-th entry of vector ϕr

j . The vectors ϕr
j involved in

(26) are found by solving the following least squares problem for a given R:

inf
ϕr

j

∥∥∥∥∥W̄−
R∑

r=1

ϕr
1 ⊗ ϕr

2 ⊗ ...⊗ ϕr
6

∥∥∥∥∥
2

, r = 1, ..., R, j = 1, ..., 6 , (28)

where ∥.∥ is the Frobenius norm. To achieve a desired accuracy, R can be
increased until:

∥∥∥∥∥W̄−
R∑

r=1

ϕr
1 ⊗ ϕr

2 ⊗ ...⊗ ϕr
6

∥∥∥∥∥ < δ , (29)

where δ is a tolerance parameter. As the problem (28) is nonlinear with respect
to the unknown vectors ϕr

j , an iterative procedure is required to solve it. An
efficient algorithm is the alternated least squares algorithm [32], [31], [40].
The decomposition (26) is well-known to the community of psychometrics,
and efficient routines and software have been developed. In this work, use is
made of the ”parafac.m” Matlab R⃝ routine, which can be downloaded freely
from the Matlab Tensor Toolbox package (see [41]).

Once Ū is computed, an arbitrary value of w̄ can be approximated by interpo-
lating the one-dimensional discrete functions ϕr

j . Thus, we obtain a separated
variables representation of w̄∗ in the form:

w̄(ε̄1, ε̄2, ..., ε̄6) ≈ w̄∗(ε̄1, ε̄2, ..., ε̄6) =
R∑

r=1

ϕ̃r
1(ε̄1)ϕ̃

r
2(ε̄2)...ϕ̃

r
6(ε̄6) , (30)

where ϕ̃r
j(ε̄j) are the interpolated values of ϕr

j :

ϕ̃r
j(ε̄j) =

n∑
k=1

Nk(ε̄j)
{
ϕr
j

}
k
. (31)

In Eq. (31), Nk is one-dimensional C2 interpolation function associated with
node k, and n denotes the number of nodes supporting the shape functions
Nk(ε̄j) whose value at ε̄j is different from zero. As previously, the stress can
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be expressed by

σ̄∗
i (ε̄1, ε̄2, ..., ε̄6) =

R∑
r=1

∏
k ̸=i

ϕ̃r
k(ε̄k)

 ∂ϕ̃r
i (ε̄i)

∂ε̄i

 , (32)

where

∂ϕ̃r
i (ε̄i)

∂ε̄i
=

n∑
k=1

∂Nk(ϵ̄i)

∂ϵ̄i
{ϕr

i}k . (33)

Then, the approximated value L̂∗ of L̂ is evaluated by:

L̂∗
ij(ε̄1, ε̄2, ..., ε̄6) =

R∑
r=1

 ∏
k ̸=i,j

ϕ̃r
k(ε̄k)

 ∂ϕ̃r
i (ε̄i)

∂ε̄i

∂ϕ̃r
j(ε̄j)

∂ε̄j

 if i ̸= j , (34)

L̂∗
ij(ε̄1, ε̄2, ..., ε̄6) =

R∑
r=1

∏
k ̸=i

ϕ̃r
k(ε̄k)

 ∂2ϕ̃r
i (ε̄i)

∂ε̄2i

 if i = j , (35)

with

∂2ϕ̃r
i (ε̄i)

∂ε̄2i
=

n∑
k=1

∂2Nk(ϵ̄i)

∂ϵ̄2i
{ϕr

i}k . (36)

In this work, the functions Ni are chosen to be one-dimensional C2 cubic spline
functions, even though other C2 interpolation schemes can be considered. For
a strain domain of high dimension, this approach only requires finding the
coefficients of one-dimensional spline functions, and thus only a small system
of equations has to be solved, which saves computational time and memory.
Furthermore, the separated representation technique needs only storing one-
dimensional discrete functions and thus p× d×R values.

3.4 Summary and remarks

Below we sum up the main steps of the proposed approach:

(i) (Preliminary computations) Construct the hypermatrix W̄ by solving pd

finite element problems, d being the dimension of the macroscopic loading
space, and p being the number of points along each dimension. In the case
of the NEXP2 method, decompose W̄ into rank-one tensors.

(ii) (During the structure problem computation) Compute the effective stress
and elastic tangent tensor at each integration point of the macroscopic
mesh by interpolation of the effective nodal responses in the strain do-
main.

13



At this stage, the following remarks are in order.

(a) The approach provides numerically explicit effective stress-strain rela-
tions needed for structural computations in a finite element code. This
technique only requires storing a hypermatrix in the case of the NEXP1
version, and discrete 1D functions in the NEXP2 version. The numerical
treatment necessary to determining the effective stress and elastic tan-
gent tensors is far less than performing a local nonlinear FE computation
as in concurrent methods.

(b) The step (i) can be costly for 3D problems or very complex microstruc-
tures. However, as the FE problems for nodal effective responses are in-
dependent, parallel computations can be straightforwardly implemented.

(c) As compared with concurrent methods, the present procedure does not
entail exchange of information between a macroscopic FE problem and
a microscopic FE problem. Once the Numerically Explicit Potential is
constructed after the preliminary stages, the stress and elastic tangent
tensors can be readily evaluated without any new local FE computa-
tions. Nevertheless, the present method is in this work restricted to non-
dissipative materials, while concurrent methods have not this limitation.

(d) In concurrent methods, the only way to compute the tangent tensor is
to achieve numerical evaluation by a perturbation method [17], implying
additional costly finite element computations. In the present method the
tangent elastic tensor can be derived explicitly from the NEXP.

(e) In the present framework, the NEXP can be used to solve all the problems
with structures made of the same heterogeneous material with different
mesh sizes and geometries without additional local nonlinear problem to
be solved. Problems in which a nonlinear material exhibits more than 2
length scales can be dealt with.

(f) Any numerical technique can be used to compute the effective poten-
tial via a r.v.e: Finite Element Method (FEM), Fast Fourier Transform
(FFT)-based approach [42], Extended finite element (see e.g. [43]), etc.

(g) When the phases are described by stress-dependent potentials, our method
is still valid provided these potentials are convex. This is because, in
this case, we can deduce the strain-dependent potentials from the stress-
dependent ones with the help of the Legendre transformation:

w(ε) + w∗(σ) = ε : σ (37)

(h) In the case of materials with periodical microstructure, the choice of the
RVE is in general not unique but the computed strain energy density is
not influenced by this choice. However, microstractural randomness and
the size of the RVE may strongly influence the computed energy density
when the heterogeneous materials in question are non-periodical. In this
case, care must be taken to ensure that the effective strain energy density
is independent of the RVE modelling to within an fixed error.
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Fig. 2. Nb. of r.v.e. FE computations needed to solve a structure problem with re-
spect to the number of macroscopic structure mesh elements: comparison between
concurrent multilevel method and NEXP approaches; (a) 2D compressible plane-s-
train problem; (b) 3D compressible problem. We set d as the number of independent
macroscopic strain components.

3.5 Efficiency analysis

In this section we discuss the advantages of the NEXP method as compared
to the concurrent multilevel Finite Element Method in terms of nonlinear FE
computations, for solving nonlinear structure problems. In the NEXP method,
the total number of FE problems carried out on a r.v.e. is M = pd, where d
is the number of independent strain components. In concurrent methods, the
total number of FE problems to be solved in a nonlinear structure problem is
given by:

M = It.P int.Ne.(1 + Z) (38)

where It is the number of iterations until macroscopic equilibrium conver-
gence, Pint is the number of integration points in each element, Ne is the
total number of elements in the structure, and Z = 3 for 2D problems, and
Z = 6 for 3D problems. The last term comes from the evaluation of the ef-
fective tangent elastic tensor L̄. In the context of concurrent methods, it is
required to evaluate L̄ by numerical perturbation, e.g finite differences, which
implies Z = 3 and Z = 6 additional FE computations at each integration
point. On the other hand, in the NEXP method context the total number
of FE computations only depends on the number p of sampling points along
each axis of the multidimensional grid data. In figures 2, we provide a com-
parison of the numbers of FE computations required in concurrent methods
and NEXP methods, respectively, for different cases. It is found that in 2D
plane strain problems, the NEXP is much more advantageous, even for coarse
macroscopic meshes. For 3D problems, NEXP is also advantageous, as the
number of element meshes in that case is usually high.
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4 Examples

4.1 Preliminary numerical tests

To test the accuracy and convergence of both NEXP1 and NEXP2 techniques,
we first consider an isotropic compressible potential of the form

w(r)(ε) =
9

2
κ(r)ε2m +

ε
(r)
0 σ

(r)
0

1 +m(r)

(
εeq

ε
(r)
0

)1+m(r)

. (39)

In this equation, κ(r) denotes the bulk modulus of phase r; εm = Tr(ε)/3 is

the hydrostatic strain; εeq is the equivalent strain defined by εeq =
√
2εd : εd/3

with εd = ε − εm1 and 1 being the second-order identity tensor. In Eq. (39)
m(r) is the strain-hardening parameter of phase r such that 0 ≤ m ≤ 1;
σ
(r)
0 and ε

(r)
0 are the flow stress and reference strain of phase r, respectively.

This constitutive model is commonly used to represent a number of nonlinear
mechanical phenomena. In particular, the cases m(r) = 0 and m(r) = 1 are
relative to perfectly rigid plastic and linearly elastic materials.

The following numerical parameters are chosen: σ
(r)
0 = 1 MPa, ϵ

(r)
0 = 1, m(r) =

0.2, κ(r) = 20 MPa. Plane strains in the plane x1−x2 are assumed. In this case,
in order to test the accuracy of both NEXP1 and NEXP2 methods, consider
the strain domain ∆ = [ε̄min

1 , ε̄max
1 ]× [ε̄min

2 , ε̄max
2 ]× [ε̄min

6 , ε̄max
6 ] = [−10−3, 10−3]×

[−10−3, 10−3]× [−10−3, 10−3]. In figure 3 we plot the potential along the strain
path defined by ϵ̄11 = ϵ̄12 and ϵ̄22 = 0. For this first test, p = 21 points
regularly distributed along each dimension of the strain space have been used.
The NEXP2 solution is obtained by choosing an accuracy δ = 10−6 leading to
R = 85. In that case, both method are in very good agreement with the exact
solution.

In figure 4, we plot the stress-strain relation computed with the help of NEXP1
and NEXP2. Both of the methods produce oscillations in the vicinity of the
zero strain where the slope of the stress-strain relation changes quickly for
small values of m(r). This can be expected, as the spline functions cannot
reproduce sharp variations. Even though there is room for improvement of the
technique, good agreement is noticed with the exact solution, and accuracy is
comparable for the two methods.

In figure 5, we depict the tangent stiffness moduli computed by using both
NEXP1 and NEXP2. Oscillations are here again noticed, as the values rep-
resent derivatives of the stress-strain relation. However, the solutions exhibit
reasonable accuracy in the neighborhood of the zero strain state, and are in
good agreement with the exact values when strain is quite different from zero.
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Fig. 4. NEXP1 and NEXP2 stress tensor components for ϵ̄11 = ϵ̄12, ϵ̄22 = 0, p = 21.
The NEXP2 solution is constructed using δ = 10−6.

The present test is a severe one, due to the presence of sharp variations at
the origin. We show in the next tests that the oscillations can be reduced by
increasing the number of sampling points p.

In figures 6 and 7, we examine the convergence of NEXP1 and NEXP2 with
respect to the number of sampling points p along each direction. The value δ =
10−6 is used for the NEXP2 solution. Results show that the oscillations reduce
when increasing p. Comparable accuracy is noticed for the two methods.

17



-1 -0.5 0 0.5 1

x 10
 -3

 -200

 -100

0

100

200

300

400

T
a

n
g

e
n

t 
e
la

st
ic

 t
e
n

so
r

 c
o
m

p
o

n
e

n
ts

 (
M

P
a
)

 

 

Exact

NEXP1

NEXP2
L

2222

L
1111

L
1122

L
1112

L
2212

L
1212

ε
11

 = ε
12

 (ε
22

 = 0)
_ _ _

_

_

_

_

_

_

Fig. 5. NEXP1 and NEXP2 tangent elastic tensor components for ϵ̄11 = ϵ̄12, ϵ̄22 = 0,
p = 21. The NEXP2 solution is constructed using δ = 10−6.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x 10
 -3

 -0.1

 -0.05

0

-0.05

0.1

0.15

ε
11

 = ε
12

 (ε
22

 = 0)

σ
  

  
  
(M
P
a
)

1
1

 

 

Exact

p = 5

p = 11

p = 21

p = 41

_

_

_ _ _

Fig. 6. Convergence of the NEXP1 stress value σ̄11 with respect to p.

In the last test, we examine the convergence of the NEXP2 solution with
respect to δ, for a fixed value p = 21. The result is shown in figure 8 where
the corresponding values of products R are indicated.

NEXP1 and NEXP2 are found to provide comparable accuracy if a sufficiently
small value δ is chosen in NEXP2.
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4.2 Compressible composite with cylindrical pores

In the following different examples, we focus on two-phases composites consist-
ing of infinitely long aligned fibers perfectly bonded to a matrix (even though
the method is not restricted to this case).

As a first example, a two-phases composite made of a matrix perforated
with periodic cylindrical pores is considered. The matrix is assumed to be
an isotropic material characterized by the same strain-energy as (39). Thus,
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Fig. 9. Periodic porous material, microstructure and Finite Element mesh of the
r.v.e. for c = 0.25.

the stress-strain relation for the matrix is given by:

σ =
∂w(r)(ε)

∂ε
= κ(r)Tr(ε)1+

2

3

σ
(r)
0

ε
(r)
0

(
εeq

ε
(r)
0

)m(r)−1

εd . (40)

The incompressible case is met for κ → ∞ and will be studied in section 4.4.

The microstructure and representative volume element model used for the
numerical calculations are depicted in figure 9. The porosity of the compos-
ite is c = 0.25. The parameters of the matrix material are: κ = 20 MPa,
m = 0.4, ε0 = 1 and σ0 = 1 MPa. The aim of this example is to test the
accuracy of the NEXP2 approximation with respect to the full-field finite el-
ement solution taken as the reference one. In-plane loading is adopted. As
the composite is compressible, the macroscopic strains involves three indepen-
dent components : ε̄11, ε̄22 and ε̄12. The strain domain ∆ of E used to con-
struct a three-dimensional grid is ∆ = [ε̄min

1 , ε̄max
1 ]× [ε̄min

2 , ε̄max
2 ]× [ε̄min

6 , ε̄max
6 ] =

[−10−3, 10−3]× [−10−3, 10−3]× [−10−3, 10−3]. We set p = 10, so that p3 = 1000
FE computations on the r.v.e. are necessary. With the NEXP2 technique, we
prescribe the tolerance parameter δ = 10−6 implying R = 43.

In figure 10, we compute the overall potential w̄∗ and macroscopic equiva-
lent stress σ̄∗

eq for the uniaxial stretching defined by ε̄11 ̸= 0, ε̄22 = 0 and
ε̄12 = 0. For in-plane loading the equivalent strain and stress reduce to εeq =

(2/
√
3)
√
ε212 +

1
4
(ε211 − ε22)2 and σeq =

√
3[σ2

12 +
1
4
(σ11 − σ22)2], respectively.

The NEXP2 solution is found to be in excellent agreement with the full-field
FE solution. The values of w̄∗ and σ̄∗

eq are normalized with respect to w0 and
σeq0, which correspond to the highest values of w and σeq for the matrix.

To test the accuracy of our approach in a complex strain state, we prescribe the
following macroscopic strain: ε̄ = ε̄1(e1⊗e1+e2⊗e2)+ε̄1 (e1 ⊗ e2 + e2 ⊗ e1) /

√
2
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Fig. 10. Overall potential for the compressible composite with cylindrical pores for
uniaxial traction.

which combines biaxial stretching with simple shear. The obtained numerical
results are presented in figure 11. Here again, very good agreement between
the NEXP2 and full-field solutions is noticed.

4.3 Compressible unidirectional short-fiber reinforced composite

In this example we study the anisotropic short-fiber reinforced composite
whose microstructure is periodic as depicted in figure 12. The fibers, called
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Fig. 11. a) Overall potential for the compressible composite with cylindrical pores
for complex loading state; b) Overall equivalent stress for complex loading state.

phase 2, and the matrix, referred to as phase 1, are assumed to be isotropic
and compressible materials characterized by (39). The material parameters
are chosen in such a way that the matrix is highly nonlinear while the fibers
are linear elastic and much more rigid than the matrix. This example aims
to investigate the accuracy of the NEXP2 method for strongly anisotropic
compressible materials. The values of the material parameters adopted are:
κ(1) = κ(2) = 20 MPa, σ

(2)
0 /σ

(1)
0 = 1000, m(2) = 1, m(1) = 0.4. The hyperma-

trix W̄ is constructed as in the previous example. The NEXP2 method is used.
It turns out that R = 40 products in Eq. (26) are necessary to reproduce w̄
with an accuracy δ = 10−6.
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Fig. 12. (a) Anisotropic material; (b) Representative Volume Element geometry (FE
mesh).

In the first test, we prescribe a biaxial stretching. Plots for the effective po-
tential and equivalent stress are provided in figures 13 (a) and 13 (b). As
expected, the stress response σ̄11 and σ̄22 are different (see figure 13 (b)), due
to the anisotropy of the r.v.e. in figure 12. The NEXP2 solution is also in
excellent accuracy with the full field FE solution. In this case the potential
and stresses are normalized with respect to the maximum value of the fibers’
response.

In the second test, we impose a uniaxial stretching combined with simple
shear. A comparison between the NEXP2 and FE solutions is given in figures
14. Once again, excellent agreement with the FE solution is noticed. The
equivalent stress fields in the r.v.e. calculated by FEM in the cases of biaxial
stretching and uniaxial stretching combined with simple shear are shown in
figures 15 (a) and 15 (b), respectively.

4.4 2D isotropic incompressible composite

To assess the accuracy of the numerical approach elaborated in this work,
we compare the results provided by it with various estimates and bounds
from the literature of nonlinear homogenization. We consider a two-phase
composite consisting of inclusions embedded in a matrix. The composite is
assumed to be statistically isotropic at the macroscopic level. The phases of
the composite are taken to be isotropic and incompressible. More precisely,
they are characterized by the strain-energy

w(r)(ε) =
ε0σ

(r)
0

1 +m

(
εeq
ε0

)1+m

if Tr(ε) = 0, w(r)(ε) = +∞ otherwise. (41)
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Fig. 13. (a) Overall potential and equivalent stress for the anisotropic compressible
composite in biaxial traction.

Note that the two phases are different only in that σ
(1)
0 ̸= σ

(2)
0 . The stress-strain

relationship is then given for each phase by

σ(r) = −P1+
2

3

σ
(r)
0

ε0

(
εeq
ε0

)m−1

εd , (42)

where P is the undetermined hydrostatic stress due to the incompressibility
condition Tr(ϵ) = 0. The distribution of the inclusions is assumed isotropic.
Since the composite is made with nonlinear materials characterized by a
power-law model with the same exponent m and the same reference strain
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Fig. 14. (a) Overall potential and equivalent stress for the anisotropic compressible
composite in uniaxial stretching with shear.

(a) (b)

Fig. 15. a) Biaxial stretching of the anisotropic microstructure; b) uniaxial stretching
with shear.
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Fig. 16. a) R.v.e. corresponding to a hexagonal cell, c = 0.21; b) Von Mises stress
field for pure shear deformation, m = 0.4.

ε0, its effective potential takes the form

w̄(r)(ε) =
ε0σ̃0

1 +m

(
ε̄eq
ε0

)1+m

. (43)

Above, the effective flow stress σ̃0 depends on the nonlinearity parameter m,
the contrast between σ

(1)
0 and σ

(2)
0 , and the fiber volume fraction. The complete

characterization of the effective behavior of the composite under consideration
amounts to determining σ̃0.

We prescribe an isochoric macroscopic strain in the form:

ε̄ = ε̄1 (e1 ⊗ e1 − e2 ⊗ e2) +
ε̄6√
2
(e1 ⊗ e2 + e2 ⊗ e1) . (44)

Thus the homogenized potential w̄ depends only on the two components ε̄1
and ε̄6. In the case of incompressible materials, the NEXP stress is given by:

σ̄α = −P1+
∂w̄∗

∂ε̄α
. (45)

In the present example, we choose p = 10 points regularly spaced along each
direction of the strain domain ∆ = [0, 10−3]× [0, 10−3]. This implies p2 = 100
FE computations for the r.v.e described in figure 16. In this example, the
NEXP1 technique is used.

In relation to the composite under investigation, there are exact results (LAM)
for nonlinear laminates characterized by power-law models of deBotton and
Hariton [44] and the variational (VAR) and second-order (SO) estimates of
Idiart and Ponte Castañeda [45]. For the SO estimates, the notation SO(W)
and SO(U) correspond to the stress and strain formulations, respectively. In
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Fig. 17. Effective flow stress σ̃0, normalized by the flow stress of the matrix σ
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(2)
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0 = 5) as a function of the strain-rate sensitivity

m. Comparisons between the ’second-order’ (SO), ’variational’ (VAR) estimates
of the Hashin-Shtrikman type, exact results for power-law laminates (LAM) and
Numerically Explicit Potential (NEXP) solutions.

addition, the classical bounds of Voigt and Reuss for the effective behaviour
are also included for comparison.

In figure 17, plots are provided for the effective flow stress σ̃0 of a fiber-
reinforced composite, normalized by the flow stress of the matrix σ

(1)
0 . The

effective flow stress can be expressed as σ̃0 = σ̄eq (ε0/ε̄eq)
m. Figure 17 shows

σ̃0/σ
(1)
0 in terms of the strain-rate sensitivity m. We observe that the NEXP

solution is in very good agreement with the exact LAM results and SO esti-
mates.

In figures 18(a)-(b), results are given for the corresponding first moments
(phase averages) of the local fields. Figure 18 (a) shows the phase equivalent
strain ε̄(r)eq normalized by the equivalent macroscopic strain ε̄eq. It is found that
the NEXP solution is in very good agreement with the LAM exact results, and
with the different estimates. In figure 18(b), the corresponding results for the
phase equivalent stress σ̄(r)

eq normalized by the equivalent macroscopic stress
σ̄eq is expressed as a function of m. Once again, the NEXP solution is in very
good agreement with the LAM exact solution.

In figure 19, plots are provided for the effective flow stress σ̃0 of the fiber-
weakened composite normalized by the flow stress of the matrix σ

(1)
0 and

varying with the strain-rate sensitivity m. Once again, we observe that the
NEXP solution is in very good agreement with the exact LAM results and
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SO estimates. Due to numerical convergence problems, it was not possible to
treat the non-smooth case m = 0 by NEXP.

In figures 20(a)-(b), results are given for the corresponding first moments
(phase averages) of the local fields. Figure 20(a) shows the equivalent average
strain in each phase ε̄(r)eq , normalized by the equivalent macroscopic strain
ε̄eq. It is found that in this case, the NEXP solution deviates from the exact
solution for high nonlinearity. As the NEXP solution is directly related to
the FE solution, we assume that this mismatch comes from the choice of the
r.v.e. which does not fully represent an isotropic material in the case of strong
nonlinearity. On the other hand, in figure 20(b), the corresponding equivalent
average stress in each phases σ̄(r)

eq is presented and found to be in very good
agreement with the LAM exact solution and SO estimates.

4.5 Bending of a beam made of a nonlinear heterogeneous material

In this example, we test the efficiency of the method proposed in the present
work in solving the problem of a structure made of a nonlinearly elastic het-
erogeneous material. The structure under consideration is a beam consisting
of a short-fiber reinforced composite (Fig. 21(a)). The microstructure of the
composite is the same as described in figure 12. The phase properties are
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Fig. 21. (a) Geometry of the heterogeneous structure and applied boundary condi-
tions; (b) FE mesh.

identical to those of example 4.3. Plane strain is assumed. The finite element
mesh used, depicted in figure 21(b) implies 804 triangular elements with one
integration point within each element. The dimensions of the beam are H =
10−3 m, L = 5.10−3 m. The applied distributed force is F = 10−3 N.m−1.

In this example, the NEXP2 approach is used. We first define the limits of the
strain domain ∆ = [εmin

1 , εmax
1 ]×[εmin

2 , εmax
2 ]×[εmin

6 , εmax
6 ] = [−5.10−3, 5.10−3]×

[−5.10−3, 5.10−3] × [−5.10−3, 5.10−3]. We set p = 11 which gives rise to p3 =
1331 preliminary computations necessary to constructing the NEXP2. Using
δ = 10−6, we obtain R = 73 products of one-dimensional functions. In order to
validate the solution, a simulation using concurrent multilevel (FE2) method
is achieved on the same macroscopic mesh. We use linear triangular elements
with one integration point in each element. For both approaches, 4 Newton-
Raphson iteration are necessary to reach structure equilibrium. According to
Eq. (38), solving 12864 nonlinear problems is required to find the solution of
the multiscale problem in the case of the concurrent method, as compared
to 1331 for the NEXP method. To complete the analysis, we compared the
relative CPU times for one macroscopic Newton-Raphson iteration for both
methods. It was found that in this example, one iteration takes 206 times
longer using the concurrent approach, as compared with the present method.
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Fig. 22. Exagerated deformed configuration of the nonlinear beam and von Mises
stress field: (a) NEXP (p = 11); (b) Concurrent multilevel method.

The results for the von Mises stress contours are depicted in figure 22, showing
good agreement between the two solutions.

Next we investigate the convergence of the macroscopic solution with respect
to p for the two interpolation methods, NEXP1 and NEXP2. For the case
of the NEXP2 method, an additional convergence study with respect to the
tolerance parameter δ is achieved. The problem described prviously is revis-
ited by constructing W̄ for different values of p in both methods. Figure 23
shows the maximum displacement in the structure with respect to p for both
methods. It is worth noting that both interpolations give equivalent accuracy
when a small value δ is chosen in the NEXP2 method.

5 Conclusion

A new numerical approach has been proposed to estimate the effective be-
havior of nonlinearly elastic heterogeneous materials at small strains. In this
approach, the effective strain-energy potential is preliminarily computed by
FE for a number of points discretizing the macroscopic strain space, the re-
sulting data are stored in the form of a hypermatrix or a set of vectors. The
estimation of the effective strain-energy potential valid for the whole of the
macroscopic strain space is then constructed by appropriately interpolating
the preliminary discret results. The effective stress-strain relation and tangent
tensor are finally derived in a numerically direct and explicit way. Two inter-
polation techniques have been elaoborated. The first one, named as NEXP1,
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uses a multidimensional cubic spline interpolation. For 2D problems, the set
of coefficients involved in cubic spline interpolations can be determined with
no need for high computational capacity. However, for 3D problems, com-
puting the set of coefficients requires extensive numerical efforts. The second
one, called NEXP2, takes advantage of an outer product decomposition of the
hypermatrix, avoiding the drawbacks of NEXP1. Both NEXP1 and NEXP2
give similar results in terms of accuracy. In the proposed approach , the most
costly step is the first one where pd finite element computations need being
performed. However, these computations are independent from each other and
thus well adapted to today’s generation of massively parallel computers.

The proposed approach is in particular suited for the FE computations of
structures made of nonlinear heterogeneous materials. Indeed, once the effec-
tive strain-energy potential is determined numerically for a given nonlinear
heterogeneous material, the computation of any structure consisting of the
latter is transformed into that of a structure composed of the homogenized
material. As illustrated by several examples, the proposed approach is compa-
rable with concurrent multilevel methods in terms of accuracy but much less
expensive. However, the present work is limited to nonlinearly elastic hetero-
geneous materials at infinitesimal strains. Extension of the basic idea of the
proposed approach to the homogenization of other nonlinear heterogeneous
materials is being envisaged and will be presented in forthcoming works. An-
other future direction of this work is the introduction of uncertainties at the
microscopic level to study their influence on the macroscopic response of the
material.
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7 Appendix 1: one dimensional cubic spline interpolation for equidis-
tant nodes

Here we briefly review the basis of cubic spline interpolation. A fast and simple
algorithm for one-dimensional cubic spline interpolation was provided in [28].
let a set of n points {ξ0, ξ1, ..., ξn} in R such that a = ξ0 < ξ1 < ... < ξn < b
and ξ1 − ξ0 = ξ2 − ξ1 = ... = ξn − ξn−1 = h. We denote by ∆ ⊂ R a one-
dimensional domain. The coordinates of the points are given by ξi = a+ih. Let
yi interpolation data, yi ∈ R, i = 0, ..., n. For arbitrarily distributed nodes,
a cubic spline is a piece-wise third-order polynomial, which can be found
using recursive formula [28]. For equidistant nodes, the interpolation function
s(ξ) ∈ S3(∆) can be written as:

s(ξ) =
n+3∑
k=1

ckuk(ξ) (46)

where S3(∆) is the space of the degree three and smoothness two spline s
on the grid ∆(a, b). In Eq. (46), ck are coefficients and uk ∈ S3(∆) a basis
function. On possible choice for uk is given by

uk(ξ) = Φ

(
ξ − a

h
+ 2− k

)
, k = 1, ..., n+ 3 (47)

with Φ(t) is given by Eq. (22). In figure 24, the set of basis functions U =
{u1, u2, ..., un+3} is depicted.

We need n+3 interpolation conditions in order to determine the interpolating
spline function uniquely. However s(ξi) = yi, i = 0, ..., n only specifies n +
1 conditions. Therefore, it is necessary to add two conditions which can be
applied to either first-order or second-order derivatives. In the context of the
present work, as we solve full FE problem at each point of the strain space, the
derivatives (stresses) are readily available. One possible choice is to prescribe
the values of the values of the first-order derivatives in two points of the 1-D
stain space. This solution can be extended to higher dimensional spaces.
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Then writing the n+ 3 conditions defines the linear system of equations:

s(ξi) =
m∑
k=l

ckuk(ξi) = yi, l =

⌊
ξi − a

h

⌋
+ 1, i = 0, ..., n (48)

s′(ξα) =
m∑
k=l

cku
′
k(ξα) = y′α, l =

⌊
ξα − a

h

⌋
+ 1, (49)

s′(ξβ) =
m∑
k=l

cku
′
k(ξβ) = y′β, l =

⌊
ξβ − a

h

⌋
+ 1, (50)

with m = min(l+3, n+3) and where ⌊.⌋ denotes the floor function. The linear
system of equations can be rewritten as:

Ac = y (51)

where the matrixA is symmetric and tridiagonal and c is the vector of unkown
coefficients. Extension to multidimensional spline interpolation is provided in
[28].
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8 Appendix 2: expression of the elastic tangent tensor components

Here we give the correspondance between the components of L̂ defined in Eq.
(15) and the components of the effective elastic tangent tensor L̄.

L̄1111 L̄1122 L̄1133 L̄1112 L̄1113 L̄1123

L̄2222 L̄2233 L̄2212 L̄2213 L̄2223

L̄3333 L̄3312 L̄3313 L̄3323

L̄1212 L̄1213 L̄1223

L̄1313 L̄1323

L̄2323


=



L̂11 L̂12 L̂13
L̂16√

2
L̂15√

2
L̂14√

2

L̂22 L̂23
L̂26√

2
L̂25√

2
L̂24√

2

L̂33
L̂36√

2
L̂35√

2
L̂34√

2

L̂66

2
L̂65

2
L̂64

2

L̂55

2
L̂54

2

L̂44

2


(52)
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