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Burgers type equations, Gelfand’s problem and Schumpeterian dynamics

G.M.Henkin

Université Pierre et Marie Curie, Paris, France

CEMI, Academy of Science, Moscow, Russia

Abstract. Burgers equations have been introduced to study different models of fluids
Bateman, 1915, Burgers, 1939, Hopf, 1950, Cole, 1951, Lighthill, Whitham, 1955.... The
difference-differential analogs of these equations have been proposed for Schumpeterian
models of economic development Iwai, 1984, Polterovich, Henkin, 1988, Belenky, 1990,
1996, Henkin, Polterovich, 1999, Shananin, Tashlitskaya, 2000....

This paper is a survey of recent results and conjectures on Burgers type equations,
motivated both by fluid mechanics and by Schumpeterian dynamics. Abriged proofs of
new results are given. This paper is an extended version of the paper [H2] prepared for
the talk at the conference ”General Equilibrium Analysis” at Higher School of Economics,
June, 2011.

1. Introduction: Burgers type equations and Schumpeterian dynamics.
By Burgers type equations we mean scalar partial differential equations of the form

∂f

∂t
+ ϕ(f)

∂f

∂x
= ε

∂2f

∂x2
, ε > 0, (1a)

f = f(x, t), x ∈ R, t ∈ R+, and the scalar difference-differential equations of the form

∂f

∂t
+ ϕ(f)

f(x, t)− f(x− ε, t)

ε
= 0, x = kε, k ∈ Z (1b)

and also variations and multidimensional generalization of (1a), (1b).
For linear f 7→ ϕ(f) equation (1a) was introduced by H.Bateman, 1915, and deeply

studed by J.Burgers, 1939, as a simplest model for pressure-less gas dynamics. For general
ϕ(f) equation (1a) has appeared later in very different models, for example: in the model
for displacement of oil by water (S.Buckley, M.Leverett, 1942), in the model of consolida-
tion of wet soil (Florin, 1948) , in the model of the road traffic (M.Lighthill, G.Whitham,
1955) etc.

The equation (1b) was proposed in Polterovich, Henkin, 1988,1989 for the description
of a Schumpeterian evolution of industry.

According to Schumpeter 1911, 1939, economical development of industry is periodical
process with period of order half-century (”business cycle”). It consists in cascades of
creation, processes of formation and cascades of destruction. Creative and destructive
cascades can be described by Lotka-Volterra type equations (P.Hanel, P.Klimek, S.Thurner,
2008, 2010).

The mechanism of technological changes in the industry during processes of formation
can be divided into two components: creation of new technologies by a firm (innovation
process) and adoption of technologies, created by other firms (imitation process). For an
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industry with many firms its development can be described as evolution of its efficiency
distribution. Let fn(t) be a share of firms at the moment t in the given industry that have
efficiency level ≤ n.

The simplest model of Schumpeterian dynamics of industry has the form

dfn
dt

= ϕ(fn)(fn−1(t)− fn(t)), where ϕ(fn) = α+ β(1− fn),

α ≥ 0 be the share of firms moving from level n to the level (n+ 1) per unit of time due
to innovation, β(1− fn) be the share of firms moving from level n to the level (n+ 1) per
unit of time due to imitation.

In applications this model may appear in different forms.
In the model with depreciation of capacities (Polterovich, Henkin, 1988) the following

modification of the simplest model has appeared:

dfn
dt

= ϕ(fn)(fn−1(t)− fn(t)) + µ(fn+1(t)− fn(t)), (∗)

where µ is depreciation rate.
This model was succesfully implemented numerically (Gelman, Levin, Polterovich,

Spivak, 1993) for description of evolution of distribution by efficiency levels for the Ferrous
Metallurgy in USSR. Using automodel reduction fn(t) = f(t, nh) with h→ 0, A.Gasnikov
and A.Shananin (2006) have found hypothetique formula for the velocity of travelling wave
propagation for (*).

In the model of economics growth (Polterovich, Henkin, 1989) we put

fn =
nP

k=0

Mk

± ∞P
k=0

Mk, where Mn are capacities of the level n, and we have

dMn(t)

dt
= (1− ϕ0(fn))λnMn + ϕ0(fn−1)λn−1Mn−1.

Here λn - profit per unit of capacities per unit of time, ϕ0(fn)- the share of profit λnMn,
creating new capacities of the level n+ 1.

If λk ↑ λ > 0 and
∞P
k=1

k(λ−λk) <∞, this gives the following variation of the simplest
model

dfn
dt

= ϕ(fn)(fn−1 − fn) + rn,

where ϕ = λϕ0 and rn is a term nonessential for asymptotic behaviour.
In the model of Belenky, 1996, the speed of transition from efficiency level n to level

(n+1) depends on a proportion rn = (1− fn)(1− fn−1)
−1 of more advanced firms among

all firms that are not worse than the firms of level n. This gives an interesting alternative
for equation (1b):

d

dt
ln rn(t) = ψ(rn)− ψ(rn−1),

where ψ is ”motivation function”, similar to function ϕ in (1b).
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For physical applications of equation (1a) the main interest has the inviscid case of
(1a), when ε = +0. But for transport flow models and for some social and biological
applications the significant interest has the equation (1b) with ε = 1 and x ∈ Z.

The results of finite-difference approximations for nonlinear conservation laws (see
A.Harten, J.Hyman, P.Lax, 1976, Engquist, Osher, 1981, Henkin, Shananin, 2004) explain
both the similarity of behavior of (1a), (1b) and also some difference in behavior of (1a)
and (1b).

Motivated by models of fluid mechanics, Gel’fand (1959) has formulated following
problem.

To find asymptotic (t → ∞) of the solution f(x, t) of the equation (1a) with initial
condition

f(x, 0) =

½
α±, if ± x > ±x±
f0(x), if x ∈ [x−, x+], (2)

where α− ≤ α+, x− ≤ x+ and f0 is a bounded function on [x−, x+].

Gelfand (1959) has found a solution of this problem for the inviscid case ε = +0 with
special initial conditions f(x, 0) = α±, if ±x > 0, and has noted:

it would be interesting to prove that the main term of asymptotic (t→∞) of f(x, t)
satisfying (1a), (2) coincides with the solution of (1a), (2) with ε = +0.

Motivated by models of economical development similar problems were considered
later for equation (1b) in Henkin, Polterovich (1991, 1994, 1999). For formulations of
precise conjectures and results, concerning equations (1a) and (1b) we will use assumptions
and definitions going back to Gelfand.

2. Gelfand’s problem. Main results.

In the asymptotics statements below we will not indicate as a rule the dependence of
some constants from initial function f0(x) and sometimes from state function ϕ(f).

Assumption 1.

Let α− < α+ and ϕ be a positive continuous differentiable function on the interval
[α−, α+] and ϕ0 has only isolated zeros.

Put

ψ(u) = −
uZ

α−

ϕ(y)dy, u ∈ [α−, α+], for (1.a), (3a)

ψ(u) =

uZ
α−

dy

ϕ(y)
, u ∈ [α−, α+], for (1.b). (3b)

Let us introduce respectively for (3a) and for (3b) the concave function ψ̂(u) as the upper
bound of the convex hull of the set

{(u, v) : v ≤ ψ(u), u ∈ [α−, α+]}.
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Assumption 2. For (3a) and (3b) the set S = {u ∈ [α−, α+] : ψ(u) < ψ̂(u)} has the
following form

S = (α−0 , α
+
0 ) ∪ (α−1 , α+1 ) ∪ . . . (α−L , α+L), where

α− = α−0 ≤ α+0 < α−1 < α+1 < . . . < α−L−1 < α+L−1 < α−L ≤ α+L = α+.
(4a, b)

Let

cl =
1

α+l − α−l

α+
lZ

α−
l

ϕ(y)dy, for (1a), l = 0, . . . , L, (5a)

cl = (α
+
l − α−l )

µ α+
lZ

α−
l

dy

ϕ(y)

¶−1
, for (1b), l = 0, . . . , L. (5b)

Assumptions 1,2 imply (Gelfand, 1959, Oleinik, 1959, Weinberger, 1990, Henkin, Polte-
rovich, 1999) the following important inequalities (for (1a)) and respectively for (1b):

ϕ(α+l ) ≤ cl ≤ ϕ(α−l ), l = 0, . . . , L,

cl = ϕ(α−l ), l = 1, . . . , L,

cl = ϕ(α+l ), l = 0, . . . , L− 1.
(6)

Let us remark that the inequalities above are, in fact, equalities except for the cases
l = 0 and l = L.

Assumption 3. Let for (1a) and respectively for (1b) the following inequalities are
valid

ϕ0(α−l ) 6= 0, l = 1, . . . , L,

ϕ0(α+l ) 6= 0, l = 0, 1, . . . , L− 1,
ϕ(α−0 ) 6= c0, if α−0 < α+0 ,

ϕ(α+L) 6= cL, if α−L < α+L .

Theorem 1. (Generalized Gelfand theorem).
Let under assumptions 1-3 we have ε = +0. Let, in addition, initial data function

f0(x) be the function of bounded variation on [x−, x+]. Then solutions of the Cauchy
problems (1a,b), (2) have the following asymptotic structure

f(x, t)
L1(R)⇒

⎧⎨⎩ α−, if x < c0t+ d0
ϕ(−1)(x/t), if clt+ dl ≤ x < cl+1t+ dl+1, l = 0, 1, . . . , L− 1

α+, if x ≥ cLt+ dL,

where t → ∞, parameters {cl} determined by (5a,b) and parameters {dl} determined by
corresponding equation (1a,b) and initial data (2), inverse function ϕ(−1)(·) is well defined
on [cl, cl+1], 0 ≤ l ≤ L− 1.
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- For equation (1a) with special initial condition f(x, 0) = α±, if ±x > 0
Theorem 1 was obtained by Gelfand, 1959. Theorem 1 under condition α− = α−0 < α+0 =
α+ was proved by Iljin, Oleinik, 1960, for equation (1a) and can be deduced from Henkin,
Polterovich, 1991 for equation (1b).

- Under additional assumption that f(x, t) is piecewise smooth function of (x, t) ∈
R × R+ and f0(x) ∈ [α−, α+], x ∈ [x−, x+], Theorem 1 was obtained by Kruzhkov,
Petrosyan, 1983, 87.

- Theorem 1 for equation (1a) only under assumption 1 was announced by Gasnikov,
2009.

- Theorem 1 for both equations (1a) and (1b) is deduced here by vanishing viscocity
method from results of [H1] (see Theorems 2, 3 below). It gives the answer to the question
formulated in [KP] (”...the ways of application of vanishing viscocity methods in this case
are absolutely unknown...”).

For formulation of main results (Theorems 2, 3) we need the following important
statement about travelling waves solutions of equations (1a,b) belonging to Gelfand, 1959,
Oleinik, 1959, for equation (1a) and Polterovich, Henkin, 1988, Belenky, 1990, for equation
(1b).

Proposition 1.
Under assumptions 1,2 for l ∈ {0, . . . , L} there exist (and unique up to translations)

travelling wave solutions of (1a) and (1b) of the form

f = f̃l
¡x− clt

ε

¢
such that ∀ε > 0

f̃l
¡x
ε

¢
→ α±l as x→ ±∞, l = 0, . . . , L, and

f̃l
¡x
ε

¢
→ α±l as ε→ 0, if ± x > 0.

Theorem 2.
Let ε ∈ (0, 1). Under the assumptions 1,2,3 and definitions (3a,b), (4a,b), (5a,b) the

solutions f(x, t) of the Cauchy problems (1a,b), (2) have for t ≥ εO
¡
| ln 1ε |2

¢
the following

asymptotic structure:

f(x, t) = O
¡ε
t

¢1/4
+⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f̃l
¡
1
ε (x− clt− dl

¡
t
ε ,
¡
ε
t

¢1/4¢¢¢
, if |x− clt| ≤

√
ε · (εt)1/4, l = 0, 1, . . . , L,

ϕ(−1)
¡
x
t

¢
, if clt+

√
ε(εt)1/4 ≤ x ≤ cl+1t−

√
ε(εt)1/4,

l = 0, 1, . . . , L− 1,
α−, if x ≤ c0t−

√
ε(εt)1/4,

α+, if x ≥ cLt+
√
ε(εt)1/4,

(7)

where shift functions dl
¡
t
ε , A

¢
, A =

¡
ε
t

¢1/4
are determined by the ”localized conservation
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laws” (see [HS])

clt+A
√
εtZ

clt−A
√
εt

[f(x, t)− f̃l
¡1
ε
(x− clt− dl

¡ t
ε
,A
¢¢¢
]dx = 0 (8a)

for equation (1a) and

[clt+A
√
εt]−1X

k=[clt−A
√
εt]+1

(Φ(f(kε, t))−Φ
¡
f̃l
¡1
ε
(kε− clt− dl

¡ t
ε
, A
¢¢¢¢

± (8b)

(clt±A
√
εt− [clt±A

√
εt])×

(Φ(f([clt±A
√
εt], t))−Φ(f̃l([clt±A

√
εt]− clt− dl

¡ t
ε
, A
¢¢¢¢

,

where Φ(f) =
α+R
f

dy
ϕ(y) for equation (1b).

Theorem 3.
Under conditions of Theorem 2 the shift functions dl

¡
t
ε ,
¡
ε
t

¢1/4¢
have for t ≥ εO

¡
ln 1ε

¢2
the following asymptotics:

dl
¡ t
ε
,
¡ε
t

¢1/4¢
= εγl ln

t

ε
+ εO

¡
ln

t

ε

¢2/3
+O(1),

where {γl} are the parameters, depending on {α±l , ϕ(α
±
l ), ϕ

0(α±l )} by explicit formulas
for problem (1a), (2):

γ0 = γ0,a =

½
0, if L = 0,

1
α+0 −α

−
0

¡
− 2

ϕ0(α+0 )

¢
, if L > 0 and α−0 < α+0 ,

γl = γl,a =
1

α+l − α−l

¡ 2

ϕ0(α−l )
− 2

ϕ0(α+l )

¢
, l = 1, . . . , L− 1,

γL = γL,a =

½ 1
α+
L
−α−

L

¡
2

ϕ0(α−
L
)

¢
, if L > 0 and α−L < α+L ,

0, if L = 0.

For the problem (1b), (2) we have

γl = γl,b =
cl
2
γl,a, l = 0, . . . , L.

Comments
- Theorems 2, 3 are improved versions of Theorems 1a,b from Henkin, 2007.
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- Theorems 2, 3 generalize the results of Iljin, Oleinik, 1960, Weinberger, 1990, Henkin,
Polterovich, 1991, 1999, Henkin, Shananin, Tumanov, 2004, 2005, Engelberg, Schochet,
2006.

- Theorems 2, 3 answer to the important questions about location in the Cauchy
problems (1a,b), (2) of viscous shock-waves Gelfand, 1959, Henkin, Polterovich, 1994,
1999, Liu, Matsumura, Nishihara, 1998.

- Theorems 2, 3 imply the new interesting phenomens: if L > 0 and
x ∈ [clt−A

√
t, clt+A

√
t], l ∈ {0, . . . , L}, then solutions of (1a,b), (2) converge to shifted

travelling waves f̃l
¡
1
ε (x − clt − εγl ln t − εO(ln t)2/3 + O(1))

¢
, which generally do not

satisfy equations (1a,b) and the positions of which on the x-line depend essentially on
the (viscosity) parameter ε > 0. These phenomens lead to the appropriate correction of
the Gelfand’s suggestion that the main term of asymptotic (t → ∞) of f(x, t), satisfying
(1a,b), coincides with solutions of (1a,b) for ε = +0 with the same initial conditions.

- Basing on the works (Kolmogorov, Petrovski, Piskunov, 1937, and Mejai, Volpert,
1999), Gasnikov, 2008, 2009, has proved (only under assumption 1) a rough version of
Theorem 2 with shift function dl(t) = o(t) instead of the precise shift function
dl(t) = εγl ln t+ εO(ln t)2/3 +O(1).

The proofs of Theorems 2, 3 are variations of the proofs of Theorems 1 a,b from [H1]
and combine earlier techniques (maximum and comparison principles, Lyapunov type func-
tions, Poisson-Green kernels for parabolic type equations) together with new ingredients.
For the proof of Theorems 2,3 we need, first, the following comparison proposition from
[H1], which is an improvement of Theorem 7.5 from [HP4].

Proposition 1.
Under assumption of Theorem 2 and assumption ε = 1, solutions f(x, t) of (1a,b), (2)

satisfy the following estimates:
for every γ > 0 and bl > O( 1γ ), l = 0, . . . , L− 1, there exists t0 = O(blγ) such that

ϕ(−1)
¡x− γ

√
t

t

¢
≤ f(x, t) ≤ ϕ(−1)

¡x+ γ
√
t

t

¢
, (9)

for x ∈ [clt+ bl
√
t, cl+1t− bl+1

√
t] and t ≥ t0, where constants cl are defined by (5a,b).

We need next a proposition, which improves the results of [HST] and of [H1], con-
cerning a priori estimates of derivatives of solutions of the equations (1a,b).

Proposition 2.
Under assumptions of Theorem 2 and of Proposition 1, let ε = 1, L > 0, ϕ(α+l ) = cl,

l = 0, . . . , L− 1, ϕ(α−l ) = cl, l = 1, . . . , L. Let b̃l > bl > O
¡
1
γ

¢
, l = 0, . . . , L, γ > 0.

Then the difference∆f = f(x, t)−f(x−1, t) for solution of (1b), (2) and the derivative
∂f
∂x (x, t) for solution of (1a), (2) satisfy the following estimates:½

∆f
∂f
∂x

¾
=

1

ϕ0(α+l )(t+ 1)
+O

¡ γ

ϕ0(α+l )(t+ 1)

¢
,

for x ∈ [clt+ bl
√
t, clt+ b̃l

√
t], l = 0, . . . , L− 1, t ≥ t0, and½

∆f
∂f
∂x

¾
=

1

ϕ0(α−l )(t+ 1)
+O

¡ γ

ϕ0(α−l )(t+ 1)

¢
,
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for x ∈ [clt− b̃l
√
t, clt− bl

√
t], l = 1, . . . , L, t ≥ t0, where t0 = O

¡
b̃l
bl
+ blγ

¢
.

The proof of Proposition 2 for solutions of (1b), (2), given in Section 4, develops and
corrects the proofs of the corresponding statements in [HST] and [H1].

Propositions 1, 2 imply the following improved version of lemmas 11, 12 from [H1].

Proposition 3.
Under assumptions of Theorems 1, 2 for any A > 0, θ ∈ [0, 1) and l ∈ {0, . . . , L} the

following estimates for shift functions dl(t,A), defined by (8a,b), are valid

| ∂
∂t
dl(t, A)| =

γl,a
(t+ 1)

+O
¡ 1

A(t+ 1)

¢
, (10a)

|
t+1−θZ
t−θ

∂

∂τ
dl(τ,A)dτ | =

γl,b
(t+ 1)

+O
¡ 1

A(t+ 1)

¢
, (10b)

| ∂
∂A

dl(t,A)| = O
¡
A+

1

A

¢
, t ≥ t0, (11)

where γl,a, γl,b the parameters, defined in Theorem 3.
The following Proposition 4, precised version of Proposition 6 from [H1], gives the

main element of the proofs of Theorems 2, 3.

Proposition 4.
Let f be solution of the Cauchy problem (1a), (2) or (1b), (2), where ε > 0. Then

under assumptions of Theorem 2 and Proposition 1 we have convergence of f(x, t) to
the shifted travelling waves f̃l

¡
1
ε (x − clt − dl

¡
t
ε ,
√
δ
¢¢¢
, l = 0, . . . , L, on the intervals

{x ∈ R : |x− clt| ≤
√
δtε} with the estimates

sup
{x: |x−clt|≤

√
δtε}

|fl(x, t)− f̃l
¡1
ε
(x− clt− dl

¡ t
ε
,
√
δ
¢¢¢
| = O(

√
δ), if t ≥ t0 = εO

¡
ln
1

δ

¢2
.

Idea of the proof of Proposition 4 for solution f(k, t) of equation (1b), (2) with ε = 1
and k ∈ Z consists (see [H1]) in proving of the following estimate : ∀δ > 0 and ∀ l ∈
{0, 1, . . . , L}

limt→∞ sup
{n: |n−clt|≤

√
δt}

¯̄ nX
[clt−

√
δt]

(Φ(f(k, t))− Φ(f̃l(k − clt− dl(t,
√
δ)))

¯̄
≤ O(

√
δ). (12)

The proof of (12) uses nonlinear parabolic type equations for the functions

∆l(n, t, dl(τ,
√
δ)) =

nX
k=[clτ−

√
δτ ]

(Φ(f(k, t))−Φ(f̃l(n− clt− dl(τ,
√
δ)))

of variables n, t in the domain n ∈ [clτ −
√
δτ , clt+

√
δt] ∩ Z, t ∈ (τ, τ +

√
δτ). Localized

conservation laws are used in order to have a priori boundary estimates:

|∆l([clt+
√
δt], t, dl(τ,

√
δ))| = O(1/

√
τ).
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The estimate (12) implies uniform convergence f(n, t)⇒ f̃l(n−clt−dl(t, o(1))) in intervals
|n− clt| ≤ o(

√
t), l = 0, . . . , L.

3. Proofs of Theorems 1, 2, 3.

Proof of Theorem 3.
Let 0 < A0 < 1 < A, ε = 1, l = 0, . . . , L. Estimates (10a,b) from Proposition 3 imply

the following

dl(t, A) = γl ln
t

t0
+O

¡ 1
A
ln

t

t0

¢
+ dl(t0, A). (13)

Estimate (11) from Proposition 3 implies

dl(t, A0) = dl(t,A)−Ot(A
2)−Ot

¡
ln
1

A0

¢
, where t ≥ t0. (14)

From estimates (13), (14) we deduce

dl(t,A0) = dl(t0, A) + γl ln
t

t0
+O

¡ 1
A
ln

t

t0

¢
−Ot(A

2)−Ot

¡
ln
1

A0

¢
.

Putting in this estimate A =
¡
ln t

t0

¢1/3
we obtain

dl(t,A0) = γl ln
t

t0
+Ot

¡¡
ln

t

t0

¢2/3¢
+ dl(t0, A)−Ot

¡
ln
1

A0

¢
. (15)

Putting in (15) t = t0 we obtain

dl(t0, A0) = dl(t0, A)−Ot0

¡
ln
1

A0

¢
.

Let us make the rescalling of equation (15) with parameters ε = 1, t̃, x̃, d̃, Ã, t̃0 into
equation with parameters ε > 0, t, x, d, A, t0, using relations

t̃ =
t

ε
, x̃ =

x

ε
, d̃ =

d

ε
, Ã =

A√
ε
, t̃0 =

t0
ε
= 1.

We obtain

dl(
t

ε
,A0) = dl(1, A0) + εγ ln

t

ε
+ ε
¡
ln

t

ε

¢2/3 −O
¡
ln
1

A0

¢
. (16)

From Proposition 4 we deduce the following estimate

sup
{x: |x−clt|≤

√
ε(εt)1/4}

|f̃l
¡1
ε

¡
x− clt− dl

¡ t
ε
,
¡ε
t

¢1/4¢¢¢− f̃l
¡1
ε

¡
x− clt− dl

¡ t
ε
, A0

¢¢¢
| =

O(A0), if t ≥ t0 ≥ εO
¡
ln
1

A0

¢2
.
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Last estimate implies

dl
¡ t
ε
,A0

¢
= dl

¡ t
ε
,
¡ε
t

¢1/4¢
+O(A0), if t ≥ εO

¡
ln
1

A0

¢2
. (17)

From estimates (16), (17) we obtain

dl
¡ t
ε
,
¡ε
t

¢1/4¢
= dl(1, A0) + εγ ln

t

ε
+ ε
¡
ln

t

ε

¢2/3
+O(A0) +O

¡
ln
1

A0

¢
,

if t ≥ t0 ≥ εO
¡
ln
1

A0

¢2
.

(18)

This gives statement of Theorem 3 with

O(1) = dl(1, A0) + 0
¡
ln
1

A0

¢
.

Proof of Theorem 2.
Let ε = 1. Let f be solution of (1a), (2) or (1b), (2) and {f̃l} be travelling waves solu-

tions for (1a) or (1b) from Proposition 1. Then Proposition 6 from [H1] (i.e. Proposition
4 above with ε = 1) implies ∀δ > 0 estimate

sup
l

sup
{x: |x−clt|≤

√
δt}
|f(x, t)− f̃l

¡
x− clt− dl

¡
t,
√
δ
¢¢
| = O(

√
δ), if t ≥ t0(δ). (19)

Crucial inequality (6.12) in [H1] shows that one can take in (19)

t0(δ) = 0
¡
ln
1

δ

¢2
. (20)

Results of [W] and [HP4] imply estimates

|f(x, t)− ϕ(−1)
¡x
t

¢
| = O

¡ 1√
δt

¢
, if clt+

√
δt ≤ x ≤ cl+1t−

√
δt, l = 0, . . . , L− 1,

and |f(x, t)− α±| = O
¡ 1√

δt

¢
, if x ≤ clt−

√
δt or x ≥ cLt+

√
δt.

(21)
Making the rescalling t̃ = t

ε , x̃ =
x
ε , d̃ =

d
ε , and δ =

p
ε
t into (19), (20), (21) we obtain

statement of Theorem 2, if

t0
ε
≥
¡
ln t0 + ln

1

ε

¢2
, i.e. if t0 ≥ constant.

Proof of Theorem 1.
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Let f0(x, t) be solution of the Cauchy problem (1a), (2) with ε = +0. Let δ > 0,
εk = δe−k and tk = k, k = 0, 1, 2, .. Let us define continuous function f(x, t) for x ∈ R,
t ∈ R+ by the following procedure. For t ∈ [tk, tk+1] we put f(x, t) = fk(x, t) such that

f0(x, 0) = f0(x, 0) = f0(x) and

∂fk
∂t

+ ϕ(fk)
∂fk
∂x

= εk
∂2fk
∂x2

, if t ∈ [tk−1, tk], k + 1, 2, ..
(22)

Applying inductively (22) and result of Kuznetsov, 1975, we obtain for t ≤ tk the
estimate Z

x∈R

|f(x, t)− f0(x, t)| ≤ O(TV f0)(
√
ε1t1 +

√
ε2t2 + . . . +

√
εktk), (23)

where TV f0 means a total variation of f0(x) on R. Substitution of εk = δe−k and tk = k
in (23) imply estimateZ

x∈R

|f(x, t)− f0(x, t)| = O(
√
δ)TV (f0), t ∈ R+. (24)

Using equations (22) and Theorem 2 we obtain for t ∈ [tk−1, tk] and
x ∈ [clt−

√
εk(εkt)

1/4, clt+
√
εk(εkt)

1/4] inequalities

|fk(x, t)− f̃k,l
¡ 1
εk

¡
x− clt− dl

¡ t

εk
,
¡εk
t

¢1/4¢¢¢| = O
¡εk
t

¢1/4
, k = 1, 2, ..., l = 0, 1, . . . , L.

(25)
If x ∈ [clt+

√
εk(εkt)

1/4, clt−
√
εk(εkt)

1/4] we obtain inequality

|f(x, t)− ϕ(−1)
¡x
t

¢
| = O

¡εk
t

¢1/4
, l = 0, 1, . . . , L− 1. (26)

We have also inequalities

|f(x, t)− α−| = O
¡εk
t

¢1/4
and |f(x, t)− α+| = O

¡εk
t

¢1/4
, if

x ≤ clt−
√
εk(εkt)

1/4 or x ≥ clt+
√
εk(εkt)

1/4.

From Theorem 3 (more precisely from equality (18) implying Theorem 3) we have
inequalities

dl
¡ t
ε
,
¡εk
t

¢1/4¢
= O

¡
εk ln

t

εk

¢
+O(A0) +O

¡
ln
1

A0

¢
, if t ≥ t0 ≥ εO

¡
ln
1

A0

¢2
. (27)

From (24)-(27) we deduce that ∀δ > 0, t ∈ [k − 1, k], l = 0, 1, . . . , L − 1, the following
asymptotic equality holds

f0(x, t) = O(
√
δ) +O

¡εk
t

¢1/4
+ f̃l

¡ 1
εk

¡
x− clt−O

¡
εk ln

t

εk

¢
−O(A0)−O

¡
ln
1

A0

¢¢¢
, if

x ∈ [clt−
√
εk(εkt)

1/4, clt+
√
εk(εkt)

1/4],

f0(x, t) = ϕ(−1)
¡x
t

¢
, if x ∈ [clt−

√
εk(εkt)

1/4, cl+1t+
√
εk(εkt)

1/4].

(28)
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From (28) we obtain the existence of constants d∗l such that

f0(x, t)
L1(R),t→∞
=⇒

⎧⎨⎩ α−, if x < c0t+ d∗0
ϕ(−1)(x/t), if clt+ d∗l ≤ x < cl+1t+ d∗l+1, l = 0, 1, . . . , L− 1

α+, if x ≥ cLt+ d∗L.

Remark.
We do not use in our proof apriori condition that f0(x, t) is a piecewise smooth

solution of (1), (2) with ε = 0 like in [P], [KP]. But results of [P], [KP] have advantage,
giving explicit formulas for constants {d∗l }.

4. Proof of Proposition 2.
We give here the proof of Proposition 2 precising and correcting arguments of [HST]

and [H1]. The main tool is as in [HST], [H1] the Green-Poisson type formula associated
with operator u0t +∆u.

Lemma 1 ([HS],p.1475).
Let u(x, t) be a function defined in the domain

Ω = {(x, t) : t > 0, b < x̄
def
= x−t√

t
< b̃+ σ

√
t}, σ > σ0 > 0. Let χ(x, t) = χ0

¡
x−t√
t

¢
, where

χ0 be a smooth function such that

0 ≤ χ0 ≤ 1, χ0
¯̄
(−∞,b)

≡ 0, χ0
¯̄
( b̃+b2 ,∞) ≡ 1,

|χ00| ≤
A0
δ
, |χ000 | ≤

A0
δ2

, where δ = (b̃− b) > 0.

Let ũ(x, t) = u(x, t) · χ(x, t). Then

ũ(x, t) =

∞Z
−∞

G(x− ξ, t− αt)ũ(ξ, αt)dξ +

tZ
αt

dτ

∞Z
−∞

G(x− ξ, t− τ)(ũ0τ +∆ũ)(ξ, τ)dξ,

where αt > t0, α ∈
¡1 + σ0
1 + σ

, 1
¢
,

G(x, t) =
∞X

n=−∞
Gn(t)δ(n− x), δ(·) the Dirac function,

Gn(t) =
tn

n!
e−t, n ≥ 0, Gn(t) = 0, n < 0 the Poisson distribution.

(29)

Lemma 2 (corrected lemma 4 from [H1]).
Under assumptions of Propositions 1, 2 and Lemma 1 put u = f − ϕ(−1)

¡
x
t

¢
, where

f solution of (1b), (2). Suppose that for some l ∈ {0, . . . , L− 1} we have ϕ(α+l ) = cl = 1,

b̃l = b̃ > bl = b ≥ O( 1γ ). Then function ũ(ξ, τ) = u(ξ, τ) · χ(ξ, τ) satisfies relation

ũ0τ +∆ũ = −
ξ − τ

τ
∆u · χ− 1

2
ϕ̇
¡
ϕ(−1)

¡ ξ
τ

¢¢
(∆u2) · χ− u

τ
· χ+

∆u ·∆χ+ u(χ0τ +∆χ) +O
¡γ2
τ2
¢
, τ ≥ τ0.

(30)
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Lemma 3 (corrected lemma 5 from [H1]).

Under assumptions of Lemmas 1,2 we have the following representation formula for
∆u(x, t), if

(x, t) ∈ Ω = {(x, t) : t∗ = αt > t0, x ≥ t+
1

2
(b+ b̃)

√
t},

∆u =
5X

k=1

Iku, where
(31)

I0u = −
tZ

αt

dτ

Z
ξ̄≥b

∆xG(x− ξ, t− τ)
ξ − τ

τ
∆ξu(ξ, τ)χ(ξ, τ)dξ,

I1u = −
tZ

αt

dτ

Z
ξ̄≥b

∆xG(x− ξ, t− τ) · 1
2
ϕ̇
¡
ϕ(−1)

¡ ξ
τ

¢¢
∆ξu

2(ξ, τ) · χ(ξ, τ)dξ,

I2u =

Z
ξ̄≥b

∆xG(x− ξ, t− t∗)u(ξ, t∗)χ(ξ, t∗)dξ,

I3u =

tZ
αt

dτ

Z
ξ̄≥b

∆xG(x− ξ, t− τ)(uχ0τ + u ·∆χ)(ξ, τ)dξ,

I4u = −
tZ

αt

dτ

Z
ξ̄≥b

∆xG(x− ξ, t− τ)
u(ξ, τ)

τ
χ(ξ, τ)dξ,

I5u = −
tZ

αt

dτ

Z
ξ̄≥b

∆xG(x− ξ, t− τ)[∆ξu(ξ, τ) ·∆ξχ(ξ, τ) +O
¡ 1
τ2
¢
]dξ,

where ξ̄ = t−τ√
τ
.

Proof.
Putting formula (30) into (29) and applying ∆x to the left- and right-hand sides of

(29), we obtain (31).

Lemma 4 ([HST] lemma 6(iv)+ [H1] lemma 6).

Under assumptions of Lemmas 2,3 we haveZ
ξ

|∆ξG(x− ξ, t− τ)|dξ = min{2, O
¡ 1√

t− τ

¢
}, (32)

tZ
αt

dτ

Z
ξ

|∆ξG(x− ξ, t− τ)|dξ =
√
1− αO(

√
t) +O(1). (33)

13



Proof.
Statement (32) is exactly Lemma 6(iv) from [HST]. Statement (33) follows from (32)

by the following way

tZ
αt

dτ

Z
ξ

|∆ξG(x− ξ, t− τ)|dξ =

t−1Z
αt

dτ

Z
ξ

|∆ξG(x− ξ, t− τ)|dξ +
tZ

t−1

dτ |∆ξG(x− ξ, t− τ)|dξ ≤

t−1Z
αt

dτO
¡ 1√

t− τ

¢
+ 2

tZ
t−1

dτ ≤ 2−O(
√
t− τ)

¯̄t−1
α=t

= O(1) +
p
(1− α)O(

√
t).

Lemma 5.
Let under assumptions of Lemmas 2,3 we have 1

γ ≤ b1 < b̃1 < b̃2 < b2, χ = χ0
¡
x−t√
t

¢
,

χ0 = 1, on [b̃1, b̃2], suppχ0 ⊂ [b1, b2], δ = min{b̃1 − b1, b2 − b̃2}, ∆xχ = O
¡
1

δ
√
t

¢
, α < 1.

Then
|J2u| = O

¡ γ√
1− αϕ̇

¡
ϕ(−1)

¡
x
t

¢¢
· (t+ 1)

¢
,

|J3u| = O
¡ γb̃2

√
1− α

ϕ̇
¡
ϕ(−1)

¡
x
t

¢¢
· (t+ 1)

¢¡ 1
δ2
+

b̃2
δ

¢
,

|J4u| =
√
1− αO

¡
sup

|u(ξ, τ)|
τ

¢
·
√
t+ 1 = O

¡ γ

t+ 1

¢√
1− α, where

ξ̄ ≥ b1, αt < τ < t, t ≥ t0,

|J5u| =
√
1− αO

¡1
δ

¢
k∆uk+O

¡ 1

(t+ 1)3/2
¢
, t ≥ t0,

|J0u| ≤
√
1− α sup

ξ̄≥b
|ξ − τ

τ
| ·O(

√
t)χ(ξ, τ) · |∆u(ξ, τ)| ≤

√
1− αb2O

¡ √t√
αt

¢
k∆uk ≤

√
1− α

α
b2k∆uk,

|J1u| ≤
√
1− α sup

ξ∈[b1,b2]
|ϕ̇
¡
ϕ(−1)

¡ ξ
τ

¢¢
| · |∆ξu

2(ξ, τ)| ·O(
√
t) ≤

√
1− αO

¡ γ√
αt
·
√
t
¢
k∆uk.

Proof.
Estimate of J2u follows from Lemma 7 of [HST]. Estimate of J3u follows from Lemma

7 of [HST] and Lemma 4. Estimate of J4u follows from Lemma 2 and Lemma 4. Estimate
of J5u follows from Lemma 4 and estimate |∆ξχ(ξ, τ)| = O

¡
1√
τδ

¢
. Estimate of J0u follows
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from Lemma 4 and inequality |ξ̄| = | ξ−τ√
τ
| ≤ b2. Estimate of J1u follows from Lemma 2

and Lemma 4.

Lemma 6 (corrected and improved Lemma 8 in [H1]).
Under assumptions of Lemmas 2,3 we have

|∆u| = O
¡ γ

ϕ̇
¡
ϕ(−1)

¡
x
t

¢¢
· (t+ 1)

¢
,

where x ∈ [t+ b
√
t, t+ b̃

√
t], t ≥ t0.

Proof.
From (31) we obtain

∆u− I0u− I1u− I5u = I2u+ I3u+ I4u.

From Lemma 5 we obtain equality

∆u− I0u− I1u− I5u = ∆u[1−
√
1− α(b2 + γ +O

¡1
δ

¢
] +O

¡ 1

(t+ 1)3/2
¢
=

I2u+ I3u+ I4u = O
¡ γ

t+ 1

¢£ 1

ϕ̇
¡
ϕ(−1)

¡
x
t

¢¢
·
√
1− α

+

√
1− αb̃2

ϕ̇
¡
ϕ(−1)

¡
x
t

¢¢×
¡ 1
δ2
+

b̃2
δ
+
√
1− α

¢¤
.

If
√
1− α(b2 + γ +O

¡
1
δ

¢
) < 1 and γ is small enough then

|∆u| ≤ const(b2, δ)O
¡ γ

t+ 1

¢¡ 1

ϕ̇
¡
ϕ(−1)

¡
x
t

¢¢¢.
Proof of Proposition 2.
Let cl = ϕ(α+l ) = 1, x = clt+ b∗l

√
t, where b∗l ∈ [bl, b̃l].

Formula f = ϕ(−1)
¡
x
t

¢
+ u and Lemma 6 imply

∆f = ∆ϕ(−1)
¡x
t

¢
+∆u =

1

ϕ̇
¡
α+l +O

¡
1√
t

¢¢
(t+ 1)

+∆u =

1

ϕ0(α+l )(t+ 1)
+O

¡ γ

ϕ0(α+l )(t+ 1)

¢
, if t ≥ t0.

Proposition 2 is proved.
5. Multidimensional Burgers type equations. Systems of conservation

laws. Conjectures.
Multidimensional analogues of difference-differential Burgers type equations were pro-

posed in Henkin, Polterovich, 1991 as evolutionary equations for efficiency distributions
under several efficiency indicators.
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Let m,n are levels of two efficiency parameters, fm,n be the proportion of firms which
are at the level (m,n).

Let Fm,n =
mP
k=1

nP
r=1

fk,r be the corresponding distribution function.

Hypotheses: The transition from state (m,n) can be into one of two higher levels
(m+1, n) and (m,n+1). The proportion of firms per unit of time moving from the state
(m,n) to the state (m+1, n) is proportional to the share of firms being in the state (m,n)
and the share of firms being in the state (m,n) and the proportion coefficient is positive
function of the share of more advanced firms according to the first indicator. A similar
hypothesis is admitted for the transition from (m,n) to (m,n+ 1).

These assumptions lead to the following equation:

dFm,n

dt
= ϕ1(F

(1)
m )(Fm−1,n − Fm,n) + ϕ2(F

(2)
n )(Fm,n−1 − Fm,n), (34)

where
F (1)m = sup

n
Fm,n, F (2)n = sup

m
Fm,n,

F0,n(t) ≡ 0, Fm,0(t) ≡ 0,
Fm,n(0) = 1, m ≥ m0, n ≥ n0.

(35)

Equation (34) with boundary conditions (35) implies equations

dF
(1)
m

dt
= ϕ1(F

(1)
m )(F

(1)
m−1 − F (1)m ),

dF
(2)
n

dt
= ϕ2(F

(2)
n )(F

(2)
n−1 − F (2)n ).

Let functions ϕ1, ϕ2 satisfy assumptions 1-3 of §2. Theorem 2, results of [BP], [Con]
and [HP1] motivate the following conjecture.

Conjecture.
If {Fm,n(t)} satisfy (34), (35), then

sup
m,n

|Fm,n(t)− F (1)m (t)F (2)n (t)|→ 0, t→∞.

This statement was proved in [HP1] under condition L = 0 in assumptions of §2 for
ϕ1, ϕ2.

Multidimensional analogues of Burgers differential equations
(Viscous conservation laws in dimension n ≥ 1).
Let F (x, t), x ∈ Rn, t ∈ R1+, be solution of viscous conservation law in dimension

n ≥ 1:
∂F

∂t
+

nX
j=1

ϕj(F )
∂F

∂xj
= ε∆F, ε > 0, (36)
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where functions {ϕj} satisfy assumptions 1-3 of §2.
Let

F (x, 0) = f(x1) + f0(x), where

f(x1) =

½
α±, if ± x1 > ±x±1 ,
f0(x), if x1 ∈ [x−1 , x+1 ], x1 ∈ R,

(37)

and f0(x) be bounded function with compact support in Rn. Theorem 2 and results of
Bauman, Phillips, 1986, Weinberger, 1990, Goodman, Miller, 1999, and Hoff, Zumbrun,
2000, motivate the following conjecture.

Conjecture.
If function F (x, t), x ∈ Rn, t ∈ R1+, satisfy (36), (37), then

(F (x, t)− f̂1(x1, x
0, t)) =⇒ 0, t→∞, where x = (x1, . . . , xn) = (x1, x0) ∈ Rn,

f̂1(x1, x
0, t) =⎧⎪⎪⎨⎪⎪⎩

f̃l,1(x1 − clt− o(x0, t)), if |x1 − clt| < A
√
t, l = 0, . . . , L,

ϕ
(−1)
1

¡
x1
t

¢
, if cl(t) +A

√
t ≤ x1 ≤ cl+1(t)−A

√
t, l = 0, . . . , L− 1,

α−, if x1 ≤ c0t−A
√
t,

α+, if x1 ≥ cLt+A
√
t,

{cl} satisfy (5a), (6a) with function ϕ = ϕ1, {f̃l,1} - travelling wave solutions of (1a) with
ϕ = ϕ1 and ε = 1, as in Proposition 1,

sup
x0
|o(x

0, t)

t
|→ 0, t→∞.

The fundamental applications of multidimensional Burgers type equations for study of
the large-scale structure of the Universe were discovered by Zeldovich, 1970, and Gurbatov,
Saichev, Shandarin, 1989, through the analysis of the system

∂v

∂t
+ v ·∇v = ε∆v,

∂ρ

∂t
+∇(ρv) = 0,

v(x, 0) = v0(x), ρ(x, 0) = ρ0(x),

where x ∈ Ω ⊂ R3, v(x, t) - is the velocity field, ρ(x, t)- is the mass density.
Under conditions that ε = +0, the initial distribution of mass ρ0 is uniform in

convex Ω ⊂ R3 and the actual distribution of mass in Ω is known, this model, combined
with technique of Monge-Ampere-Kantorovich optimal mass transportation, was recently
applied to the reconstruction of initial velocity v0(x) and, as consequence, to reconstruction
of v(x, t) ∀ x ∈ Ω, t ≥ 0 (see [FMMS]).

Systems of Burgers type equations (systems of conservation laws)
The problems of finding the asymptotics (t→∞) of solutions for systems of Burgers

type in one spatial variable have been deeply studied starting from fundamental work of
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Riemann, 1860, for system of barotropic gaz dynamics

∂ρ

∂t
+

∂(ρv)

∂x
= ν

∂2ρ

∂x2
,

∂v

∂t
+ v

∂v

∂x
+
1

ρ

∂P (ρ)

∂x
= ε

∂2v

∂x2
,

where mass density ρ ≥ 0, pressure P (ρ) depends only on ρ, P 0(ρ) ≥ 0, viscosity coefficient
ε = +0, diffusion coefficient ν = +0.

In this direction many important results on existence and asymptotic stability of
(viscous) shock profiles have been obtained by Lax, 1957, Gelfand, 1959, Glimm, 1965, T.-
P.Liu, 1985, Szepessy, Xin, 1993, Howard, Zumbrun, 1998, Yu, 1999, Bianchini, Bressan,
2005...

Results of the type Theorems 1,2,3 above for systems of Burgers type have not been
obtained yet, even for system barotropic gaz dynamics. Some interesting conjectures in
this direction are formulated in Gelfand, 1959, Maslov 1988, Serre 2004.

Similar questions for systems of difference-differential Burgers type equations have
been considered only recently (see Benzoni-Gavage, Huot, Rousset, 2003).

This subject is especially important for Schumpeterian models of economical develop-
ments of several interacting industries.
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