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Abstract. The problem presented here concerns fuel assemblies for which the stochastic
loads induced by turbulent fluid forces have to be identified. The simplified model used
for this identification is composed of two coupled subsystems:(1) A nonlinear subsystem
which is accurate and contains the quantity of interest (2) A linear subsystem which is less
accurate and contains model uncertainties which have to be taken into account. Others
sources of uncertainties are to be taken into account in the stochastic loads identification
process: uncertainties concerning the stochastic loads and measurements errors. The
identification is carried out using the moments method and the maximum likelihood
method. Finally, the stochastic simplified computational model on which the identified
stochastic loads are applied is used to construct statistics of the fretting wear of the fuel
rods.

1 INTRODUCTION

A fuel assembly is made up of thousands of fuel rods and tubes which are held in po-
sition by grids. This dynamical system bathes in a flow of a liquid (water)which induces
turbulent forces that are likely to induce fretting-wear of the fuel rods. A fuel assem-
bly is a very complex nonlinear dynamical system for which an accurate computational
model (called the reference computational model) would be time consuming and generally,
would induce many numerical problems due to the high modal density of such a structure.
Therefore, the computational model must be simplified from an engineering design point
of view. The model uncertainties are thus due to the simplification introduced by the
mathematical-mechanical modeling process. The measurements are realized with an ex-
perimental setup which is constituted of a half fuel assembly which bathes in a turbulent
fluid. The objectives of this paper are to identify the parameters of the mathematical
model of the stochastic forces induced by the turbulent fluid which are applied to the
experimental setup, using an uncertain stochastic simplified computational model and
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experimental responses. The general methodology used to solve this problem has been
presented in . The identified stochastic model is then used to analyze the robustness of
the predictions and allows the fretting-wear of the rods to be estimated.

The uncertainties introduced in this methodology are summarized on Figure ??. In

Figure 1: Designed system, experimental setup, uncertain computational model

the problem under consideration, there are four sources of uncertainties:(1) The model
uncertainties induced by the introduction of simplifications in the model. This type model
uncertainties are taken into account using the nonparametric probabilistic approach which
consists in modeling the reduced mass and stiffness matrices by full random matrices
defined on a probability space (Θ, T ,P) (2) The mean model of the stochastic loads
(induced by the statistical fluctuations of the turbulent pressure applied to the structure)
is a vector-valued Gaussian centered second-order stationary stochastic process defined on
a probability space (Θ′, T ′,P ′) (3) The uncertainties concerning the stochastic loads are
taken into account by replacing the nominal value of the matrix-valued spectral density
function (defined above) by a random matrix-valued spectral density function defined on
a probability space (Θ′′, T ,′′ P ′′) (4) The uncertainties induced by measurement errors.

2 Experimental measurements

The experimental setup is composed of a half fuel assembly. All the structure bathes
in a flow of a liquid (water) whose velocity is approximatively 1m/s. One of the fuel rod
is equipped with 12 strain sensors. The matrix-valued spectral density function of the
vector-valued measured random signal is estimated by the periodogram method.

Figure 2: PSD for the strain measured by sensors J1x (red line) and J5x (black line).

3 Reference computational model

The reference computational model is developed in order to construct an observation
which will be useful for the identification of the dispersion parameters δA

M and δA
K con-

trolling the level of uncertainties in the linear subsystem of the simplified computational
model. In the reference model, all the guide tubes, the fuel rods and the grids are modeled
by Timoshenko’s beams. The bumps and springs are modeled by springs elements. For
the fuel rod equipped with sensors for measurements, the bumps and springs are modeled
accurately by elastic stops. The reference computational model is composed of two sub-
systems. The first one is linear and composed of all the guide tubes, the non-equipped
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fuel rods and the grids. The second one is the nonlinear fuel rod which is equipped with
the sensors for measurements. The modal density of the reference computational model
is not homogeneous at all in the frequency band of analysis and have locally high values.
Such a situation induces many numerical problem for the calculation of the stationary re-
sponse of the stochastic nonlinear dynamical system with random parameters and random
excitation. For this reason, the reference model must be simplified from the engineering
design point of view.

4 Mean simplified computational model

The mean simplified computational model is derived from the reference computational
model. Indeed, the linear subsystem of the reference computational model is replaced
by an equivalent linear subsystem composed of two Timoshenko beams. The first one is
equivalent to the 25 guide tubes and the other one is equivalent to the 263 non-equipped
fuel rods. The nonlinear subsystem of the simplified computational model is the same
that the nonlinear subsystem of the reference computational model. The linear subsystem
and the linear part of the nonlinear subsytem are reduced using the Craig & Bampton
method.

5 Stochastic simplified computational model

The simplifications introduced in the simplified computational model induce model
uncertainties which have to be taken into account. In [?], the model uncertainties on
the linear subsystem of the reference computational model are taken into account using
the nonparametric probabilistic approach. For the linear subsystem, this method consists
in replacing the reduced mass and the reduced stiffness matrices of the mean reduced
simplified computational model by random matrices. The probability density functions
of these full random matrices depend on the dispersion parameters δA

M and δA
K which

are identified using the maximum likelihood method and the reference computational
model as an observation. Then, the stationary stochastic process Q(t) which is a vector
whose components are the physical DOF at the coupling interface and are the generalized
DOF for the two subsystems with fixed coupling interface satisfies the random differential
equation

[M]Q̈(t) + [D]Q̇(t) + [K]Q(t) + F
NL(Q(t), Q̇(t)) = F(t) . (1)

In this equation, the vector F
NL(Q(t), Q̇(t)) is the generalized localized nonlinear forces

due to the elastic stops. The detailed construction of the different terms in Eq. (??) can
be found in [?]. The stochastic equation (??) is solved using the Monte Carlo simulation
method.
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6 Identification of the uncertain stochastic loads

For the construction of stochastic process F̃
unc

, first we introduce a stochastic process
{F̃(t), t ∈ R} of the stochastic loads without uncertainties. It is then assumed that
stochastic process F̃ is a Gaussian stationary centered second-order stochastic process
defined on a probability space (Θ′, T ′,P ′) for which the matrix-valued spectral density

function is {[S
F̃
(ω)], ω ∈ R}. The uncertain stochastic process F̃

unc
is then constructed as

the stochastic process F̃ for which the deterministic function {[S
F̃
(ω)], ω ∈ R} is replaced

by a random function {[S
F̃
(ω)], ω ∈ R} defined on a probability space (Θ′′, T ′′,P ′′). The

probability distribution of random function {[S
F̃
(ω)], ω ∈ R} is constructed using the

maximum entropy principle and depends on a dispersion parameter δF . Such a stochastic
process and its generator of independent realizations are completely defined by (1) the
spectral density function [S

F̃
unc ] and (2) its dispersion parameter δF . So the identification

of the stochastic loads consists in identifying these two quantities.

6.1 Identification of the matrix-valued spectral density function of the un-

certain stochastic loads

We introduce the vector-valued stochastic process {Ξexp(t), t ∈ R} whose compo-
nents are the 7 measured strains for which the matrix-valued spectral density function
{[SΞ

exp(ω)], ω ∈ R} is estimated using the periodogram method. The corresponding
stochastic process {Ξ(t; r), t ∈ R} is calculated with the stochastic simplified compu-
tational model. The matrix-valued spectral density function {[SΞ(ω; r)], ω ∈ R} of the
stochastic process Ξ(t; r) is also estimated using the periodogram method. The identifica-
tion is then performed by minimizing the distance between the experimental matrix-valued
spectral density function [SΞ

exp(ω)] and the numerical matrix-valued spectral density func-
tion [SΞ(ω; r)].

6.2 Identification of the dispersion parameter δF .

We introduce the random variable Js which is such that for all θ ∈ Θ and for all
θ′′ ∈ Θ′′,

Js(θ, θ
′′) =

∫
B

‖[SΞ(ω, θ, θ′′)]‖
2
F dω . (2)

The measurements errors on the experimental variable Jexp
s are modeled by a given ad-

ditive noise E , defined on a probability space (Θ′′′, T ′′′,P ′′′), for which the probability
density function is e 7→ pE(e). We then have

Jer
s = Js + E . (3)

4



A. Batou, C. Soize

The dispersion parameter δF is identified using the maximum likelihood method for the
random variable Jer

s for which the probability density function is defined by

pJer

s
(y) =

∫ +∞

−∞

pJer

s
|E=e

(y|e)pE(e)de , (4)

where x 7→ pJer

s
|E=e

(y|e) is the conditional probability density function Jer
s given E = e. It

is assumed that the additive noise E is modeled by a centered Gaussian random variable
for which the standard deviation is given.

7 Random fretting-wear estimation

The random fretting-wear in the contacts rod/bump and rod/spring for the uncertain
system submitted to the uncertain stochastic excitation is based on the use of the Archard
power wear. The mean value, the dispersion (ratio of the standard deviation with the
mean value), and quantiles 5% and 95% of the random fretting-wear for the first grid
following x direction are reported in Table ??. The estimated dispersions are lower than
61 %.

mean dispersion quantile 5 % quantile 95 %

low bump 0.024 60.1%̇ 0.014 0.035

spring 0.029 51.7%̇ 0.025 0.036

high bump 0.014 55.4%̇ 0.01 0.019

Table 1: Statistics for the random fretting-wear on the first grid following x direction.

8 Conclusions

We have presented a complete methodology for the identification of turbulent fluid
forces applied to fuel assemblies using an uncertain simplified computational model and
experimental strain responses. All the sources of uncertainties have been taken into ac-
count in the identification process. The probabilistic model of model uncertainties in the
simplified computational model depends on dispersion parameters which have been iden-
tified using the maximum likelihood method and a reference computational model. The
uncertainties concerning the parametric representation of the uncertain stochastic loads
have also been taken into account. The uncertain stochastic loads have been identified
taking into account measurements errors. The identified stochastic loads has been applied
to the stochastic simplified computational model in order to construct the statistics on the
random fretting-wear of the fuel roads. The estimated dispersions of the random fretting-
wear are about 61%̇ that induces a relatively robustness with respect to uncertainties for
this complex industrial problem.
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