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Abstract. This paper is devoted to the identification of stochastic loads applied to fuel assem-

blies using an uncertain computational model and experimental measurements of responses.

The stochastic loads applied to the structure are induced by a turbulent flow. The structure is

made up of a nonlinear complex dynamical system. The experimental responses of the struc-

ture are obtained from strain sensors located on the structure. There are several sources of

uncertainties in this experimental identification problem of the stochastic loads: uncertainties

on the nonlinear dynamical computational model of the structure (fuel assemblies), uncertain-

ties on parameters of the mathematical model of the stochastic loads themselves and finally,

measurements errors. All these sources of uncertainties are identified and taken into account

in the identification process of the stochastic loads. Then, the stochastic nonlinear dynamical

computational model of fuel assemblies on which the identified stochastic loads are applied

yield interesting results concerning the robustness of the estimation of the fretting-wear of the

fuel rods.
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1 Introduction

A fuel assembly is made up of thousands of fuel rods and tubes which are held in position

by grids. This dynamical system bathes in a flow of a liquid (water) which induces turbulent

forces that are likely to induce fretting-wear of the fuel rods. A fuel assembly is a very complex

nonlinear dynamical system for which an accurate computational model (called the reference

computational model) would be time consuming and generally, would induce many numerical

problems due to the high modal density of such a structure. Therefore, the computational model

must be simplified from an engineering design point of view. The model uncertainties are thus

due to the simplification introduced by the mathematical-mechanical modeling process. The

measurements are realized with an experimental setup which is constituted of a half fuel assem-

bly which bathes in a turbulent fluid. The objectives of this paper are to identify the parameters

of the mathematical model of the stochastic forces induced by the turbulent fluid which are ap-

plied to the experimental setup, using an uncertain stochastic simplified computational model

and experimental responses. The general methodology used to solve this problem has been

presented in [2]. The identified stochastic model is then used to analyze the robustness of the

predictions and allows the fretting-wear of the rods to be estimated.

The uncertainties introduced in this methodology are summarized on Figure 1. In the prob-

Figure 1: Designed system, experimental setup, uncertain computational model

lem under consideration, there are four sources of uncertainties:(1) The model uncertainties

induced by the introduction of simplifications in the model. This type of model uncertainties

are taken into account using the nonparametric probabilistic approach (see [4]) which consists in

modeling the reduced mass and stiffness matrices by full randommatrices defined on a probabil-

ity space (Θ, T ,P) (2) The mean model of the stochastic loads (induced by the statistical fluc-
tuations of the turbulent pressure applied to the structure) is a vector-valued Gaussian centered

second-order stationary stochastic process defined on a probability space (Θ′, T ′,P ′) (3) The
uncertainties concerning the stochastic loads are taken into account by replacing the nominal

value of the matrix-valued spectral density function (defined above) by a random matrix-valued

spectral density function defined on a probability space (Θ′′, T ,′′ P ′′) (4) The uncertainties in-
duced by measurement errors.
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2 Experimental measurements

The experimental setup (see Figure 2) is composed of a half fuel assembly. All the structure

bathes in a flow of a liquid (water) whose velocity is approximatively 1m/s. One of the fuel
rod is equipped with 7 strain sensors. The matrix-valued spectral density function of the vector-

valued measured random signal is estimated by the periodogram method.

Figure 2: Experimental setup.

3 Reference computational model

The reference computational model is developed in order to construct an observation which

will be useful for the identification of the dispersion parameters δA
M and δA

K controlling the level

of uncertainties in the linear subsystem of the simplified computational model. In the reference

model, all the 25 guide tubes, the 264 fuel rods and the grids are modeled by Timoshenko’s

beams. The bumps and springs are modeled by springs elements. For the fuel rod equipped

with sensors for measurements, the bumps and springs are modeled accurately by elastic stops.

The reference computational model is composed of two subsystems. The first one is linear and

composed of all the guide tubes, the non-equipped fuel rods and the grids. The second one is

the nonlinear fuel rod which is equipped with the sensors for measurements. The modal density

is represented on Figure 3 in the frequency band of analysis. It can be seen that the modal

density of the reference computational model is not homogeneous at all in the frequency band of

analysis and have locally high values. Such a situation induces many numerical problem for the

calculation of the stationary response of the stochastic nonlinear dynamical system with random

parameters and random excitation. For this reason, the reference model must be simplified from

the engineering design point of view.

4 Mean simplified computational model

Themean simplified computational model is derived from the reference computational model.

Indeed, the linear subsystem of the reference computational model is replaced by an equivalent

linear subsystem composed of two Timoshenko beams. The first one is equivalent to the 25

guide tubes and the other one is equivalent to the 263 non-equipped fuel rods. The nonlinear

subsystem of the simplified computational model is the same that the nonlinear subsystem of
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Figure 3: Modal density for the reference computational model.

the reference computational model. The linear subsystem and the linear part of the nonlinear

subsytem are reduced using the Craig & Bampton method.

5 Stochastic simplified computational model

The simplifications introduced in the simplified computational model induce model uncer-

tainties which have to be taken into account. In [2], the model uncertainties on the linear sub-

system of the reference computational model are taken into account using the nonparametric

probabilistic approach. For the linear subsystem, this method consists in replacing the reduced

mass and the reduced stiffness matrices of the mean reduced simplified computational model

by random matrices. The probability density functions of these full random matrices depend

on the dispersion parameters δA
M and δA

K which are identified using the maximum likelihood

method and the reference computational model as an observation. Then, the stationary stochas-

tic process Q(t) which is a vector whose components are made up of the physical DOF at

the coupling interface and of the generalized DOF for the two subsystems with fixed coupling

interface satisfies the nonlinear stochastic differential equation

[M]Q̈(t) + [D]Q̇(t) + [K]Q(t) + F
NL(Q(t), Q̇(t)) = F(t) . (1)

In this equation, the vector F
NL(Q(t), Q̇(t)) is the generalized localized nonlinear forces due

to the elastic stops, the vector F(t) is the vector of the stochastic loads and [M] and [K] are two
random matrices. The detailed construction of the different terms in Eq. (1) can be found in [2].

The stochastic equation (1) is solved using the Monte Carlo simulation method.

6 Identification of the uncertain stochastic loads

For the construction of the stochastic process F̃
unc

modeling the random external applied

loads and including a probabilistic model of uncertainties, we first introduce a stochastic pro-

cess {F̃(t), t ∈ R} of the stochastic loads without uncertainties. It is then assumed that the

stochastic process F̃ is a Gaussian stationary centered second-order stochastic process defined

on a probability space (Θ′, T ′,P ′) for which the matrix-valued spectral density function is

{[SF̃(ω)], ω ∈ R}. The uncertain stochastic process F̃
unc

is then constructed as the stochastic

process F̃ for which the deterministic function {[SF̃(ω)], ω ∈ R} is replaced by a random func-

tion {[SF̃(ω)], ω ∈ R} defined on a probability space (Θ′′, T ′′,P ′′). The probability distribution
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of random function {[SF̃(ω)], ω ∈ R} is constructed using the maximum entropy principle and

depends on a dispersion parameter δF . Such a stochastic process and its generator of indepen-

dent realizations are completely defined by (1) the spectral density function [SF̃
unc ] and (2) its

dispersion parameter δF . So the identification of the stochastic loads consists in identifying

these two quantities.

6.1 Identification of the matrix-valued spectral density function of the uncertain stochas-

tic loads

It is assumed that the algebraic representation of the spectral density function of the uncertain

stochastic loads depends only on the two parameters AG
X and AG

Z which are the amplitudes

of the PSD in each transversal direction. The identification of the spectral density function

of the uncertain stochastic loads then consists in identifying the vector r = (AG
X , AG

Z). We

introduce the vector-valued stochastic process {Ξexp(t), t ∈ R} whose components are the 7

measured strains for which the matrix-valued spectral density function {[SΞ
exp(ω)], ω ∈ R} is

estimated using the periodogram method. The corresponding stochastic process {Ξ(t; r), t ∈
R} is calculated with the stochastic simplified computational model. The matrix-valued spectral
density function {[SΞ(ω; r)], ω ∈ R} of the stochastic processΞ(t; r) is also estimated using the
periodogram method. The identification is then performed by minimizing the distance between

the experimental matrix-valued spectral density function [SΞ
exp(ω)] and the numerical matrix-

valued spectral density function [SΞ(ω; r)]. The optimal value ropt of the parameter r is then

given by

ropt = arg min
r∈Cr

D(r) , D(r) =

∫
B

‖[SΞ(ω; r)] − [SΞ
exp(ω)]‖2

F dω , (2)

in which Cr is the admissible set for the vector r. The function r 7→ D(r) is plotted in Figure ??.
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Figure 4: Graph of function r 7→ D(r).
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6.2 Identification of the dispersion parameter δF .

We introduce the random variable Js which is such that for all θ ∈ Θ and for all θ′′ ∈ Θ′′,

Js(θ, θ
′′) =

∫
B

‖[SΞ(ω, θ, θ′′)]‖
2

F dω . (3)

The measurements errors on the experimental variable Jexp
s are modeled by a given additive

noise E , defined on a probability space (Θ′′′, T ′′′,P ′′′), for which the probability density func-
tion is e 7→ pE(e). We then have

Jer
s = Js + E . (4)

The dispersion parameter δF is identified using the maximum likelihood method for the random

variable Jer
s for which the probability density function is defined by

pJer

s
(y) =

∫ +∞

−∞

pJer

s
|E=e(y|e)pE(e)de , (5)

where x 7→ pJer

s
|E=e(y|e) is the conditional probability density function Jer

s given E = e. It is

assumed that the additive noise E is modeled by a centered Gaussian random variable for which

the standard deviation is given. The graph of function δF 7→ pJer

s
(Jexp

s ; δF ) is plotted in Figure
5.
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Figure 5: Graph of function δF 7→ pJer

s

(Jexp

s
; δF ).

7 Random fretting-wear estimation

The random fretting-wear in the contacts rod/bump and rod/spring for the uncertain system

submitted to the uncertain stochastic excitation is based on the use of the Archard power wear.

The mean value, the dispersion (ratio of the standard deviation with the mean value), and quan-

tiles 5% and 95% of the random fretting-wear for the first grid following x direction are reported
in Table 1. The estimated dispersions are lower than 61 %.
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mean dispersion quantile 5 % quantile 95 %

low bump 0.024 60.1%̇ 0.014 0.035

spring 0.029 51.7%̇ 0.025 0.036

high bump 0.014 55.4%̇ 0.01 0.019

Table 1: Statistics for the random fretting-wear on the first grid following x direction.

8 Conclusions

We have presented a complete methodology for the identification of turbulent fluid forces

applied to fuel assemblies using an uncertain simplified computational model and experimental

strain responses. All the sources of uncertainties have been taken into account in the identifi-

cation process. The probabilistic model of model uncertainties in the simplified computational

model depends on dispersion parameters which have been identified using the maximum likeli-

hood method and a reference computational model. The uncertainties concerning the parametric

representation of the uncertain stochastic loads have also been taken into account. The uncertain

stochastic loads have been identified taking into account measurements errors. The identified

stochastic loads has been applied to the stochastic simplified computational model in order to

construct the statistics on the random fretting-wear of the fuel roads. The estimated dispersions

of the random fretting-wear are about 61%̇ that induces a relatively robustness with respect to

uncertainties for this complex industrial problem.
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