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Abstract. In transient nonlinear structural dynamics, the dynamical levels of transient vi-

brations can be defined in terms of a shock response spectrum (SRS) in order to specify the

transient loads which are applied to an equipment or to a secondary subsystem. A fundamental

problem is then to construct a generator of the non-stationary stochastic process (the transient

signal) satisfying a given SRS. This problem has been looked at by many scientists in using

specific representations of the non-stationary stochastic process (the accelerogram). In this pa-

per, we propose to solve this challenging stochastic inverse problem by another way in using

Information Theory. In the approach proposed, the target SRS is taken as the mean value of

the unknown random SRS spanned by the unknown non-stationary stochastic accelerogram for

which the probabilistic model has to be constructed. We present the construction of the prob-

ability model which allows the confidence region of the random SRS to be carried out. The

method presented is validated with an example.
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1 INTRODUCTION

In transient nonlinear structural dynamics, the response spectrum method is often used to

characterize the dynamical response in a point of a structure (for instance, in a point of a

floor of a building, in a point of the structure where an equipment is connected or in a small

region of the structure where a secondary system is attached, etc). In such an approach, a

transient response is characterized either by the displacement response spectrum, either by

the pseudo-velocity response spectrum simply called the velocity response spectrum (VRS) or

by the pseudo-acceleration response spectrum also called the shock response spectrum (SRS).

These quantities can directly be constructed using the acceleration transient signals (accelero-

grams) calculated in different points with the computational nonlinear dynamical model of the

structure which is submitted to a given transient loads due, for instance, to a shock wave, to

an earthquake, etc. Such a response spectrum is often used by engineering to specify the tran-

sient loads which is applied to an equipment or to a secondary subsystem. If the equipment or

the secondary subsystem has a nonlinear dynamical behavior, the transient signal accelerations

(accelerograms) satisfying the given VRS (or SRS) must be constructed in order to analyze the

transient responses using a computational nonlinear dynamical model of the equipment or of

the secondary subsystem. This problem consisting in constructing acceleration transient signals

(accelerograms) from a given VRS (or SRS) is a challenging inverse problem. Many works have

been devoted to this inverse problems and we propose another way using Information Theory.

The response spectrum method was introduced by Biot in 1932 (see of instance [38]) in the

context of earthquake engineering and has intensively been studied to extend its domain of ap-

plicability to many different situations and applications in the domain of structural, mechanical,

earthquake, civil, nuclear and offshore engineering (see for instance, [23, 10, 20, 1, 39, 26, 11,

19, 2, 5] and [15].

For a given deterministic transient signal {z(t), t ∈ J } (accelerogram in a given direction)

with a finite duration T and where J = [0 , T ], the construction of the VRS consists [3] in

evaluating the maximum of the dynamical response of a family of single degree of freedom

(SDOF) linear damped oscillators excited at their bases with this transient signal. Let m, ω and

ξ be the mass, the eigenfrequency (pulsation in rad/s) and the damping rate of an oscillator of
this family. Let {x(t), t ∈ J } be the displacement of the mass with respect to the basis. For all
t in ]0 , T ], the displacement x is such that m ẍ(t) + 2 ξ m ω ẋ(t) + m ω2 x(t) = −m z(t) with
the initial condition x(0) = ẋ(0) = 0. Let Ω = [ωmin , ωmax] be the frequency band of analysis
for the eigenfrequency ω and let Ξ = [ξmin , ξmax] be the admissible domain for the damping
rate ξ. The deterministic transient signal is then characterized by the displacement response

spectrum sd(ω, ξ) which is defined by

sd(ω, ξ) = max
t∈[0 ,T ]

|x(t)| , (1)

in which the displacement x(t) can be written as

x(t) =
∫ t

0
h(t − τ) z(τ) dτ . (2)

For all ω in Ω, for all ξ in Ξ and for all t ≥ 0, the impulse response function h is such that

h(t) = −1[0,+∞[(t)
1

ω
√

1 − ξ2
e−ξωt sin(ω

√

1 − ξ2 t) , (3)
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in which 1[0,+∞[(t) = 1 if t ≥ 0 and = 0 if t < 0. The VRS sv(ω, ξ) and the SRS sa(ω, ξ) are
such that ω2 sd(ω, ξ) = ω sv(ω, ξ) = sa(ω, ξ) which shows that the VRS is such that

sv(ω, ξ) = ω sd(ω, ξ) . (4)

For a given deterministic transient signal {z(t), t ∈ J }, the VRS sv(ω, ξ) is calculated using
Eqs. (1) to (4). For the more realistic situation corresponding to the usual stochastic case that

we consider in this paper, the deterministic transient signal {z(t), t ∈ J } is then replaced by
a real-valued non-stationary second-order centered stochastic process {Z(t), t ∈ J }. For all t
fixed in J , since the random variable Z(t) is centered, we have E{Z(t)} = 0 and its variance
is σ2

Z(t) = E{Z(t)2} in which E denotes the mathematical expectation. Then, for all ω in Ω
and for all ξ in Ξ, Eqs. (1), (2) and (4) define a second-order random variable (random VRS)

denoted by Sv(ω, ξ), such that

Sv(ω, ξ) = ω max
t∈[0 ,T ]

|X(t)| , X(t) =
∫ t

0
h(t − τ) Z(τ) dτ , (5)

and for which sv(ω, ξ) = E{Sv(ω, ξ)} is the given mean value of the random VRS. We then

have to construct a generator of independent realizations {Z(t, θ), t ∈ J } of the stochastic

process {Z(t), t ∈ J }. Concerning the generation of transient signals from a given response

spectrum, we refer the reader to [23, 20, 19, 30, 7, 12, 22, 41, 9]. It should be noted that the

majority of such approaches uses a priori given representations of the non-stationary stochastic

process which has to be identified (see for instance [18, 37, 21, 24, 4, 40, 36, 27, 14]). Neverthe-

less, it seems that Information Theory has not been used yet to construct the probability model

of the non-stationary stochastic process for which an available information for the random VRS

is given.

In this paper, the system of marginal probability distributions of stochastic process {Z(t), t ∈
J } is explicitly constructed without giving an a priori stochastic representation but using Infor-
mation Theory [31] and the maximum entropy principle [16] for which the available information

is made up of the given functions {σZ(t), t ∈ J } and {sv(ω, ξ) , ω ∈ Ω , ξ ∈ Ξ}. In addition,
the generator of independent realizations {Z(t, θ), t ∈ J } of stochastic process {Z(t), t ∈ J }
is developed using its system of marginal probability distributions.

2 TIME SAMPLING, NORMALIZATION AND AVAILABLE INFORMATION

2.1 Time sampling of the stochastic process

The sampling points in the time domain are tj = j ∆t for j = 1, . . . , N in which N is such

that T = tN = N ∆t and where ∆t is the sampling time step. We then introduce the finite

length time series Γ1, . . . , ΓN and the associated  N -valued random variable  such that

 = (Γ1, . . . , ΓN) , Γj = Z(tj) , j = 1, . . . , N . (6)

The random vector  defined on the probability space (Θ, T ,P) is completely defined by the
probability density function p (!) = pΓ1,...,ΓN

(γ1, . . . , γN) on  N with respect to the volume

element d! = dγ1 . . . dγN . This probability density function is unknown and the first objective

of this paper is to construct it. It can easily be seen that  is such that

m = E{ } = 0 , E{‖ ‖2} =
N

∑

j=1

σ2
j < +∞ , (7)
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in which ‖ ‖2 = Γ2
1 + . . . + Γ2

N and where

σ2
j = E{Γ2

j} = E{Z(tj)
2} = σ2

Z(tj) , j = 1, . . . , N . (8)

The vector ! = (σ1, . . . , σN) is assumed to be an available information for random vector

 = (Γ1, . . . , ΓN).

2.2 Construction of a finite representation of the VRS

Let ω1, . . . , ωνω
be the sampling points of the frequency band of analysis Ω = [ωmin, ωmax]

and let ξ1, . . . , ξνξ
be the sampling points of the admissible domain Ξ = [ξmin, ξmax] for the

damping rate. Let ν = νω × νξ. We then introduce the given vector S = {sv(ωi, ξn) , i =
1, . . . , νω , n = 1, . . . , νξ} in  ν and the  ν-valued random vector S = {Sv(ωi, ξn) , i =
1, . . . , νω , n = 1, . . . , νξ}. The sampling/discretization of Eq. (5) for the random VRS yields

S = S( ) = (S1( ), . . . , Sν( )) , (9)

in which " 7→ S(") = (S1("), . . . , Sν(")) is a perfectly defined and known nonlinear mapping
from  

N into  ν which is such that S(−") = S("). The mean value E{S( )} = S is then

given.

2.3 Normalization

Let A = (A1, . . . , AN) be the random vector with values in  N constructed as the normal-

ization of the random vector  , such that

 =
√

N [σ]A , [ σ ]jj′ = σj δjj′ , (10)

in which [ σ ] is a (N × N) real diagonal matrix.

2.4 Definition of the available information

The available information for the random variable A is defined as follows. From E{A} =
N−1/2 [σ]−1 E{ }, it can be deduced that A is a centered random variable,

E{A} = 0 . (11)

For all j in {1, . . . , N}, the second-order moment of random variable Aj is such that

E{A2
j} =

1

N
, (12)

and then E{‖A‖2} = 1. Let a 7→ s(a) = (s1(a), . . . , sν(a)) be the nonlinear mapping from  
N

into  ν such that

sk(a) =
Sk(

√
N [σ] a)

Sk

, ∀ k = 1, . . . , ν , (13)

in which Sk(") is defined in Eq. (9). Since S(−") = S(") (see Section 2.2), we have s(−a) =
s(a). Finally, it can then easily be deduced that

E{s(A)} = s , (14)

in which the vector s = (s1, . . . , sν) is such that sk = 1 for all k = 1, . . . , ν. Therefore,

the available information which allows the probability distribution of random vector A to be

constructed, is made up of Eqs. (11), (12) and (14).
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3 CONSTRUCTION OF THE PROBABILITY MODEL

3.1 Construction of the probability density function of A using the maximum entropy

principle

Let a = (a1, . . . , aN) be any vector in  N . Let A = (A1, . . . , AN) be the  N -valued second-

order random variable for which the probability density function is a 7→ pA(a) with respect to
the volume element da = da1 . . . daN of  N . Using the maximum entropy principle ([31, 16])

under the constraints defined by the available information (see Eqs. (11), (12) and (14), it can

be proven (see [33]) that for all a in  N ,

pA(a) = csol0 exp(− <  sol, g(a) >) , (15)

in which csol0 is the constant of normalization, where  sol is the Lagrange multiplier in  µ with

µ = N + ν, where <  sol, g(a) >= λsol
1 g1(a) + . . . + λsol

µ gµ(a) and where a 7→ g(a) is the
function from  

N into  µ such that g(a) = (a2, s(a)). Introducing the vector f ∈  
µ such that

f = (h, s) in which the vector h = (h1, . . . hN) is the vector in  N such that hj = 1/N for all

j = 1, . . . , N , then the constraints equations can then be rewritten as

E{g(A)} =
∫

 N
g(a) pA(a) da = f . (16)

3.2 Computation of the vector-valued Lagrange multiplier

For  fixed in  µ, let B be the  
N -valued random variable whose probability density func-

tion b 7→ p(b,  ) with respect to the volume element db of  N is written, for all b in  N ,

as

p(b,  ) = c exp(− <  , g(b) >) , (17)

in which c is a finite positive constant depending on  defined by the normalization condition.
Taking c sol = csol0 , Eqs. (15) and (17) show that, for all a in  N ,

pA(a) = p(a,  sol) , (18)

which means that A = B sol . From Eq. (16), it can then be deduced that  sol is the solution in  

of the equation,

E{g(B )} = f , (19)

in which the integral E{g(B )} is such that

E{g(B )} =
∫

 N
g(b) p(b,  ) db . (20)

We then have to construct the solution  sol of Eq. (19) in  . It is assumed that the constraints

are such that Eq. (19) has a unique solution  sol. Consequently, for such a solution, the normal-

ization condition and Eq. (16) are verified and the probability density function pA is given by

Eq. (15) with csol0 = c sol . Equation (19) can be solved in  with the interior-reflective Newton

method.

3.3 Estimating the integrals in high dimension

The calculation of  sol as the solution of Eq. (19) in  requires to calculate the following

integral in high dimension
∫

 N g(b) p(b,  ) db in which p(b,  ) = c exp(− <  , g(b) >).

5



C. Soize

This problem is difficult for the high dimension case (for instance, in the application presented

in Section 4, N = 128 and µ = 168).

For any  fixed in  µ, the calculation of E{g(B )} defined by Eq. (20) can be performed us-
ing the Markov Chain Monte Carlo method (MCMC) [17, 35, 25]. The transition kernel of the

homogeneous Markov chain of the MCMC method can be constructed using the Metropolis-

Hastings algorithm [13] or the Gibbs sampling [6] which is a slightly different algorithm for

which the kernel is directly deduced from the probability density function and for which the

Gibbs samplers are always accepted. These two algorithms allow the transition kernel to be

constructed for which the invariant measure is p(b,  ) db. In general, these two algorithms are
efficient, but can also be not efficient if there exists attraction regions which do not correspond

to the invariant measure under consideration. These cases cannot be easily detected and are time

consuming. We then use the method developed in [33] which looks like to the Gibbs approach

but corresponds to a more direct construction of a random generator of independent realizations

of the random variable B whose probability distribution is p(b,  ) db. The difference between
the Gibbs algorithm and the proposed algorithm is that the convergence in the proposed method

can be studied with all the mathematical results concerning the existence and uniqueness of

Itô stochastic differential equation. In addition, a parameter f0 is introduced which allows the

transient part of the response to be killed in order to get more rapidly the stationary solution

corresponding to the invariant measure. The construction of the transition kernel by using the

detailed balance equation is replaced by the construction of an Itô Stochastic Differential Equa-

tion (ISDE) (depending on  ) which admits p(b,  ) db defined by Eq. (17) as a unique invariant
measure [32]. Finally, the ergodic method is used to estimate E{g(B )} in order to calcu-

late  sol. Once the Lagrange multiplier  sol is calculated, the random generator of independent

realizations of random vector A is constructed as explained in [33].

4 APPLICATION

4.1 Data and parameters

(i) It is assumed that the mean VRS is given for only one value ξ1 = 0.01 of the damping

rate (therefore νξ = 1)). The frequency band of analysis (see Section 2.2) is [0.25 , 10] Hz with
fmax = 10Hz and ν = νω = 40. The sampling points of the frequency band of analysis are then
∆f, 2 ∆f, . . . , ν ∆f with ∆f = 0.25 Hz. Let S = (S1, . . . ,Sν) be the mean VRS. Figure 1
(right) displays the graph of the function k 7→ S k from {1, . . . , ν} into  +.

(ii) Stochastic process {Z(t), t ∈ J } is indexed by J = [0 , T ] with T = 12.8 s. The

support of its instantaneous spectral density function is the bounded interval [−Fmax, Fmax]
with Fmax = 5 Hz. The sampling time step is such that ∆t = 0.1 s and consequently, the

number of sampling points in the time domain is N = 128. The sampling points are t j = j ∆t
for j = 1, . . . , N . We have ! = (Γ1, . . . , ΓN) with Γj = Z(tj) (see Eq. (6)). Figure 1 (left)
displays the graph of the standard-deviation function j 7→ σj from {1, . . . , N} into  + such

that (see Eq. (8)) σ2
j = σ2

Z(tj).

4.2 Computation of the vector-valued Lagrange multipliers

The Lagrange multiplier  sol = ( sol2 ,  sol3 ) ∈  
N ×  

ν =  
µ with N = 128, ν = 40 and

µ = 128 + 40 = 168 is computed in using Sections 3.2 and 3.3. The mathematical expectation
defined by Eq. (20) is estimated by using Section 3.3. The interior-reflective Newton method

is used to solve Eq. (19)
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Figure 1: Graph of j 7→ σj =
√

E{Γ2

j} (left figure) and graph of k 7→ S k (right figure).

4.3 Validation

Solution  sol of Eq. (19) being known, ns independent realizations of the random vari-

able A = B sol are constructed using the method presented in [33]. As a first element of

validation of the method proposed, we have to verify that the constraints are satisfied. The

quantities k 7→ E{Sk} = E{Sk(!)} and j 7→ E{Γ2
j} are estimated using the Monte Carlo

simulation method and are compared with k 7→ Sk and j 7→ σ2
j respectively. The estima-

tions are calculated by E{Sk} ≃ n−1
s

∑ns

ℓ=1 Sk(!(θℓ)) and E{Γ2
j} ≃ n−1

s

∑ns

ℓ=1 Γ2
j(θℓ) in which

!(θℓ) =
√

N [σ]A(θℓ). The ns independent realizations A(θ1), . . . ,A(θns
) of random vector

A are calculated using the generator with ns = 300. Figure 2 (left) displays the correspond-

0 32 64 96 128
−4

−2

0

2

4

Value of index j

T
ra

je
c
to

ry
 o

f 
ra

n
d

o
m

 t
im

e
 s

e
ri
e

s
 Γ

0 50 100 150 200 250 300
0.7

0.8

0.9

1

1.1

Number n
s
 of realizations

S
e

c
o

n
d

−
o

rd
e

r 
m

o
m

e
n

t 
o

f 
A

Figure 2: Graph of j 7→ Γj(θℓ) for a realization θℓ (left figure) and graph of ns 7→ convMC(ns) (right figure).

ing trajectory of the random time series j 7→ Γj, that is to say the graph of the realization

j 7→ Γj(θℓ) in which !(θℓ) =
√

N [σ]A(θℓ). (ii) Concerning the value of ns, Figure 2 (right)

shows the graph of ns 7→ convMC(ns) = ns
−1 ∑ns

ℓ=1 ‖A(θℓ)‖2 which is an estimation of the

second-order moment E{‖A‖2} = E{‖B sol‖2} of the random variable ‖A‖. This figure shows
that ns = 300 is a reasonable value for ns to reach mean-square convergence. Figure 3 shows

the estimation of the constraints (standard deviation and mean VRS) constructed with the ran-

dom generator and compares these estimations with the references defined in Figure 1. Fig-

ure 3 (left) compares the graph of the standard-deviation function j 7→ σj with the estimation

j 7→ E{Γ2
j} ≃ n−1

s

∑ns

ℓ=1 Γ2
j (θℓ). Figure 3 (right) compares the graph of the mean velocity

response spectrum k 7→ Sk with the estimation k 7→ E{Sk} ≃ n−1
s

∑ns

ℓ=1 Sk(!(θℓ)). The

comparisons validate the method proposed. The small fluctuations of the estimation of the
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standard-deviation function computed by the Monte Carlo method using the random generator

can be reduced in increasing the value of ns.
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Figure 3: Graph of j 7→ σj = E{Γ2

j}
1/2

(left figure) and graph of k 7→ S k (right figure). Reference (dashed

lines). Estimation with the random generator (solid lines).

4.4 Properties of the constructed probability model

Random vector  = (Γ1, . . . , ΓN) is defined by  =
√

N [σ]A for which the probabil-

ity density function on  N of the non-Gaussian random vector A is pA(a) = csol0 exp(− <
!sol, g(a) >) with N = 128 and where a 7→ g(a) is a nonlinear mapping from  

N into  µ with

µ = 168. Random VRS S = (S1, . . . ,Sν) with Sk = Sv(ωk, ξ1) is such that E{S} = S (see

Figure 3 (right)). It is interesting to define the statistical fluctuations of S induced by the prob-

ability model of  . For that we construct the confidence region of the time series {S1, . . . ,Sν}
which is delimited by the upper envelope k 7→ S+

k and the lower envelope k 7→ S−

k such that,

Proba{S−

k < Sk ≤ S+
k } = Pc , ∀ k ∈ {1, . . . , ν} , (21)

with Pc < 1. The envelopes are constructed by using the method of quantiles. Figure 4 displays
the graph of the confidence region of the time series {S1, . . . ,Sν} for Pc = 0.98.
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Figure 4: Random VRS k 7→ Sk. Graph of the mean value k 7→ S k (dashed line). Graph of the mean function

k 7→ E{Sk} estimated with the random generator (solid line). Confidence region of the time series {S 1, . . . ,Sν}
with Pc = 0.98 estimated with the random generator (colored region).
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5 CONCLUSIONS

In many applications, the dynamical levels of transient vibrations in structures are defined in

terms of shock response spectrum (SRS). Such a response spectrum is used by engineering to

specify the transient loads which are applied to an equipment or to a secondary subsystem. A

fundamental problem is then to construct a generator of the non-stationary stochastic process

satisfying a given SRS. In this paper, we have not imposed a stochastic representation for the

non-stationary stochastic accelerogram and we have proposed to solve this challenging stochas-

tic inverse problem by another way based on the use of Information Theory. The target SRS is

taken as the mean value of the unknown random SRS spanned by the unknown non-stationary

stochastic accelerogram. This approach allows to construct the confidence region of the random

SRS for which the target SRS is the mean value. The method presented has been validated with

an example.
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