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Abstract

Selecting a particular kernel to filter a given digital signal can be a difficult task. One
solution to solve this difficulty is to filter with multiple kernels. However, this solu-
tion can be computationally costly. Using the fact that most kernels used for low-pass
signal filtering can be assimilated to probability distributions (or linear combinations
of probability distributions), we propose to model sets of kernels by convex sets of
probabilities. In particular, we use specific representations that allow us to perform a
robustness analysis without added computational costs. The result of this analysis is
an interval-valued filtered signal. Among such representations are possibility distri-
butions, from which have been defined maxitive kernels. However, one drawback of
maxitive kernels is their limited expressiveness. In this paper, we extend this approach
by considering another representation of convex sets of probabilities, namely clouds,
from which we define cloudy kernels. We show that cloudy kernels are able to repre-
sent sets of kernels whose bandwidth is upper and lower bounded, and can therefore
be used as a good trade-off between the classical and the maxitive approach, avoid-
ing some of their respective shortcomings without making computations prohibitive.
Finally, the benefits of using cloudy filters is demonstrated through some experiments.

Keywords: Signal processing, interval-valued fuzzy sets, generalised p-boxes.

1. Introduction

Reconstructing a continuous signal from a set of sampled and possibly corrupted
observations is a common problem in both digital analysis and signal processing [17].
In this context, kernel-based methods can be used for different purposes: reconstruc-
tion, impulse response modelling, interpolation, linear and non-linear transformations,
stochastic or band-pass filtering, etc.

Most kernels used in signal processing are summative kernels, or a linear combi-
nation of summative kernels. A summative kernel is a positive function whose integral
is equal to one. A summative kernel is therefore formally equivalent to a probability
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distribution, and can be identified with it. In practice, summative kernels used for sig-
nal filtering are often bounded, continuous, monomodal and symmetric, and we will
therefore focus our study on such kernels.

However, how to choose the right kernel together with its parameters to filter
a given signal is often a tricky question. To overcome this difficulty, Loquin and
Strauss [19] have proposed to use maxitive kernels instead of summative kernels. Max-
itive kernels are formally equivalent to possibility distributions [12], that can be used
to model convex sets of summative kernels (or sets of probability distributions [13])
having an upper-bounded bandwidth. Maxitive kernels can be used to perform a ro-
bustness or sensitivity analysis of the filtering process in a computationally efficient
way. This analysis have some interesting features: for example, the maxitive kernel
based filtering approach comes with quantification of the noise level altering the con-
sidered signal [20].

The output signal obtained by using a maxitive kernel on an input digital signal is
interval-valued. The bounds of this signal corresponds to the envelope of output signals
that would have been obtained by filtering with the corresponding set of summative
kernels. In this sense, the maxitive kernel approach and its generalisation presented in
this paper are different from fuzzy filtering approaches [23, 1] or usual robust filtering
approaches [16, 21]. Indeed, these approaches aim at obtaining an optimal and flexible
filter able to cope with situations deviating from the model initial hypothesis, but still
deliver a point-valued signal as their output.

Two of the main interests of using maxitive kernels as robust models are their sim-
plicity of representation and the low computational cost associated to the estimation
of the (interval-valued) filtered signal. The price to pay for such features is a limited
expressiveness, i.e., the fact that it may be impossible to exclude some unwanted sum-
mative kernels from the represented set of summative kernels. For instance, as the
bandwidth of summative kernels included in maxitive kernels is not lower bounded,
this set always includes the Dirac measure.

To overcome this shortcoming of maxitive kernels while keeping their interesting
features, we propose to use another uncertainty representation called clouds [22], call-
ing the kernels defined from them cloudy kernels. Cloudy kernels can act as a compro-
mise between summative and maxitive kernels. As we shall see, the interest of using
cloudy kernels is two-fold: first, they are more expressive than maxitive kernels, the
latter being a special case of the former [9], and can take account of additional infor-
mation or wanted features; second, the computational complexity associated to their
use remains very low, an important feature in signal processing.

Nowadays signal processing is usually achieved by using computers : the signal
to be processed is a digital signal, i.e. a sampled and quantized version of the real
continuous signal. We thus consider, in this paper, an algorithmic approach equivalent
to the usual signal processing methods that go from a continuous to a discrete setting
(see [24] for example).

Using sets of kernels within a discrete setting can also model an imperfectly known
sampling process. Indeed, perfect sampling is usually modeled by the multiplication of
the continuous signal with a bounded Dirac comb, however such an idealistic situation
barely exists: the measurement devices and the analog to digital converters generally
induce a smoothing effect. In theory, this smoothing effect can be easily modeled by
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convoluting the signal with the impulse response of the sensory device (measurement
and converter), this impulse response being more often than not a summative kernel.
Thus going from continuous to discrete convolution involves convoluting both the in-
volved filtering kernel and the signal with a smoothing (summative) kernel, provided
this latter one is known[4]. However, when considering a digital signal, the sampling
kernel which is the impulse response of the sensory device is often unknown. Then
digitalizing the kernel should rather involve a whole family of possible sampling ker-
nels.

We start by introducing summative and maxitive kernels, before showing how
cloudy kernels can act as intermediate representations between them (Section 2). Sec-
tion 3 then studies the computational aspects of using cloudy kernels and provides an
efficient algorithm to perform signal filtering with such kernels. The results of some
experiments on different signals are then discussed (Section 4).

2. Between summative and maxitive kernels: cloudy kernels

In this section, we review the basics about summative and maxitive kernels, before
introducing cloudy kernels (i.e., kernels based on clouds). We then relate them to the
two former representations, and show that they can be used to model sets of summative
kernels with a lower-bounded (and upper-bounded) bandwidth.

For readability purposes, we will restrict ourselves to representations on the real
line R and its discretization X . However, extensions of the presented methods to
some product space Rp is straightforward.

2.1. Summative kernels
We define a summative kernel µ as a Lebesgue-measurable positive function µ :

R→ R+ satisfying the normalisation condition
∫

∞

−∞
µ(x)dx = 1. It is formally equiv-

alent to a probability distribution on the real line and can be interpreted as such. The
associated probability measure, a function Pµ : 2|R|→ [0,1] from the measurable sub-
sets of R to the unit interval, is such that for any measurable subset A⊆ R (also called
an event) we have

Pµ(A) =
∫

A
µ(x)dx.

In this paper, we often consider families of bounded, continuous, symmetrical and
mono-modal kernels parameterized by their bandwidth. In order to improve readability,
we will use the notation κ when referring to kernels belonging to such families, while
keeping µ as a notation for generic summative kernels. Let κ denote a basic continuous
summative kernel such that κ(x) = κ(−x), whose support is [−1,1]. We denote by κ∆

the summative kernel derived from κ by: κ∆(x) = 1
∆

κ( x
∆
). This means that the kernel

κ∆ has a bandwidth ∆ and is defined on a compact interval [−∆,∆]⊆R centred around
zero. Typical kernels belonging to such families are recalled and represented in Table 1.

To a summative kernel κ∆ can be associated its (continuous) cumulative distribution
function Fκ∆

: [−∆,∆]→ [0,1]. For any x ∈ [−∆,∆], we have

Fκ∆
(x) =

∫ x

−∆

κ∆(x)dx = Pκ∆
([−∆,x]), (1)
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Name κ∆ Shape

Epanechnikov κ∆(x) = 1
∆

3
4 (1− ( x

∆
)2)I∆

x
0

Triangular κ∆(x) = (1−| x
∆
|)I∆

x
0

Uniform κ∆(x) = 1
2∆

I∆

x
0

Truncated
Gaussian

κ∆(x) = 4
∆
√

2π
exp(−( x

∆
)2)I∆

x
0

Table 1: Some classical summative kernels
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and Fκ∆
is such that Fκ∆

(0) = 1/2 and F(x)+F(−x) = 1. Similarly, to any summative
kernel µ its cumulative distribution Fµ can be associated through Eq. (1).

2.2. Maxitive kernels

A maxitive kernel π is a normalised function π : R→ [0,1] with at least one x ∈ R
such that π(x) = 1. A maxitive kernel can be associated with a possibility distribu-
tion [12] and its two (lower and upper) confidence measures, respectively called neces-
sity and possibility measures. These measures are dual (in the sense that providing one
of them on all events is sufficient to retrieve the other measure) and are such that, for
any event A⊆ R, we have:

Π(A) = sup
x∈A

π(x), N(A) = 1−Π(Ac) = inf
x∈Ac

(1−π(x)), (2)

with Ac the complement of A. The properties of these lower and upper confidence mea-
sures are what makes maxitive kernels instrumental and computationally tractable tools
to filter signals with sets of kernels. Note that a maxitive kernel is formally equivalent
to a fuzzy set [26]. From a basic maxitive kernel π whose support is [−1,1], another
maxitive kernel π∆ whose bandwidth is [−∆,∆] can be computed by the following
equation:

π∆(x) = π(
x
∆
).

A maxitive kernel defines a convex set of summative kernels Pπ whose associated
probability measures are bounded by the necessity and possibility measures induced
by π:

Pπ = {µ ∈ PR|∀A⊆ R,N(A)≤ Pµ(A)≤Π(A)},

with PR being the set of all summative kernels over R, Π(A) and N(A) being the
possibility and necessity measures induced by π . If a given summative kernel µ is in
Pπ , we say, by a small abuse of language, that π includes µ (or that µ is included in
π). Moreover, if a kernel κ is included in π then κ∆ is included in π∆. This particular
interpretation, together with the fact that Eq. (2) are simple to evaluate (compared to
the evaluation of a probability measure from a summative kernel, it simply consists in
replacing the summation with a maximum), makes maxitive kernels instrumental tools
to filter signals when the identification of a single summative kernel is difficult [19].

There are many ways to construct a maxitive kernel that includes a given set of
summative kernels [2, 11]. Here, we will consider the so-called Dubois-Prade transfor-
mation. This transformation provides a way to build the most specific maxitive kernel
πµ including a given summative kernel µ (in the sense that any maximitive kernel π ′

such that π ′≤ πµ with at least one x such that π ′(x)< πµ(x) does not include µ). When
one wants to build a maxitive kernel including a set P of summative kernels, it is then
sufficient to take the maximum of each maxitive kernel built from each summative
kernel in P , using the Dubois-Prade transformation each time.

When sets of summative kernels one must consider belong to a particular family
κ∆, we just need to consider the Dubois-Prade transformation of the summative kernel
with the largest bandwidth to build a maxitive kernel including all summative kernels
of the set. This corresponds to the case where the shape of the suitable summative
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kernel is known but where the suitable bandwidth is ill-known. It is then sufficient to
consider the kernel κ∆ having the maximal bandwidth and to apply the Dubois-Prade
transformation to obtain a maxitive kernel including all other summative kernels κ∆′

with ∆′ ≤ ∆. Also, in this case the Dubois-Prade transformation can be formulated in a
simple way. Given a summative kernel κ∆, the maxitive kernel πκ∆

resulting from the
Dubois-Prade transformation is such that

πκ∆
(x) =

{
2∗Fκ∆

(x) if x≤ 0
2∗ (1−Fκ∆

(x)) if x > 0

And π+
κ∆
,π−κ∆

denote the following functions

π
−
κ∆
(x) =

{
πκ∆

(x) if x≤ 0
1 if x > 0, (3)

π
+
κ∆
(x) =

{
1 if x≤ 0

πκ∆
(x) if x > 0. (4)

The convex set Pπκ∆
includes, among others, all summative kernels κ∆′ with ∆′ ∈

[0,∆] [2]. Among such summative kernels is the Dirac distribution centered in 0, de-
noted by δ0. This means that the use of maxitive kernels allows us to consider fam-
ilies of kernels whose bandwidths are upper-bounded, but not lower-bounded. This
is clearly a shortcoming of maxitive kernels, as in many applications involving signal
filtering, the use of the Dirac measure is unwanted (e.g., for modeling a set of smooth-
ing kernels). In such cases, it is desirable to consider families of kernels where the
bandwidth is both lower- and upper-bounded.

In the next sections, we show that the recent uncertainty representation called
clouds can meet this requirement while preserving computational efficiency. We call
(imprecise) kernels derived from such representation cloudy kernels.

2.3. Cloudy kernels
Cloud, the uncertainty representation used to model cloudy kernels, was introduced

by Neumaier [22] as a way to deal with imprecise probabilistic knowledge. Clouds on
the real line are defined as follows:

Definition 1. A cloud is a pair of mappings [π,η ] from R to the unit interval [0,1] such
that η ≤ π and there is at least one element x ∈ R such that π(x) = 1 and one element
y ∈ R such that η(y) = 0.

Following Neumaier [22], a cloud [π,η ] induces a probability family P[π,η ] such that

P[π,η ] = {µ ∈ PR|Pµ({x|η(x)≥ α})≤ 1−α ≤ Pµ({x|π(x)> α})}. (5)

Similarly to the necessity and possibility measures of maxitive kernels, P[π,η ] induces
lower and upper confidence measures P[π,η ],P[π,η ] such that, for any event A⊆ R,

P[π,η ](A) = inf
µ∈P[π,η ]

Pµ(A) and P[π,η ](A) = sup
µ∈P[π,η ]

Pµ(A).
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x
0

1

η− η+

π− π+

∆inf

∆sup

Figure 1: Example of a cloudy kernel

Also note that, formally, clouds are equivalent to interval-valued fuzzy sets [14] sat-
isfying additional boundary conditions (i.e., π(x) = 1 and η(y) = 0). They thus pro-
vide a semantic interpretation for this type of modelling in terms of uncertainty rep-
resentations. A particularly interesting family of clouds are comonotonic clouds, also
called generalised p-boxes [8] (due to their relationship with another popular uncer-
tainty model called p-box [15]). Comonotonic clouds are defined as follows:

Definition 2. A cloud is said to be comonotonic if ∀x,y ∈ R, π(x) < π(y)⇒ η(x) ≤
η(y).

A cloudy kernel is simply a pair of functions [π,η ] that satisfies Definition 1. The
notion of cloudy kernel is illustrated in Figure 1. As for maxitive kernels, we can
associate cloudy kernels with sets of summative kernels by identifying P[π,η ] with
the corresponding set of summative kernels. In this paper, we will restrict ourselves to
cloudy kernels represented by continuous, bounded, symmetric and unimodal comono-
tonic clouds. Again, to make the notations easier, we will consider that they are defined
on the interval [−∆,∆].

Definition 3. A continuous, unimodal and symmetric cloudy kernel defined on [−∆,∆]
is such that, for any x∈ [−∆,∆], η(x) = η(−x), π(x) = π(−x) and η ,π are continuous
non-decreasing (non-increasing) in [−∆,0] ([0,∆]).

Such a cloudy kernel is pictured in Figure 1. As done in the case of maxitive kernels
with Eq. (3) and (4), given a unimodal symmetric cloudy kernel, η+,η− denote the
functions such that

η
−(x) =

{
η(x) if x≤ 0

1 if x > 0 (6)

η
+(x) =

{
1 if x≤ 0

η(x) if x > 0. (7)

Two particular cases of cloudy kernels that will be of interest here correspond to so-
called thin and fuzzy clouds.
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x
0

1

η− = π− η+ = π+

Figure 2: Example of a thin cloud

Definition 4. A cloudy kernel is said to be thin if ∀x ∈ R, π(x) = η(x).

Definition 5. A cloudy kernel is said to be fuzzy if ∀x ∈ R, η(x) = 0.

Figure 2 pictures a thin cloudy kernel. Note that the set of summative kernels
P[π,η ] modeled by a fuzzy cloudy kernel [π,η ] coincide with the set modeled by the
maxitive kernel π alone [9], showing that maxitive kernels are particular instances of
cloudy kernels. We now recall some properties of clouds and cloudy kernels that will
be used in this study.

Proposition 1. [22] A cloudy kernel [π,η ] is included in another one [π ′,η ′] (in the
sense that P[π,η ] ⊆P[π ′,η ′]) if and only if, for all x ∈ R, [π(x),η(x)]⊆ [π ′(x),η ′(x)].

Hence, given a cloudy kernel [π,η ], any thin cloud [π ′,η ′] such that η ≤ η ′ = π ′ ≤
π is included in [π,η ]. Also note that if [π,η ] is a continuous, symmetric unimodal
cloud and [π ′,η ′] a continuous, symmetric unimodal thin cloud with the same mode
as [π,η ], then if [π ′,η ′] does not satisfy this condition (i.e. there is an x such that
η ′(x)< η(x) or π ′(x)> π(x)), we have P[π,η ]∩P[π ′,η ′] = /0.

Proposition 2. [9] The convex set P[π,η ] induced by a thin cloudy kernel [π,η ] in-
cludes the two summative kernels having F−,F+ for cumulative distributions such that,
for all x ∈ R

F−(x) = η
−(x) = π

−(x), (8)

F+(x) = 1−η
+(x) = 1−π

+(x). (9)

Note that, since P[π,η ] is a convex set, every convex combination of F−,F+ is also in
the thin cloudy kernel.

2.4. Summative kernel approximation with cloudy kernels

Now that cloudy kernels have been introduced, let us show how they can solve the
problem occurring with the use of maxitive kernels, i.e., how they can model families
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of kernels κ∆ where ∆ is lower- and upper-bounded. Note that from now on, we will
only deal with continuous, unimodal and symmetric cloudy kernels (kernels satisfying
Definition 3) and their discretization. Assume that we want a model including the
family of kernels κ∆ such that ∆ ∈ [∆inf,∆sup], and no other kernel of this family with
∆ outside this interval. To satisfy this requirement, we propose to consider the cloudy
kernel [π,η ][∆inf,∆sup]

such that, for any x ∈ R:

π∆sup(x) =
{

2∗F∆sup(x) if x≤ 0
2∗ (1−F∆sup(x)) if x≥ 0 (10)

η∆inf(x) =
{

2∗F∆inf(x) if x≤ 0
2∗ (1−F∆inf(x)) if x≥ 0 (11)

We now show that this cloudy kernel contains the two kernels having ∆inf,∆sup for
bandwidth , as well as all the kernels of the same family having a bandwidth ∆ ∈
[∆inf,∆sup].

Proposition 3. The cloudy kernel [π,η ][∆inf,∆sup]
includes the two summative kernels

κ∆inf and κ∆sup .

Proof To prove this proposition, we will simply show that the cumulative distribution
F∆inf (resp. F∆sup ) of κ∆inf (resp. κ∆sup ) is included in the cloudy kernel [π,η ][∆inf,∆sup]

.
First, from the definition of our cloudy kernel, thin cloudy kernels having π∆sup and

η∆inf as distributions are both included in [π,η ][∆inf,∆sup]
(Proposition 1).

Let F−π ,F+
π and F−η ,F+

η denote the cumulative distributions given by Eq. (8)-(9)
respectively applied to the thin cloudy kernels π∆sup and η∆inf . By Proposition 2, they
are included in the cloudy kernel [π,η ][∆inf,∆sup]

, and since P[π,η ][∆inf,∆sup]
is a convex

set, 1/2F−π + 1/2F+
π and 1/2F−η + 1/2F+

η are also included in the kernel. As these two
convex mixtures are equal to F∆inf ,F∆sup , this ends the proof. 2

Proposition 4. The cloudy kernel [π,η ][∆inf,∆sup]
includes any summative kernel κ∆ (de-

rived from κ) such that ∆ ∈ [∆inf,∆sup].

Proof For a given kernel κ∆, F∆ denotes its cumulative distribution. We know from
Proposition 2 that the thin cloudy kernel [π,η ]F∆

such that

π∆(x) =
{

2∗F∆(x) if x≤ 0
2∗ (1−F∆(x)) if x≥ 0

includes the cumulative distribution F∆. Moreover, F∆inf(x) ≤ F∆(x) ≤ F∆sup(x) for
x ≤ 0, and F∆sup(x) ≤ F∆(x) ≤ F∆inf(x) for x ≥ 0, due to the symmetry of considered
summative kernels. This means that π∆sup ≤ π∆ ≤ η∆inf , therefore the thin cloudy ker-
nel [π,η ]F∆

is included in [π,η ][∆inf,∆sup]
, and this ends the proof. 2

These two propositions show that cloudy kernels can be built to include all sum-
mative kernels that have a bandwidth between ∆inf and ∆sup. However, this property
is also fulfilled by maxitive kernels. Let us now show that, in contrast with maxitive

9



kernels, they can be built to exclude summative kernels with a bandwidth smaller than
∆inf, including the Dirac measure.

Proposition 5. A kernel κ∆, derived from κ , having a bandwidth ∆ such that ∆ < ∆inf
or ∆ > ∆sup is not included in the cloudy kernel [π,η ][∆inf,∆sup]

Proof In the case of ∆ < ∆inf, we have F∆(x)≤ F∆inf(x) for x≤ 0, and F∆(x)≥ F∆sup(x)
for x≥ 0 (with at least one x ∈R such that the inequality is strict). When ∆ > ∆sup, we
have F∆(x)≥ F∆sup(x) for x≤ 0, and F∆(x)≤ F∆inf(x) for x≥ 0 (with at least one x ∈ R
such that the inequality is strict). Hence, the thin cloudy kernels [π,η ]F∆

such that

π∆(x) =
{

2∗F∆(x) if x≤ 0
2∗ (1−F∆(x)) if x≥ 0

does not satisfy Proposition 1, so κ∆ is not included in P[π,η ][∆inf,∆sup]
when ∆ < ∆inf or

∆ > ∆sup. 2

Hence using cloudy kernels allows us to remove some of the undesired kernels in-
cluded in maxitive kernels. Still, as for maxitive kernels, other kernels than the summa-
tive kernels of the κ∆ family are included in P[π,η ][∆inf,∆sup]

. However, the next propo-
sition shows that using cloudy kernels also limits the bandwidth of such summative
kernels.

Proposition 6. Any summative kernel µ , not derived from κ and included in P[π,η ][∆inf,∆sup]

has a bandwidth ∆ ∈ [∆in f /2,∆sup]

Proof The fact that the bandwidth of any kernel in P[π,η ][∆inf,∆sup]
is bounded above

by ∆sup follows from the fact that [π,η ][∆inf,∆sup]
is included in the maxitive kernel

modelled by π∆sup .
Now, let us prove that the bandwidth of any kernel in P[π,η ][∆inf,∆sup]

is bounded
below by ∆in f /2. First, consider inequalities given by Eq. (5) and a level α = 1− ε .
Summative kernels µ in P[π,η ][∆inf,∆sup]

must satisfy the inequality

ε ≤ Pµ([(π
−
∆sup

)−1(1− ε),(π+
∆sup

)−1(1− ε)]).

As ε → 0, the interval [(π−
∆sup

)−1(1− ε),(π+
∆sup

)−1(1− ε)] tends to {0}, which means
that P[π,η ][∆inf,∆sup]

({0±β})> 0 for any β > 0. This means that any summative kernel
in P[π,η ][∆inf,∆sup]

must be strictly positive in the immediate neighborhood of the point
{0}

Now, still consider inequalities given by Eq. 5 and a level α = ε . Summative
kernels µ in P[π,η ][∆inf,∆sup]

must satisfy the inequality

ε ≤ Pµ([(η
−
∆inf

)−1(ε),(η+
∆inf

)−1(ε)]c),

with Ac being the complement of A. As ε→ 0, the interval [(η−
∆inf

)−1(ε),(η+
∆inf

)−1(ε)]c

tends to [−∆inf,∆inf]
c, so P[π,η ][∆inf,∆sup]

([−∆inf +β ,∆inf−β ]c) > 0 for any β > 0. This
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means that any summative kernel in P[π,η ][∆inf,∆sup]
must be strictly positive for some

values in the immediate neighborhood of either {−∆inf} or {∆inf}.
This shows that the support of any µ in P[π,η ][∆inf,∆sup]

is lower-bounded by ∆in f /2,
as any µ ∈P[π,η ][∆inf,∆sup]

will be strictly positive around {0} and around either {−∆inf}
or {∆inf}. 2

Note that the lower-bound ∆in f /2 is actually a minimum. Indeed, the summative
kernel having for cumulative distribution F =η

−
∆inf

is in P[π,η ][∆inf,∆sup]
and has a support

equal to ∆in f /2.

3. Practical computations

In this section, we discuss how digital filtering can actually be achieved with cloudy
kernels while maintaining low computational complexity. Note that while filtering
kernels used in a particular problem are usually specified in a continuous setting, their
use in computations is discrete. Hence in this section we consider that we are working
on a finite domain X of N elements, that corresponds here to a finite sampling of the
(continuous) signal.

We first describe how discretisation of the cloudy kernels introduced in the previous
section is done, so that we can move from the continuous to the discrete case. We
then explain how classical expectation operators (equivalent to filtering with summative
kernels) can be extended through the use of Choquet integrals. We first describe the
Choquet integral [5, 6] and its links with expectation operators, summative kernels and
maxitive kernels. We then propose an efficient algorithm for computing this Choquet
integral for cloudy kernels.

3.1. Discretising cloudy kernels

Let [π,η ][∆inf,∆sup]
,η∆inf be the cloudy kernel selected to filter the signal f , y ∈ R

the value for which we want to reconstruct the signal value and X the set of sampled
values (i.e., values x for which the signal value f (x) is known) that lies within the
interval [y−∆sup,y+∆sup].

The discrete cloud [π,η ] necessary to achieve the computations is built from X
and [π,η ][∆inf,∆sup]

,η∆inf in the following steps:

• let x∗ ∈X = argmaxx∈X π∆sup(x). Set π(x∗) = 1;

• for all x 6= x∗ in X , set π(x) = π∆sup(y− x);

• let x∗ ∈X = argminx∈X η∆inf(x). Set η(x∗) = 0;

• for all x 6= x∗ in X , set π(x) = π∆sup(y− x).

Values1 π(x∗) and η(x∗) ensure that the discretised cloudy kernel satisfies Definition 1.

1If X has multiple elements corresponding to argmaxx∈X π∆sup (x) or argminx∈X η∆inf (x), for all of
them π(x∗) = 1 and η(x∗) = 0, respectively.
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Note that it is possible to define a more conservative discretisation [π ′,η ′], i.e. for
any x 6= x∗, define π ′(x) := min{π(y)|y ∈X ,π(y) > π(x)} and for any x 6= x∗, de-
fine η ′(x) := max{η(y)|y ∈X ,η(y) < η(x)} (π ′ and η ′ being equal to π and η for
elements x∗ and x∗, respectively). If N is low or if the cloudy kernel [π,η ][∆inf,∆sup]

is
thin, using this latter discretisation is better as it is a guaranteed outer-approximation of
[π,η ][∆inf,∆sup]

. However, in practical applications, the cloudy kernel is not thin (other-
wise it would be better and simpler to filter with the summative kernel it approximates)
and N is usually sufficiently high, so that the difference between filtering with [π,η ]
or [π ′,η ′] is negligible. This is why we prefer to discretise [π,η ][∆inf,∆sup]

into [π,η ],
which is computationally less complex to evaluate. Finally, it should be noticed that if
[π,η ][∆inf,∆sup]

is comonotonic, so are [π,η ] and [π ′,η ′].

3.2. Expectation operator and Choquet integral

Consider now an arbitrary indexing X = {x1, . . . ,xN} of domain X elements (not
necessarily the usual ordering between real numbers) and a real-valued function f
(here, the sampled values of the signal) on X , together with a discretised summative
kernel µi, i = 1, . . . ,N, where µi = µ(xi).

Classical convolution between the discretised kernel µ and the sampled signal f is
equivalent to applying an expectation operator, i.e. computing Eµ( f ) such that

Eµ( f ) =
N

∑
i=1

µi f (xi).

When working with a set P of kernels defined on X , the expectation operator E
becomes imprecise, and its result when applied to f is an interval-valued expectation
[E( f ),E( f )] such that

E( f ) = inf
µ∈P

Eµ( f ), E( f ) = sup
µ∈P

Eµ( f ). (12)

In general, these bounds are not easy to compute. However, in some specific cases,
practical tools are available that make them easily computable. First recall [25] that
the lower and upper confidence measures induced by P on an event A ⊆X are such
that P(A) = infµ∈P Pµ(A) and P(A) = infµ∈P Pµ(A) and are dual in the sense that
P(A) = 1−P(Ac) for any A⊆X . If P satisfies a property of 2-monotinicity, that is if
for any pair {A,B} ⊆X we have P(A∩B)+P(A∪B) ≥ P(A)+P(B), then Eq. (12)
can be solved by using the Choquet integral.

Consider a positive bounded function2 f on X . If () denotes a reordering of el-
ements of X such that f (x(1)) ≤ . . . ≤ f (x(N)), Choquet integrals giving lower and

2Assuming positivity is not constraining here, since if c is a constant E( f + c) = E( f )+ c and the same
holds for E. Therefore any bounded function can be made positive by a simple translation.
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upper expectations are given by

CP( f ) = E( f ) =
N

∑
i=1

( f (x(i))− f (x(i−1))P(A(i)),

CP( f ) = E( f ) =
N

∑
i=1

( f (x(i))− f (x(i−1))P(A(i)),

with f (x(0)) = 0 and A(i) = {x(i), . . . ,x(N)}. The main difficulty is then to compute the
lower and upper confidence measures for the N sets A(i).

3.3. Imprecise expectations with cloudy kernels

Since cloudy kernels satisfying Definition 2 (this is the case here) induce lower
confidence measures that are ∞-monotone [8, 9] (an even more restrictive property
than 2-monotonicity), the Choquet integral can be used to compute expectations. Let
us now see how the lower confidence measures on various events can be efficiently
computed (upper confidence measures can be obtained by duality).

Cloudy kernels [π,η ] defined on X induce a complete pre-order ≤[π,η ] between
elements of X , in the sense that x≤[π,η ] y if and only if η(x)≤ η(y) or π(x)≤ π(y).
Given a set A ⊆X and this pre-ordering, xA and xA respectively denote its smallest
and greatest elements with respect to ≤[π,η ]. We now introduce the concepts of [π,η ]-
connected sets, since these sets are instrumental in the computation of confidence mea-
sures induced by cloudy kernels.

Definition 6. Given a cloudy kernel [π,η ] over X , a subset C ⊆X is called [π,η ]-
connected if it contains all elements between xC and by xC, that is

C = {x ∈X |xC ≤[π,η ] x≤[π,η ] xC}.

Let C be the set of all [π,η ]-connected sets of X . Now, any event A can be
inner approximated by another event A∗ such that A∗ =

⋃
C∈C ,C⊆A C is the union of all

maximal [π,η ]-connected sets included in A. Due to an additivity property of the lower
confidence measure induced by comonotonic clouds on [π,η ]-connected sets [7], we
have

P(A) = P(A∗) = ∑
C∈C ,C⊂A

P(C). (13)

To simplify the notations used in the filtering algorithm, we consider that elements
of X are indexed accordingly to ≤[π,η ], i.e. elements x1, . . . ,xN are indexed from the
start such that i≤ j if and only if η(xi)≤ η(x j) or π(xi)≤ π(x j). Given this ordering,
the lower confidence measure of a [π,η ]-connected set C = {xi, . . . ,x j} is given by the
simple formula3

P(C) = max{0,η(x j+1)−π(xi−1)},

3Note that every element x ∈X such that x =[π,η ] xi and y ∈X such that y =[π,η ] xi must be in the
connected set.

13



x
x7

1

x6 x5x4 x3x2 x1
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x1 ≤[π,η ] x2 ≤[π,η ] x3 ≤[π,η ] x4 =[π,η ] x5 ≤[π,η ] x6 ≤[π,η ] x7

Figure 3: Discretization of cloudy kernels and indexing of elements around x7 (each xi corresponds to a
sampled value).

with η(xN+1) = 1 and π(x0) = 0. As≤[π,η ] is a pre-order, we have to be cautious about
possible equalities between some elements. In our case (discretisation of unimodal,
symmetric cloudy kernels), at most two elements can be equal with respect to ≤[π,η ]

(this will often be the case, as sampling is often performed at regular time intervals).
Figure 3 illustrates a cloudy kernel with 7 (irregularly) sampled values, along with the
associated indexing and pre-order.

Algorithm 1 describes how to compute lower confidence measures and the incre-
mental summation giving the lower expectation, while Example 1 provides an illustra-
tion of the process. At each step, the [π,η ]-connected sets forming A(i) are extracted
and the corresponding lower confidence measure is computed. The Choquet integral
value is then incremented. Note that two orderings and set of indices are used in the
algorithm: the one where elements are ordered by values of f , denoted by (), and the
other where elements are ordered using≤[π,η ], without parenthesis. Unless the function
f is increasingly monotonic in R, the indexing following the natural order of numbers
is never used.

Algorithm 1: Algorithm for lower expectations: basic ideas
Input: f ,[π,η ], N (number of discretised points)
Output: Lower/upper expectations
E= 0 ;
for i = 1, . . . ,N do

Compute f (x(i))− f (x(i−1)) ;
Extract [π,η ]-connected sets such that A(i) =C1∪ . . .∪CMi ;
With C j = {xk| j ≤ k ≤ j} ;
Compute P(A(i)) = ∑

Mi
j=1 max(0,η(x j+1)−π(x j−1)) ;

E= E+[ f (x(i))− f (x(i−1))]×P(A(i))
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Example 1.

x1 x2 x3 x4 x5 x6 x7
η 0 0 0 0.2 0.2 0.6 1
π 0.3 0.4 0.5 0.6 0.6 0.8 1
f 2 9 8 10 5 6 12
() x(1) x(5) x(4) x(6) x(2) x(3) x(7)

Table 2: Values for example 1

Consider the situation pictured in Fig. 3 (i.e. triangular distributions induced by
uniform kernels). For each sampled item x and associated sampled value f (x), we
consider that the corresponding distribution values are [η(x),π(x)]. Also note that,
for symmetrical unimodal cloudy kernels, the values are naturally ordered w.r.t. their
distance from the center of the cloud (i.e., the value for which the signal value has to
be reconstructed). The values of discretised f ,η and π are summarised in Table 2.

If we now apply Algorithm 1 with the lower probability, we get the following steps:

1. i=1, f (x(i))− f (x(i−1)) = 2, A(i) = X , P(A(i)) = 1→ E= 2
2. i=2, f (x(i))− f (x(i−1)) = 3, A(i) =C1 = {x2, . . . ,x7}, P(A(i)) = max{0,η(x8)−

π(x1)}= 0.7→ E= 3.8
3. i=3, f (x(i))− f (x(i−1))= 1, A(i)=C1∪C2 = {x2,x3}∪{x6,x7}, P(A(i))=max{0,η(x4)−

π(x1)}+max{0,η(x8)−π(x5)}= 0.4→ E= 4.2
4. i=4, f (x(i))− f (x(i−1))= 2, A(i)=C1∪C2 = {x2,x3}∪{x7}, P(A(i))=max{0,η(x4)−

π(x1)}+max{0,η(x8)−π(x6)}= 0.2→ E= 4.2+2×0.2 = 4.6
5. i=5, f (x(i))− f (x(i−1))= 1, A(i)=C1∪C2 = {x2}∪{x7}, P(A(i))=max{0,η(x3)−

π(x1)}+max{0,η(x8)−π(x6)}= 0.2→ E= 4.8
6. i=6, f (x(i))− f (x(i−1))= 1, A(i)=C1 = {x7}, P(A(i))=max{0,η(x8)−π(x6)}=

0.2→ E= 5
7. i=7, f (x(i))− f (x(i−1)) = 2, A(i) = {x7}, P(A(i)) =max{0,η(x8)−π(x6)}= 0.2,

E= 5.4

The lower expectation is finally 5.4. Note that, from step i = 3 to step i = 7, element
x4 is ignored, due to the fact that x4 =[π,η ] x5 (hence, any set including x4 but not x5 is
treated as if x4 was not included in it).

4. Experiment: comparison with summative and maxitive kernels

In this section, we illustrate the advantage of using cloudy kernels rather than sim-
ple maxitive kernels when filtering a noisy signal. Figure 4 shows a (noisy) signal that
has to be filtered by a smoothing kernel. Imprecise kernels (cloudy or maxitive) can
be used if the exact shape of the impulse response of the filter is unknown, but it is
assumed that this filter is symmetric, centred and has lower and upper bounded band-
widths ∆ ∈ [∆inf,∆sup]. Such information can be modelled by a single imprecise kernel
and filtering can be achieved by an efficient algorithms, instead of considering multiple
filtering with different summative kernels.
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The signal pictured in Figure 4 was obtained by superposing nine sine waves whose
frequencies were randomly chosen, and were corrupted by adding a normal centred
noise with a standard deviation of 5.

We consider here the family of uniform summative kernels with a bandwidth ∆ ∈
[0.018,0.020]. The most specific (triangular) maxitive kernel that dominates this family
is the triangular kernel with a bandwidth equal to 0.02, i.e. the maxitive kernel with
a bandwidth equating the upper bound of ∆ (see [19]). The bounds obtained by using
such a kernel are displayed in Figure 5 (solid red and blue lines). As expected, the
absence of lower bounds and the inclusion of the Dirac measure inside the maxitive
kernel gives very large upper and lower filtered bounds, that encompass the whole
signal (i.e. the signal is always in the interval provided by the maxitive kernel). Given
our knowledge about the bandwidth, it is clearly desirable to also take account of the
lower bound 0.018.

We can fulfil this need by using the cloudy kernel presented in this paper. Indeed, a
more specific family of kernels that takes the lower bound into account can be obtained
by using the cloudy kernel composed of two triangular maxitive kernels, with the lower
kernel having a bandwidth ∆inf = 0.018 and the upper kernel having a bandwidth ∆sup =
0.020. The result of filtering the signal with Algorithm 1 is also pictured in Figure 5
(dotted red and blue lines), where we can see that the lower and upper bounds are now
much tighter, as expected. Hence, we now have bounds with good confidence levels
(as all desired kernels are considered), and which are more informative. Of course, the
bounds obtained by cloudy filtering are always included in those obtained by maxitive
filtering.

To illustrate the capacity of maxitive and cloudy kernels to encompass the desired
kernels, in Figure 6 we have plotted ten filtered signals (in cyan) obtained by using
different symmetric centered summative kernels whose bandwidth belongs to the inter-
val [∆inf,∆sup]. Every filtered signal belongs to the interval-valued signal obtained by
using the cloudy kernel based approach.
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Figure 5: Superposition of the original signal (cyan), the maxitive imprecise filtering (dotted blue - upper,
dotted red - lower) and the cloud based imprecise filtering (blue - upper, red - lower)
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Figure 6: Superposition of nine filtered signals (cyan), the maxitive imprecise filtering (dotted blue - upper,
dotted red - lower) and the cloud based imprecise filtering (blue - upper, red - lower)
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5. Conclusion

Both summative kernels and sets of summative kernels represented by maxitive
kernels have some shortcomings. The former requires choosing a single kernel and
bandwidth, which is generally not easy, while the latter often includes unwanted kernels
such as the Dirac measure.

In this paper, we have proposed to use cloudy kernels (using the uncertainty repre-
sentations called clouds) to achieve imprecise linear filtering. Cloudy kernels represent
a good trade-off between summative and maxitive kernels, as they allow us to avoid
having to choose a single summative kernel while being more expressive than maxitive
kernels. This is due to the ability of cloudy kernels to model sets of summative kernels
whose bandwidth is both lower- and upper-bounded, while maxitive kernels can only
consider upper-bounded bandwidth. We have also proposed simple and efficient (but
not necessarily the most efficient) algorithms to compute lower and upper expectations
related to cloudy kernels, while keeping a low computational burden on the task of
linear filtering.

Our experiments show that cloudy kernels have the expected properties. Compared
to summative and maxitive kernels, they allow us to retrieve reliable and informative
envelopes for the filtered signal. However, it appears that envelopes resulting from the
use of cloudy kernels are still not very smooth. We suspect that this is due to summative
kernels inside the cloudy kernels for which the probability masses are concentrated
around some specific points (i.e. mixtures of Dirac measures). To avoid this, we could
consider existing techniques [18] to limit the accumulation of such probability masses.

A lot of work is left for future studies, as in the present paper we have only con-
sidered families of unimodal bounded centered positive kernels. Many other families
of kernels, including kernels having positive and negative values and causal kernels
(which are barely symmetric), could be approximated by clouds. However, how to
build comontonic clouds that would best represent such families is not straightfor-
ward, and could require more ad-hoc procedures. In particular, we cannot use a double
Dubois-Prade transformation with such families, as they may have many modes that
can have different abscissae for different bandwidths.

Another interesting avenue of research would be to combine (or compare) the cur-
rent approach, which uses imprecise probabilistic representation to model ill-known
kernel filters, with the approach proposed by Benavoli et al. [3], where imprecise prob-
abilistic models are used to represent noise whose distribution is ill-known.
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