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Abstract. A probabilistic model is proposed to model uncertainties for local nonlinearities. The

model is applied to a slender structure that turns and drills into rocks in search of oil, called

drill-string, in which the local nonlinearity is the bit-rock interaction. The Maximum Entropy

Principle is used to construct a probabilistic model for the nonlinear operator related to the

bit-rock interaction model. A numerical model is developed using the Timoshenko beam theory

and it is discretized by means of the Finite Element Method. The nonlinear dynamics analyzed

considers a imposed rotation at the top, weight-on-hook, a fluid-structure interaction (that takes

into account the drilling fluid that flows downwards the column and upwards the annulus),

impact and rubbing between the column and the borehole, and finite strains (what couples axial,

torsional and lateral vibrations). The development presented corresponds to a new approach to

take into account model uncertainties in local nonlinearities using a probabilistic approach.
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1 INTRODUCTION

In this work the drill-string problem is used to show an approach to take into account un-

certainties in a local nonlinearity which, for the system considered, is the bit-rock interaction.

Previous works have studied a stochastic modeling for local uncertainties in linear dynamical

systems, as, for instance, boundary conditions [9] and coupling [10]. Specifically in [9, 10],

a nonparametric probabilistic approach [19] was employed so that both data and model uncer-

tainties could be taken into account. The aim and novelty of this paper is to model uncertainties

in a local nonlinearity using the nonparametric probabilistic approach.

Drill-strings are slender structures used to dig into the rock in search of oil. The drill-string

dynamics must be controlled to avoid failures [8], see a general vibration perspective of the oil

and gas drilling process in [23]. We consider a vertical well for which the length of the column

may reach some kilometers. The drill-string is composed by thin tubes called drill-pipes and

some thicker tubes called drill-collars. The thicker tubes are in the bottom region which is

known as the Bottom-Hole-Assembly (BHA). Figure 1 shows the general scheme of the system

analyzed. The forces taking into account are: the motor torque (as a constant rotation speed at

the top Ωx); a constant supporting force fhook; the torque tbit and force fbit at the bit; the weight

of the column; the fluid forces; the impact and rubbing between the column and the borehole;

the forces due to the stabilizer; plus the elastic and kinetic forces due to the deformation and to

the motion of the structure.

Figure 1: General scheme.

In the literature, the nonlinear dynamics of a drill-string is modeled in several different ways,

e.g.[2, 26, 7, 25, 16]. These models are able to quantify some effects that occur in a drilling op-

eration, as the stick-slip oscillations, for instance, but they cannot correctly predict the dynamic

response of a real system. This is explained, first, because the above models are too simple
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compared to the real system and, second, because the uncertainties are not taken into account.

Moreover, a fluid-structure interaction that takes into account the drilling fluid that flows

inside and outside the column is not considered in any of the above mentioned works. This

kind of fluid-structure interaction model was proposed in [12] for a plane problem in another

context, and it was extended for our problem [14]. To model the column, the Timoshenko beam

model is employed and the Finite Element Method is used to discretize the system. Besides,

it is considered: finite strain with no simplifications (higher order terms are not neglected);

quadratic terms derived from the kinetic energy; impact and rubbing between the column and

the borehole; stabilizers; fluid-structure interaction; and a bit-rock interaction that models how

the bit penetrates the rock.

The uncertainty analysis of this paper is focused on the bit-rock interaction because it is a

local nonlinearity and one of the most important sources of uncertainties of this problem. A

probabilistic approach is used to model the uncertainties in the nonlinear operator.

The bit-rock interaction model chosen was the one developed in [26] basically for two rea-

sons: (1) it is able to reproduce the main phenomena (as stick-slip oscillations); (2) it describes

well the penetration of the bit into the rock (so we can analyze the rate-of-penetration-ROP).

Usually the bit is considered fixed, [7, 16], or an average rate of penetration is assumed, [2].

The nonparametric probabilistic approach [19, 20, 21] is used to model the uncertainties in

the bit-rock interaction which is represented by a nonlinear operator. Note that a new strat-

egy has to be developed to take into account uncertainties in a local nonlinear operator. The

probability density function is derived using the Maximum Entropy Principle [18, 5, 6]. Two

probabilistic models are analyzed: one that allows only change in the parameters (called non-

coupled model) and another that permits changes in the model (the usual nonparametric model).

Then, by perturbing the bit-rock operator, the robustness of the models used is analyzed.

The paper is organized as following. In Section 2 the mean model is presented and in Section

3 the probabilistic model of the bit-rock interaction model is developed. The numerical results

are shown in Section 4 and the concluding remarks are made in Section 5.

2 MEAN MODEL

In this Section the equations used to model the problem are presented. The Total Lagrangian

(TL) formulation is used, six degrees of freedom are considered in the points of discretization

(three translations, u, v and w, and three rotations θx, θy and θz), the stress tensor is the second

Piola-Kirchhoff tensor and finite strains are considered (Green-Lagrange strain tensor). The

main hypothesis are the following: (1) the drill-string is axisymmetric about x-axis; (2) the

following strain components are neglected: eyy ∼ ezz ∼ γyz ∼ γzy ∼ 0; (3) the rotations θy and

θz are small, i.e, sin(θy) ∼ θy, sin(θz) ∼ θz and cos(θy) ∼ cos(θz) ∼ 1; (4) the stress-strain

relationship is linear; and (5) the rotation θx is finite (the rotational speed θ̇x, of course, is not

constant over the element).

The strategy used in this work is, in some respects, similar to the one used in [7], but there are

several important additional features, such as (1) impact and rubbing between the column and

the borehole; (2) shear (Timoshenko beam model); (3) finite θx; (4) fluid-structure interaction;

(5) all the terms of the strain energy are used in the analysis; (5) a bit-rock interaction model that

allows the simulation of the bit penetration is used; and (6) constant force at the top (supporting

force or weight-on-hook).

To derive the dynamic equations, the extended Hamilton Principle is used. Defining the
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potential Π by

Π =

∫ t2

t1

(U − T − W )dt , (1)

where U is the potential strain energy, T is the kinetic energy and W is the work done by the

nonconservative forces and by any force not accounted for in the potential energy. The first

variation of Π must vanish

δΠ =

∫ t2

t1

(δU − δT − δW )dt = 0 . (2)

2.1 General equations

In the discretization by means of the Finite Element Method, a two-node approximation with

six degrees of freedom per node is chosen. The nodal displacement is written as

ue = Nuue , ve = Nvue , we = Nwue , (3)

θxe = Nθx
ue , θye = Nθy

ue , θze = Nθz
ue , (4)

where N are the shape functions (see [14]); ue, ve and we are the displacements in x, y and z
directions; θxe, θye and θze are the rotations about x, y and z axis. The element coordinate is

ξ = x/le, and

ue =
(

u1 v1 θz1 w1 θy1 θx1 u2 v2 θz2 w2 θy2 θx2

)T
, (5)

where (·)T means transpose. After assemblage, the final discretized system is written as

([M ] + [Mf ])ü + ([C] + [Cf ])u̇ + ([K] + [Kf ])u = fNL(t,u, u̇, ü) + fc + fg + ff . (6)

Where u is the R
m-valued response for which m is the number of degrees of freedom of the

system. [M ], [C] and [K] are the usual mass, damping and stiffness matrices; [Mf ], [Cf ], [Kf ]
are the added fluid mass, damping and stiffness matrices, and ff is the fluid force vector; fg is

the gravity force; fc is a concentrated reaction force at the bit; fNL(t,u, u̇, ü) is the nonlinear

force vector that is decomposed in

fNL(t,u, u̇, ü) = fke(ü, u̇,u) + fse(u) + fip(u) + fbr(u̇) + g(t) . (7)

where fke(u, u̇, ü) is composed by the quadratic terms of the kinetic energy; fse(u) is composed

by the quadratic and higher order terms of the strain energy; fip(u) are the forces due to the

impact and rubbing between the column and the borehole; fbr(u̇) are the forces due to the

bit-rock interactions, see section 2.3; and g(t) is the force that corresponds to the Dirichlet

boundary condition (rotation imposed at the top). For a detailed explanation of each term of the

nonlinear force see [14].

The dynamics is computed from a prestressed configuration, uS = [K]−1(fg + fc + ff ), then

Eq. (6) becomes

([M ] + [Mf ])¨̄u + ([C] + [Cf ]) ˙̄u + ([K] + [Kf ] + [Kg(uS)])ū = fNL(t, ū, ˙̄u, ¨̄u) , (8)

in which ū = u − uS and fse(u) was split in f se(u) and [Kg(uS)]ū, where [Kg(uS)] is the

geometric stiffness matrix.
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2.2 Fluid-structure interaction

The drilling fluid (mud) is responsible to transport the cuttings (drilled solids) from the bot-

tom to the top to avoid clogging of the hole. It also plays an important role in cooling and

stabilizing the system [1]. The rheological properties of the mud are complexes, see [3] for

instance. There is no doubt that the drilling fluid influences the dynamics of a drill-string, but

to solve the complete problem would be too expensive computationally. There are some works

that study only the drilling fluid flow, as, for example, [4, 13]. In this work a linear fluid-

structure coupling model similar to [12] is used. In this simplified model there are the following

hypotheses,

1. The inside fluid is inviscid, while the outside flow is viscous.

2. The flow induced by the rotation speed about x-axis is not considered in the analysis.

3. The pressure varies linearly with x.

4. The fluid is added in the formulation as a constant mass matrix [Mf ], a constant stiffness

matrix [Kf ], a constant damping matrix [Cf ] and a constant force ff (see Eq. (9)).

For short, the element equations are presented. These equations are an extension and an

adaptation of the model developed in [12].

[Mf ]
(e) =

∫ 1

0

(Mf + χρfAo) (NT
wNw + NT

v Nv)ledξ ,

[Kf ]
(e) =

∫ 1

0

(

−MfU
2
i − Aipi + Aopo − χρfAoU

2
o

)

(N′T
wN′

w + N′T
v N′

v)
1

le
dξ+

+

∫ 1

0

(

−Ai
∂pi

∂x
+ Ao

∂po

∂x

)

(NT
θy
Nθy

+ NT
θz
Nθz

)ledξ ,

[Cf ]
(e) =

∫ 1

0

(−2MfUi + 2χρfAoUo) (NT
θy
Nθy

+ NT
θz
Nθz

)ledξ+

+

∫ 1

0

(

1

2
CfρfDoUo + k

)

(NT
wNw + NT

v Nv)ledξ ,

f
(e)
f =

∫ 1

0

(

Mfg − Ai
∂pi

∂x
−

1

2
CfρfDoU

2
o

)

NT
u ledξ .

(9)

in which,

Mf is the fluid mass per unit length,

ρf is the density of the fluid,

χ =
(Dch/Do)

2 + 1

(Dch/Do)2 − 1
(> 1),

Dch is the borehole (channel) diameter,

Di, Do are the inside and outside diameters of the column,

Ui, Uo are the inlet and outlet flow velocities,
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pi, po are the pressures inside and outside the drill-string,

Ai, Ao are the inside and outside cross sectional area of the column,

Cf , k are the fluid viscous damping coefficients.

It is assumed that the inner and the outer pressures (pi and po) vary linearly with x

pi = (ρfg) x + pcte , (10)

po =

(

ρfg +
Ffo

Ao

)

x , (11)

where pcte is a constant pressure and Ffo is the friction force due to the external flow given by

Ffo =
1

2
Cfρf

D2
oU

2
o

Dh

. (12)

In the above equation, Dh is the hydraulic diameter (=4Ach/Stot) and Stot is the total wetted

area per unit length (πDch + πDo). Note that the reference pressure is po|x=0 = 0. Another

assumption is that there is no head loss when the fluid passes from the drill-pipe to the drill-

collar (and vice-versa). The head loss due to the change in velocity of the fluid at the bottom (it

was going down, then it goes up) is given by

h =
1

2g
(Ui − Uo)

2 . (13)

Note that if the geometry and the fluid characteristics are given, only the inlet flow at x = 0
can be controlled because the fluid speed is calculated using the continuity equation and the

pressures are calculated using the Bernoulli equation.

Examining Eq. (9), it can be seen that the mass matrix due to the fluid is the usual added mass

that, in our case, represents a significative part of the total mass (in norm). For example, using

representative values (used in our simulations), the added mass is around 50%, what changes

the natural frequencies in about 20%.

The stiffness matrix due to the fluid depends on the speed of the inside and outside flow, on

the pressure and on the pressure derivatives. Analyzing the signs in the equation (Eq. 9) it can

be seen see that the outsize pressure tends to stabilize the system while the inside pressure and

the flow tends to destabilize the system. The term (−piAi + poA0) plays a major role on the

stiffness of the system because, even though pi is close to po, in the drill collar region (in the

bottom) A0 is around ten times Ai what turns the system stiffer at the bottom.

The damping matrix due to the fluid depends on the flow velocity as well as in the viscous pa-

rameter of the fluid, which are not well established values. There are uncertainties to determine

the damping characteristics and a stochastic model should be developed to the damping, but in

this work a detailed analysis will not be addressed. Finally, the force vector (ff ) represents the

buoyancy induced by the fluid and it is the only force in the axial direction (x-direction).

2.3 Bit-rock interaction

The model used in this work is the one developed by [26], which can be written as

u̇bit = −a1 − a2fxbit + a3θ̇bit

txbit = −DOC a4 − a5

DOC =
u̇bit

θ̇bit

,

(14)
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where fxbit is the axial force (also called weight-on-bit), txbit is the torque about x-axis and

a1, . . . , a5 are positive constants that depend on the bit and rock characteristics as well as on

the weight-on-bit. Note that u̇bit (=ROP) depends linearly on fxbit and on θ̇bit (=ωbit), and txbit

depends linearly on the depth-of-cut (DOC). Equation (14) is rewritten as

fxbit = −
u̇bit

a2Z(θ̇bit)2
+

a3θ̇bit

a2Z(θ̇bit)
−

a1

a2

txbit = −
u̇bita4Z(θ̇bit)

2

θ̇bit

− a5Z(θ̇bit)

(15)

where Z(θ̇bit) is the regularization function so that when θ̇bit approaches to zero txbit and u̇bit

vanish. The regularization function is plotted in Fig. 2(a).

Z(θ̇bit) =
θ̇bit

√

(θ̇bit)2 + e2

. (16)
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Figure 2: Regularization function (a) and torque at the bit in function of ωbit = θ̇bit (b).

Equation (15) was derived in a stable operation with θ̇bit ∼ 100 RPM and with fxbit ∼ 100
kN. In this model the bit exerts only an axial force (fxbit) and a torque (txbit) about x-axis (see

how the torque varies with θ̇bit in Fig. 2(b)). These forces done by the rock at the bit depend on

the axial speed (u̇bit). Note that these forces at the bit couple axial and torsional vibrations.

2.4 Reduced model

Usually the final discretized FE system have big matrices (dimension m × m) and the dy-

namic analysis may be time consuming, which is the case of the analysis presented. One way

to reduce the system is to project the nonlinear dynamical equation on a subspace Vn ∈ R
m,

with n << m. In this paper, the basis used to generate Vn for the reduction basis is formed

by the normal modes, but, as it will be pointed out later, these normal modes have to properly

be chosen (they can not be taken simply in the order that they appear). The normal modes are

obtained from the following generalized eigenvalue problem,

([K] + [Kf ] + [Kg(uS)])φ = ω2([M ] + [Mf ])φ , (17)
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where φi is the i-th normal mode and ωi is the i-th natural frequency. Using the representation

u = [Φ] q , (18)

and substituting it in the equation of motion yield

([M ]+ [Mf ])[Φ]q̈+([C]+ [Cf ])[Φ]q̇+([K]+ [Kf ]+ [Kg(uS)])[Φ]q = fNL(t, ū, ˙̄u, ¨̄u) . (19)

where [Φ] is a (m×n) real matrix composed by n normal modes obtained using the prestressed

configuration. Projecting the equation on the subspace spanned by these normal modes yields

[Φ]T ([M ] + [Mf ])[Φ]q̈ + [Φ]T ([C] + [Cf ])[Φ]q̇+

+[Φ]T ([K] + [Kf ] + [Kg(uS)])[Φ]q = [Φ]T fNL(t, ū, ˙̄u, ¨̄u) ,
(20)

which can be rewritten as

[Mr] q̈(t) + [Cr] q̇(t) + [Kr] q(t) = [Φ]T fNL(t, ū, ˙̄u, ¨̄u) , (21)

in which

[Mr] = [Φ]T ([M ] + [Mf ])[Φ], [Cr] = [Φ]T ([C] + [Cf ])[Φ]

[Kr] = [Φ]T ([K] + [Kf ] + [Kg(uS)])[Φ] (22)

are the reduced matrices.

3 PROBABILISTIC MODEL OF THE BIT-ROCK INTERACTION MODEL

Figure 3 shows a general system with a local nonlinearity. We should identify the local non-

linear operator (which, in the present case, is the nonlinear operator of the bit-rock interaction

model) and then construct a probability density function for it. Note that the operator changes

with time, but this is not a problem for the strategy adopted.

Figure 3: Local nonlinearity.

The parametric probabilistic approach allows physical parameter uncertainties to be mod-

eled. It should be noted that the underlying deterministic model defined by Eq. (15) exhibits

parameters (a1, a2, a3, a4 and a5) which are obtained by an identification process, so it would

be difficult to propose a stochastic model for each one, moreover they are not independent from

each other. We then proposed to use the nonparametric probabilistic approach of uncertainties

8
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[19] consisting in globally modeling the operator of the constitutive equation, Eq. (15), by a

random operator.

In the early works, the nonparametric probabilistic approach was applied for linear operators

[21]. Recently is was extended to geometrically nonlinear dynamical systems [11], but the type

of problem studied here is completely different. We are dealing with a nonlinear operator that

is an interaction model (bit-rock interaction), therefore it requires a different methodology, and

we propose to use the nonparametric idea.

For convenience Eq. (15) is rewritten in the matrix form as

fbit(ẋ) = −[Ab(ẋ)]ẋ , (23)

in which [Ab(ẋ)] is the positive-definite matrix depict by:

[Ab(ẋ)] =













(

a1

a2u̇bit

+
1

a2Z(θ̇bit)2
−

a3θ̇bit

a2Z(θ̇bit)u̇bit

)

0

0

(

a4Z(θ̇bit)
2u̇bit

θ̇2
bit

+
a5Z(θ̇bit)

θ̇bit

)













,

(24)

and

fbit(ẋ) =

(

fbit

tbit

)

and ẋ =

(

u̇bit

θ̇bit

)

.

The final form of [Ab(ẋ)] is not obvious, but analyzing the virtual power of the system, which

can be written as:

δPbit(ẋ) = < fbit(ẋ), δẋ > = < −[Ab(ẋ)]ẋ, δẋ > , (25)

we see that to recover the force fbit(ẋ) one should do:

fbit(ẋ) = ∇δẋ δPbit(ẋ) , (26)

fbit(ẋ) = −[Ab(ẋ)]ẋ = −













a1

a2

+
u̇bit

a2Z(θ̇bit)2
−

a3θ̇bit

a2Z(θ̇bit)

a4Z(θ̇bit)
2u̇bit

θ̇bit

+ a5Z(θ̇bit)













. (27)

To verify the positive-definiteness of [Ab(ẋ)], in our case, we simply check if the diagonal

terms are greater than zero, and this is true for the range of values that we are working with.

The nonparametric probabilistic approach consists, for all deterministic vector ẋ, in model-

ing the matrix [Ab(ẋ)] by a random matrix [Ab(ẋ)] with values in the set M
+
n (R) of all positive-

definite symmetric (n × n) real matrices, with n = 2. Note that for each instant the matrix

[Ab(ẋ)] will be different because it depends on ẋ that changes with time.

In order to apply the nonparametric probabilistic approach for the operator [Ab(ẋ)], we have

to define the available information and in a second step construct the probability density func-

tion of the random matrix using the Maximum Entropy Principle. The available information is

made up of

9
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1. ∀ ẋ, random matrix [Ab(ẋ)] is positive definite almost surely,

2. E{[Ab(ẋ)]} = [Ab(ẋ)] ,

3. E{||[Ab(ẋ)]−1||2F} = c1 , |c1| < +∞ ,

in which E{·} is the mathematical expectation, || · ||F denotes the Frobenius norm of the matrix

(||[B]||F = (tr{[B][B]T})1/2) and [Ab(ẋ)] is the matrix of the mean model. Following the

methodology of the nonparametric probabilistic approach, the mean value is written, using the

Cholesky decomposition, as

[Ab(ẋ)] = [Lb(ẋ)]T [Lb(ẋ)] , (28)

and the random matrix [Ab(ẋ)] is defined by

[Ab(ẋ)] = [Lb(ẋ)]T [Gb][Lb(ẋ)] . (29)

In the above equation, [Gb] is a random matrix satisfying the following available information,

1. random matrix [Gb] is positive definite almost surely,

2. E{[Gb]} = [ I ] ,

3. E{||[Gb]
−1||2F} = c2 , |c2| < +∞ ,

in which [ I ] is the identity matrix. It should be noted that, in this construction, the random

matrix [Gb] neither depends on ẋ nor on time. Taking into account the available information and

applying the Maximum Entropy Principle yields an explicit expression [20] of the probability

density function p[Gb] which is written as

p[Gb]([Gb]) = 1
M

+
n (R)([Gb])CGb

det([Gb])
(n+1)

(1−δ2)

2δ2 exp

{

−
(n + 1)

2δ2
tr[Gb]

}

, (30)

in which det(·) is the matrix determinant, tr(·) is the matrix trace and δ is the dispersion pa-

rameter of the distribution. The constant of normalization is written as

CGb
=

(2π)−n(n−1)/4
(

n+1
2δ2

)n(n+1)(2δ2)−1

{

∏n
j=1 Γ

(

n+1
2δ2 + 1−j

2

)

} , (31)

where Γ(z) is the gamma function defined for z > 0 by Γ(z) =
∫ +∞

0
tz−1e−tdt and the disper-

sion parameter δ is given by

δ =

{

1

n
E{||[Gb] − [I]||2F}

} 1
2

. (32)

The random generator of independent realizations of random matrix [Gb], for which the

probability density function is defined by Eq. (30), is given in appendix A. Attention with

the stochastic solver because while matrix [Ab(ẋ)] changes with time, random matrix [Gb] is

constant in time.

In the deterministic equation, we have

LNL(u(t), u̇(t), ü(t)) = fbr(u̇(t)) , (33)

10
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where LNL represents all the terms in Eq. (8) except the bit forces fbr. The only nonzero

components of fbr are related to the axial and torsional d.o.f. at x = L, which are represented

by fbit, Eq. (23). For the stochastic equation, we have

LNL(U(t), U̇(t), Ü(t)) = Fbr(U̇(t)) , (34)

where U(t) is the random response and Fbr is the random force at the bit for which the only

nonzero components are related to the axial and torsional d.o.f. at x = L. This force is Fbit

which is the random variable related to fbit and is written as Fbit = [Lb(ẋ)]T [Gb][Lb(ẋ)]ẋ. Let

[Gb(s1)], . . . , [Gb(sν)] (35)

be ν independent realizations of random matrix [Gb]. For each realization sj , we have to solve

the deterministic equation

LNL(U(t, sj), U̇(t, sj), Ü(t, sj)) = Fbr(U̇(t, sj)) . (36)

Two probabilistic models are then analyzed.

(1) Nonparametric probabilistic model

In the nonparametric probabilistic model presented above there are statistical coupling terms

induced by the model uncertainties and the random matrix [Gb] is written as:

[Gb] =

(

[Gb]11 ζ
ζ [Gb]22

)

(37)

where ζ = [Gb]21 = [Gb]12.

(2) Approximation without the statistical coupling terms

What is called here the non-coupled probabilistic model is the previous model without the

extra coupling terms that appear in the extra-diagonal elements (ζ = 0). The idea is not to

randomize all the operator, but to investigate how a global change in the parameters affects the

system response. To do so, we simply set the extra-diagonal terms of [Gb] equal to zero,

[Gb] =

(

[Gb]11 0
0 [Gb]22

)

. (38)

Doing so, there is no extra coupling between u̇bit and θ̇bit. But note that even in the deter-

ministic system u̇bit depends on θ̇bit and vice-versa.

4 NUMERICAL RESULTS

The drill-string was discretized using 56 finite elements. For the dynamics analysis it was

used 10 lateral modes, 10 torsional modes, 10 axial modes and also the two rigid body modes

of the structure (axial and torsional), so matrix [Φ] is composed by 32 modes. For the time

integration procedure, a scheme based on the Newmark method has been implemented with a

procedure to equilibrate the system response in each time step. The system parameters used are

representative values that are found in the literature [2, 26, 7], see appendix B.
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4.1 Deterministic response

Fig. 4 shows a comparison of the dynamic response with and without the fluid-structure

interaction.
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Figure 4: Response with fluid × without fluid. (a) axial speed at x = L, or rate of penetration (ROP); (b) rotation

speed at x = L (ωbit); (c) radial displacement at x = 1560 m; and (d) torque at the bit.

The main difference in the dynamic response with and without the fluid-structure interaction

model is in the lateral dynamic response, see Fig. 4(c). The model used for the fluid has a

major influence in the lateral frequencies and lateral mode shapes, but the axial and torsional

frequencies are unaffected, which is not a surprise since in the formulation used (see Section

2.2) the axial movement is only affected by a constant force ff . However, the dynamics is

nonlinear and the vibrations are all coupled, see that after 20 seconds of simulation the two

dynamics (with and without fluid) separate. Comparing the lateral vibration, in a general way

(see Fig. 4(c)), the amplitude of vibration in the BHA region is smaller when the fluid is

considered because the lateral stiffness of the system increase in the presence of the fluid.

Fig. 4 (a) shows the ROP which is can be taken as a measure of the performance of the

system. In a drilling operation we want to maximize the ROP to minimize the drilling time,

since the ROP is inversely proportional to the well cost (the higher the ROP the lower the cost).

Fig. 4 (b) and (d) shows the self excited response os the system which has a dominant frequency

of 0.22 Hz. This frequency is a little higher than the first torsional natural frequency which is

0.21 Hz.

4.2 Stochastic analysis using the non-coupled nonparametric probabilistic model

Fig. 5 shows 50 Monte Carlo simulations and the 95% envelope (that is to say the confidence

region constructed with a probability level of 0.95) for the rate-of-penetration using a small

12
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dispersion parameter δ = 0.01. The envelopes (the upper and lower envelopes of the confidence

region) are calculated using the method of quantiles [24].
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Figure 5: δ = 0.01. Rate-of-penetration, ROP, for the non-coupled stochastic model. Left: 50 Monte Carlo

simulations. Right: 95% envelope.

Fig. 6 shows the stochastic response of the rotation speed of the bit.
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Figure 6: δ = 0.01. Non-coupled stochastic model, 95% envelope of the rotation speed of the bit.

It is noted that for δ = 0.01 the response does not change much (see that how thin is the

envelope), therefore δ will be increased in the next analysis. Fig. 7 shows the 50 Monte Carlo

simulations for δ = 0.3.
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Figure 7: δ = 0.3. Non-coupled stochastic model. Left: stochastic responses of the ROP. Right: 95% envelope.

Note that the response envelope is thicker than as before. In the deterministic analysis the

average ROP was around 11 m/h, but in the stochastic analysis the average ROP can vary from

5 to 18 m/h, which is a significant difference.

It can be concluded that the bit-rock model used is robust for changes in the parameters

because the response follows the same pattern even for δ = 0.3. So, this model can be used for

different rock properties, or for different cutting characteristics of the bit, for instance.

4.3 Stochastic analysis using the usual nonparametric probabilistic model

Now lets analyze the results using the usual nonparametric probabilistic model. Fig. 8 shows

50 Monte Carlo simulations and the 95% envelope for the nonparametric model using δ = 0.01.
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Figure 8: δ = 0.01. Nonparametric model, rate-of-penetration, ROP. Left: 50 Monte Carlo simulations. Right:

95% envelope.

Fig. 9 shows the 95% envelope of the rotation speed of the bit using δ = 0.01.
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Figure 9: δ = 0.01. Nonparametric model, rotation speed of the bit, 95% envelope.

Note that even for a small dispersion, δ = 0.01, the stochastic response presents a significa-

tive variance. The probability space is richer when the usual nonparametric model is used, i.e.,

there is an extra coupling and model uncertainties are taken into account. The dispersion will

be increased to verify the robustness of the bit-interaction model to model uncertainties, Fig.

10.
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Figure 10: δ = 0.1. Nonparametric model, 95% envelope. Left: rate-of-penetration, ROP. Right: rotation speed of

the bit.

Fig. 10 shows that there are some realizations that present negative rate-of-penetration. See

Fig. 11, where 50 Monte Carlo simulations for δ = 0.03 are plotted.
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Figure 11: δ = 0.03. Nonparametric model. 50 Monte Carlo simulations of the ROP.

When the complete nonparametric model is used, there are some realizations (the ones in the

bottom of Fig. 11) that escape the limits of the model we are working with because the bit loses

contact with the soil. The bit-bounce phenomenon is not considered in the current model.

We may say then that the bit-rock interaction model, although robust to parameters change, is

not robust to model uncertainties. Using the complete nonparametric model, a little perturbation

in the operator related to the bit-rock interaction (δ = 0.03) leads to a stochastic response with

large confidence region and there are some dynamic responses that get out of the model’s bound.

5 CONCLUSIONS

A probabilistic model was proposed to model uncertainties for local nonlinearities. The local

nonlinearity considered was the bit-rock interaction of a drill-string dynamics. The uncertain

numerical model showed to be well suited. As the parameters of the bit-rock interaction do not

correspond to physical parameters, it can easily be concluded that it is not really adequate to use

the parametric probabilistic approach to model the uncertainties, therefore the nonparametric

probabilistic approach is used. This corresponds to a completely novel approach to take into

account model uncertainties in a nonlinear constitutive equation. Since the dynamical system is

globally nonlinear, an adapted strategy is developed to implement the stochastic simulation. The

results showed that when no extra coupling is included in the stochastic model (i.e., when only

the parameters are changed) the bit-rock interaction model is robust to uncertainties, but when

the extra coupling is considered (i.e., when the model is changed), a small uncertainty leads to

a very spread response and there are some realizations that get out of the model’s bound. This

means that this bit-rock interaction model should be used in situations close to the stable one

because it was seen that it is very sensitive to model uncertainties.

The Timoshenko beam model is used and the main forces that affect the dynamics are con-

sidered: motor torque (as a constant rotation speed at the top), supporting force, stabilizers, bit-

rock interaction that describes the rate-of-penetration, impact and rubbing between the column

and the borehole, fluid-structure interaction (that flows downwards then goes upwards). Finite

deformations were considered without neglecting the higher order terms and the vibration was

computed about a prestressed configuration.
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A Algorithm for the realizations of the random germ [G]

Random matrix [G] can be written as [G] = [LG]T [LG] in which [LG] is an upper triangular

real random matrix such that:

1. The random variables {[LG]jj′ , j ≤ j′} are independents.

2. For j < j′ the real-valued random variable [LG]jj′ = σVjj′ , in which σ = δ(n + 1)−1/2

and Vjj′ is a real-valued gaussian random variable with zero mean and unit variance.

3. For j = j′ the real-valued random variable [LG]jj = σ(2Vj)
1/2. In which Vj is a real-

valued gamma random variable with probability density function written as

pVj
(v) = 1R+(v) 1

Γ(n+1
2δ2

+ 1−j
2 )

v
n+1

2δ2
−

1+j
2 e−v.

B Data used in the simulation

Ωx = 100 [RPM] (imposed rotational speed about x-axis at x = 0 m), fc = 100 [kN] (initial

reaction force at the bit), Ldp = 1400 [m] (length of the drill pipe), Ldc = 200 [m] (length of the

drill collar), Dodp = .127 [m] (outside diameter of the drill pipe), Dodc = .2286 [m] (outside

diameter of the drill collar), Didp = .095 [m] (inside diameter of the drill pipe), Didc = 0.0762
[m] (inside diameter of the drill collar), Dch = 0.3 [m] (diameter of the borehole (channel)),

xstab = 1400 [m] (location of the stabilizer), kstab = 17.5 [MN/m] (stiffness of the stabilizer

per meter), E = 210 [GPa] (elasticity modulus of the drill string material), ρ = 7850 [kg/m3]

(density of the drill string material), ν = .29 [-] (poisson coefficient of the drill string material),

ks = 6/7 [-] (shearing correcting factor), c1 = 0.01 [N.s/m] (friction coefficient for the axial

rigid body motion), c2 = 0.01 [N.s/m] (friction coefficient for the rotation rigid body motion),

kip = 1e8 [N/m] (stiffness per meter used for the impacts), µip = 0.0005 [-] (friction coefficient

between the string and the borehole), uin = 1.5 [m/s] (flow speed in the inlet), ρf = 1200
[kg/m3] (density of the fluid), Cf = .0125 [-] (fluid viscous damping coefficient), k = 0 [-]

(fluid viscous damping coefficient), g = 9.81 [m/s2] (gravity acceleration), a1 = 3.429e − 3
[m/s] (constant of the bit-rock interaction model), a2 = 5.672e − 8 [m/(N.s)] (constant of the

bit-rock interaction model), a3 = 1.374e−4 [m/rd] (constant of the bit-rock interaction model),

a4 = 9.537e6 [N.rd] (constant of the bit-rock interaction model), a5 = 1.475e3 [N.m] (constant

of the bit-rock interaction model), e = 2 [rd/s] (regularization parameter). The damping matrix

is constructed using the relationship [C] = α([M ] + [Mf ]) + β([K] + [Kf ] + [Kg(uS)]) with

α = .01 and β = .0003.
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Karhunen-Loève expansion. Journal of Sound and Vibration, 297, 774–793, 2006.

[16] R. Sampaio, M. T. Piovan, G. V. Lozano, Coupled axial/torsional vibrations of drilling-

strings by mean of nonlinear model. Mechanics Research Comunications, 34(5-6), 497–

502, 2007.

[17] R. Sampaio, C. Soize, On measures of nonlinearity effects for uncertain dynamical sys-

tems - Application to a vibro-impact system. Journal of Sound and Vibration, 303, 659–

674, 2007.

[18] C. E. Shannon, A mathematical theory of communication. Bell System Tech. J., 27, 379-

423 and 623-659, 1948.

[19] C. Soize, A nonparametric model of random uncertities for reduced matrix models in

structural dynamics. Probabilistic Engineering Mechanics, 15, 277–294, 2000.

18



T. G. Ritto, C. Soize and R. Sampaio

[20] C. Soize, Maximum entropy approach for modeling random uncertainties in transient elas-

todynamics. Journal of the Acoustical Society of America, 109(5), 1979–1996, 2001.

[21] C. Soize, Random matrix theory for modeling uncertainties in computational mechanics.

Computer Methods in Applied Mechanics and Engineering, 194(12-16),1333–1366, 2005.

[22] P. D. Spanos, A. K. Sengupta, R. A. Cunningham, P. R. Paslay, Modeling of roller cone

bit lift-off dynamics in rotary drilling. Journal of Energy Resources Technology, 117(3),

197–207, 1995.

[23] P. D. Spanos, A. M. Chevallier, N. P. Politis, M. L. Payne, Oil and Gas Well Drilling: A

Vibrations Perspective. The Shock and Vibration Digest, 35(2), 85–103, 2003.

[24] R. J. Serfling, Approximation Theorems of Mathematical Statistics. John Wiley and Sons,

1980.

[25] M. A. Trindade, C. Wolter, R. Sampaio, Karhunen–Loève decomposition of coupled ax-
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