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Accessible volume in quenched-annealed mixtures of hard spheres:

a geometric decomposition

Jan Kurzidim∗ and Gerhard Kahl

Institut für Theoretische Physik and Center for Computational Materials Science,

Technische Universität Wien, Wien, Austria
(“received”)

Model systems in which fluid particles move in a disordered matrix of immobile obstacles
have been found to be a reasonable representation of a colloidal fluid confined in a disordered
porous medium. For systems consisting of hard-sphere particles, the obstacle matrix partitions
the space available to the fluid particles into voids of finite volume (“traps”) and a percolating
void that extends over the entire volume. This geometric distinction plays a key role for the
dynamic properties of the confined fluid: while its particles are not able to escape from traps,
in the percolating void they can propagate infinitely far. We present a geometric method,
based on a Delaunay decomposition, to identify the two different kinds of voids in an arbitrary
matrix configuration of finite size under periodic boundary conditions. We subsequently apply
a rastering technique, which enables us to statistically characterise the structure of the voids.
We investigate the specific case of a quenched-annealed mixture of identical hard spheres,
for which, among others, we accurately determine the matrix packing fraction at which the
percolation transition of the voids takes place.

Keywords: computational geometry, colloids, disordered confinement

1. Introduction

In recent years, colloidal fluids confined in porous materials have received consider-
able attention. Experimental investigations on dozens of different systems evidence
that under such conditions a fluid can drastically change its structural, thermody-
namic, and dynamic properties. For an overview over the field, we recommend for
instance [1–6] and the references therein. A particularly interesting challenge re-
ported in these works, which is yet to be solved, is the dynamic behaviour of fluids
that are supercooled in the presence of disordered confinement: in some experi-
mental setups the confined fluid has been shown to be decelerated with respect its
bulk counterpart, in other systems an acceleration was observed, and in yet other
systems glass transitions were found to vanish [3–6]. Realising that fluids moving
in disordered materials play a pivotal role in a broad variety of applied problems
ranging from biology over chemistry to geology and technology, it seems essential to
pinpoint the microscopic and collective mechanisms responsible for such seemingly
contradictory effects.

Unfortunately, a satisfactory theoretical treatment of fluids in disordered confine-
ment has turned out to be difficult, with the major complication being the statisti-
cal nature of the confinement. To date, one of the most successful approaches to the
problem is the so-called “quenched-annealed” (QA) formalism. In this model, the
confinement is represented by the particles of a one-component fluid frozen in place
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(“quenched”); in this array of obstacles the particles of another fluid are allowed to
move (“annealed”). Based on initial work by Madden and Glandt [7, 8], Given and
Stell [9, 10] succeeded in deriving a theoretical framework for QA systems which
offers the distinct advantage of using the well-established formalism of statistical
physics to account for both the fluid and the confinement. Subsequent works used
both theoretical extensions and computer simulations to study in detail the static
[11–14] and thermodynamic [14–19] properties of QA systems.

Dynamic properties, however, remained beyond the capabilities and capacities of
both theory and simulations for a long time. In the realm of theory, only recently
a breakthrough was achieved by Krakoviack: based on similar concepts as those
used by Given and Stell, he succeeded in extending the mode-coupling theory of the
glass transition (MCT) [20, 21] to systems with quenched disorder [22–24]. Probing
the applicability of his theory, Krakoviack considered a QA system consisting of a
hard-sphere fluid moving in a quenched configuration of another hard-sphere fluid.
For this particular system, the theory predicted a number of unusual dynamic
features: (1) bulk-like discontinuous glass transitions at low obstacle densities, (2)
continuous glass transitions at large obstacle densities, (3) a localisation transition,
and (4) a re-entrant scenario at large obstacle densities and low fluid densities.

In recent computer simulation work [25–27] it was found that many of
the observed phenomena are captured qualitatively, in some cases even semi-
quantitatively by the above predictions. However, since MCT is essentially a mean-
field theory, it is inherently incapable of making statements concerning the micro-

scopic origin of the observed phenomena. In the specific case of a monodisperse
hard-sphere fluid moving in an array of hard-sphere obstacles, this means that
MCT is ignorant about the fact that the fluid particles can be classified in two cat-
egories. The classification is based on the following consideration: the fixed matrix
of hard spheres partitions the system volume in spaces that are accessible to the
centre of a fluid particle (“voids”) and spaces that are not. The observation fun-
damental to the present work is that there exist two types of voids: disconnected
voids of finite size, and possibly a “percolating” void. The disconnected voids are
entirely bounded by infinite potential walls so that a fluid particle placed within
cannot escape; such voids will be termed “traps” and fluid particles therein as
“trapped” particles. In the percolating void, on the other hand, particles can move
infinitely far from their initial locations; such particles will be denoted as “free”
particles. (Note that multiple percolating voids can exist only in case of a finite
system volume and periodic boundary conditions.)

The QA protocol was specifically devised to describe a homogeneous and isotropic
fluid. Therefore, the protocol requires that the usual thermodynamic average
(which in a bulk fluid suffices to guarantee isotropy and homogeneity) be comple-
mented with another average which is to be taken over different matrix realisations
[10]. Moreover, in order to guarantee that isotropy and homogeneity are fully taken
into account, it is imperative to populate both the traps and the percolating void
(if present) with fluid particles. However, it is obvious that trapped and free par-
ticles differ in many properties, especially dynamic ones, which calls for a study
in which these two classes of particles are distinguished. Answering this call, in
this work we introduce a method to identify trapped and free particles. Since (as
discussed shortly) this method is based on a geometric analysis of the quenched
matrix, it yields as a side product a wealth of information about the structure of
the confining matrix. These findings will be presented after the core part of this
work, the description of separation procedure. Findings obtained from applying the
procedure to the fluid component of QA systems have been reported in a separate
work [28].
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Our approach to tackle this problem is based on a Delaunay decomposition that
maps the void structure onto a discrete network of sites and bonds [29–32]. This
allows not only for the desired identification of traps and percolating void(s), but
to also investigate the properties of the matrix by applying the methodology com-
monly used to describe percolation transitions. Since previous works on QA systems
have been concerned with dynamic arrest [25–27], the simulations therein had to
extend over long simulation times and considered relatively small ensembles [O(103)
particles]. In such systems, voids extend over the periodic boundaries; since this
applies in particular to the possibly-present percolating void, particular care has to
be taken when identifying the latter. In this work we present an efficient algorithm
to solve this task. Finally, we apply a volume rastering technique to determine the
amount of accessible volume of each void (similar to that performed in [32]); this
allows to evaluate the void size distribution, and provides a quasi-exact means to
determine—given a specific obstacle density—the average fraction of fluid parti-
cles that reside in traps. Knowing the latter quantity is essential when combining
observables (such as dynamic correlation functions) pertaining to the trapped and
the free particles into observables of the full fluid.

The paper is organised as follows: In Sec. 2 we describe the geometric method
employed to identify traps, the algorithm to identify percolating voids in finite-size
systems, and the rastering technique used to determine the volumes of voids. In
Sec. 3 we present the results that these methods yielded for the confining matrix
of QA systems. In Sec.4 we discuss the implications of the results, indicating in
particular their application to the fluid component of a QA system, and close with
concluding remarks.

2. Model and Methods

2.1. Generating the porous matrix

The positions of the obstacles in a quenched-annealed system are obtained by
taking a snapshot of an equilibrated one-component fluid at an arbitrary instant of
time. In the specific case of monodisperse hard spheres, the statistics of such a one-
component fluid is entirely determined by its packing fraction φm (for simplicity,
the index “m” for “matrix” used in [25, 27] is retained). Therefore, in this case the
parameter space to consider is one-dimensional. We used the Monte Carlo algorithm
described in Appendix A of [27] to obtain initial configurations of hard spheres at
a prescribed φm; subsequently an event-driven molecular dynamics algorithm [33,
34] was used to equilibrate those configurations until the system’s mean-squared
displacement exceeded (10σ)2. Here, σ is the diameter of the particles, which serves
as the length scale in this work. For the purpose of this investigation, at every
value of φm we averaged all quantities of interest over at least 100 independent
configurations, irrespective of Nm, the number of particles in the obstacle matrix.
In all computations, periodic (toroidal) boundary conditions and the nearest-image
convention were employed.

2.2. Delaunay decomposition

For all matrix configurations obtained this way, we identified for each of the voids
therein whether it is disconnected (a “trap”) or percolates through the entire sys-
tem (taking into account the periodic boundary conditions). As mentioned before,
the notion of voids refers to the spaces accessible to the centres of fluid particles.
The basis of the separation method is constituted by a Delaunay decomposition
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Figure 1. Two-dimensional schematic representation of the steps of the Delaunay decomposition proce-
dure. Detailed explanation: see text. Dark (blue) solid disks: matrix particles. Dark (blue) thick dots:
centres of matrix particles. Open circles: Delaunay circles. Medium-shade (pink) filled circles: circles at the
centres of which a fluid particle can be placed. Dark (grey) solid circles: circles a the centres of which a fluid
particle can not be placed. Medium-shade (pink) triangles: accessible Delaunay triangles. Dark (grey) tri-
angles: inaccessible Delaunay triangles. Light (orange) disks: area at which no fluid particle can be placed.
Light thin (green) lines: connecting Delaunay edges. Medium-shade thick (red) lines: non-connecting De-
launay edges. Black line segments: highlighters for the connecting part of a Delaunay edge.

of the simulation volume, in which the centres of the obstacle particles serve as
vertices. As has been shown by Sastry and coworkers [30], every Delaunay simplex
belongs to no more than one void; hence, knowing the “connectivity” (to be defined
later) of the simplices, it is possible to identify disconnected and percolating voids.
As has been proven by Kerstein [29], this procedure maps the collection of voids
onto a discrete off-lattice network of sites (which may or may not be occupied) and
bonds (which may or may not connect).

Fig. 1 shows a two-dimensional schematic drawing of the steps that constitute the
Delaunay decomposition procedure. For simplicity, in the following description we
will refer specifically to two dimensions; the generalisation to arbitrary dimension d

(and specifically to d = 3) as well as a more detailed discussion will be given
afterwards. Panel (a) of Fig. 1 depicts a matrix configuration of six hard-disk
particles of diameter σ that form a void. In panel (b), the centres of these disks are
represented by full dots; at those dots a number of circles intersect. Each of these
circles exhibits a non-trivial property: exactly three of the particle centres lie on its
perimeter, and none inside. There exists a unique set of such “Delaunay circles”,
which follows from Theorems 5.8 and 5.11 in [35] in conjunction with the fact that
the collection of vertices in the dual Voronoi diagram is unique [35]. Panel (c) shows
circles that are concentric to the Delaunay circles but reduced in diameter so that
they touch the matrix particles. Consider now the fluid particles that move in the
array of obstacles: suppose their diameter is σ, like that of the matrix particles. For
any obstacle-touching circle in panel (c) this means that if its diameter is less than
σ, then no particle can be placed at the centre of this circle. Such circles are marked
in darker colour in panel (c). Consider now that, as depicted in panel (d), triangles
are formed by the matrix particles on the perimeter of each Delaunay circle; these
are called “Delaunay triangles”. If in panel (c) a fluid particle cannot be placed
at the centre of some Delaunay circle, then the entire area of the corresponding
Delaunay triangle is inaccessible; hence, those triangles need not be considered
in the further steps of the decomposition. In panel (e), superimposed to drawing
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(d), in light colour the area is shown in which no fluid particle of diameter σ

can be placed. This way, it is verified that no particle can reside in the Delaunay
triangles that were previously identified inaccessible. Moreover, the void can now
be identified visually, and it is clear that it is a trap since “there is no path to the
outside”. This intuitive conclusion can be formalised by considering for each edge
of a Delaunay triangle just the two particles that define it: if they permit to place
a fluid particle at the centre of such a “Delaunay edge”, then the two neighbouring
triangles are connected. The result of applying this criterion is depicted in panel (f),
where the matrix particles are now blanked out. The Delaunay edges are highlighted
according to their connectivity: the thick red edges can not be passed by a fluid
particle, whereas the thin green edges permit passing (indicated by the black bars).
As can be seen in the leftmost Delaunay triangle of panel (e), it is possible that
a fluid particle cannot be placed within a triangle although it can be placed at
the centre of the corresponding Delaunay circle. This is because the centre of the
circle can reside outside the triangle. Nevertheless, some edge of such a Delaunay
triangle can formally be connecting; since the other edges cannot be passed, the
connectivity of the Delaunay triangles correctly reflects connectivity of the voids
even in this case.

In the d-dimensional case, and hence the case d = 3 relevant to this work, the
following generalisations apply. (i) The notion of Delaunay circles is replaced by
that of Delaunay d-spheres (spheres of dimension d); they are defined by the centres
of (d + 1) fluid particles1 that reside on their surface, and fulfil the requirement
that no particle centres are located within them. (ii) The Delaunay d-spheres define
Delaunay d-simplices; in d = 3 they have tetrahedron topology, i.e., four vertices,
six edges, and four triangular faces. For this reason, we will refer to the Delaunay
3-simplices as “Delaunay tetrahedra”; note, however, that the triangle faces of a
Delaunay simplex are generally not equilateral. (iii) The Delaunay d-simplices are
bounded by surface elements of dimension (d − 1) which are defined by (d − 1)
particles. In d = 3 they consist of triangles which we will refer to as “Delaunay
faces”. Such a surface element is connecting if at the centre of its circumhypersphere
[defined by the (d − 1) particles] a fluid particle can be placed.

2.3. Percolation algorithm

After completion of the decomposition procedure, for each Delaunay tetrahedron it
is known whether its circumsphere is accessible to the centre of a fluid particle, and
for each Delaunay face it is known whether it is connecting or not. In the network
picture that was previously alluded to [29], the tetrahedra correspond to sites and
the faces represent bonds: both of these can be occupied or not, but bonds can exist
only between occupied sites. In the next step, these building blocks are assembled
into connected groups, each of which describes a void. In case that a group consists
of a finite number of members, this is a relatively minor challenge; if on the other
hand the group spans across the simulation box (considering the periodic boundary
conditions), it is vital to avoid a multiple counting of tetrahedron images while still
being able to identify whether the void is percolating. For this task, we devised a
novel algorithm, as described in the following.

To allow for a visual description (see later), we will again employ the terminol-
ogy of two dimensions; the generalisation of the procedure to three dimensions is

1Note that there may exist spheres with more than (d + 1) particle centres on their surface and none
inside; in this case a single sphere defines more than one Delaunay d-simplex. Since there is no unique
way to define the Delaunay d-simplices inside such d-spheres, the resulting Delaunay diagram is called
“frustrated”.
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Figure 2. Two-dimensional schematic representation of a complete Delaunay decomposition of a random
arrangement of eight obstacles with periodic boundary conditions. Dark (blue) disks: matrix particles.
Medium-shade thick (red) lines: non-connecting Delaunay edges (see Fig. 1). Light thin (green) lines: con-
necting edges. Thin black lines: box borders, separating periodic images. Dark (grey) areas: non-accessible
Delaunay triangles. Light (yellow) area: initial triangle in the procedure to determine the connectivity of
the triangle groups. Medium-shade (pink) triangle: first triangle for which a periodic image is encountered
in that procedure.

straight-forward. The starting point is marked by choosing at random a Delau-
nay triangle of which it is not yet known to which group of triangles it belongs.
First, we add this triangle to a list and store its location (for instance the centre
of the corresponding Delaunay circle) as the origin of the triangle group. We then
consider each Delaunay triangle that borders the current triangle via a connecting
edge: First, we compute its location by adding the difference vector between the
bordering and the current triangle to the position of the latter. Then, we check if
the bordering triangle is already an element of the list: If not, we add it to the list
and store its location. If it is already contained in the list then the stored location
of the triangle is retrieved and compared with the location just computed; if those
locations do not match then the newly-found triangle is a periodic image of the
one already contained in the list, and the triangle group defined by the list must

constitute a percolating void. After checking all of the bordering triangles, the cur-
rent triangle is marked “processed”; then, the unprocessed triangle with the lowest
identifier is retrieved from the list, and the same procedure is repeated. This is
iterated until the list contains solely processed triangles; the list then contains all
triangles in the triangle group.

To clarify this procedure, consider the schematic drawing shown in Fig. 2. Sup-
pose at the beginning the triangle T1 is the only element of the list and its location
has been stored. Then, in the first loop, T2 and T6 are added to the list. In the
second loop T1, T3, and T7 are considered, but since T1 is encountered at the same
location as previously saved, it is discarded and only T3 and T7 are added to the
list. In the third loop, only T4 is added; in the fourth loop this is done for T5 and
T8. In the fifth loop, finally, T6 is encountered, but at a location differing from the
encounter in the first loop. Therefore, the group must be percolating. In order to
find the remaining triangles, the procedure is then continued at T6, which yields
no additional entries to the list, and then at T7.

After applying the same dimensionality generalisations as before, the three di-
mensional procedure is described by the following pseudo-code:

while list contains unprocessed tetrahedra do
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Figure 3. Two-dimensional schematic drawing of the rastering technique applied to each Delaunay simplex
to determine the volume therein that is accessible to the centre of a fluid particle. Each square represents
one rastering grain. Dark (blue) disks: matrix particles. Light (orange) disks: non-accessible area. Black
empty triangle: a Delaunay triangle. Empty squares: grains that are not located within the triangle. Dark
(grey) squares: inaccessible grains that belong to the triangle. Medium-shade (pink) squares: accessible
grains that belong to the triangle.

choose unprocessed tetrahedron with lowest id
for all tetrahedra bordering a connecting face do

compute location
if not on list then

save location, add to list
else if computed location 6= stored location then

mark group “percolating”
end if

end for

mark current tetrahedron “processed”
end while

2.4. Volume rastering technique

The procedure described so far is sufficient to distinguish between traps and the
percolating void(s). However, in order to analyse in more detail the statistics of
the voids, it is useful to also determine their volumes, i.e., the amount of space
accessible to the centre of a fluid particle in each void. This allows for instance to
trace out void size distributions, which may then be used to interpret the dynamic
behaviour of fluid particles moving in the obstacle array. Also, knowing the void
volumes renders it possible to precisely evaluate the average fraction of trapped
particles in QA systems. Moreover, consider that the voids undergo a percolation
transition [36] when varying the matrix density φm: above a certain φ∗

m no perco-
lating void exists. In an infinitely-large system, this transition is sharp; however,
in systems of finite size more care has to be taken to reliably identify φm. In this
context knowledge about the void volumes is useful, although it also possible to
conduct investigations on this phenomenon based solely on the Delaunay decom-
position [31].

Sastry and coworkers [30] developed a complete, but rather complicated formal-
ism to exactly determine the size of a void. Since for the purpose of this work
we were merely interested in a reliable estimate of the void sizes, we opted for
a simpler approach like done for instance in [32]. In this approach, the volume
is rastered by considering a large number of cube-shaped “grains” arranged in a
simple cubic lattice: first, for each Delaunay tetrahedron the grain centres located

Page 7 of 16

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

January 13, 2011 13:35 Molecular Physics molphys

8 J. Kurzidim et al.

 0.0

 0.3

 0.6

0.24 0.25 0.26 0.27

P
te

tr
h
ed
(φ

m
) a)

Nm = 64 000
16 000

4000
1000

 0.0

 0.2

 0.4
P

fa
ce
(φ

m
)

b)

0.00

0.02

0.04

0.24 0.25 0.26 0.27

P
g
ra

in
(φ

m
)

φm

c)

P
  CS
grain(φm)

Figure 4. Selected quantities that describe the confinement structure without using information on the
notion of traps and the percolating void. (a) Probability Ptetrhed(φm) that a fluid particle can be placed
inside the circumsphere of a Delaunay tetrahedron. (b) Probability Pface(φm) that a Delaunay face is
connecting. (c) Probability Pgrain(φm) that a grain centre is accessible to a fluid particle. Definition of

the analytic function PCS
grain(φm): see text. Curves for different matrix particle numbers Nm are virtually

indistinguishable. Error bars (barely visible) represent one standard deviation of the mean over different
system realisations. Vertical dashed line: percolation threshold φ∗m as determined from Fig. 8.

inside the tetrahedron are determined; subsequently, for each of the corresponding
grains it is checked whether the centre of a fluid particle can access the grain centre.
The accessible volume inside a single tetrahedron is then the number of accessible
grains times the volume of a grain, the latter being simply the lattice spacing to
the third power. In combination with the information about the connectivity of the
Delaunay tetrahedra, the grains allows to evaluate the volume of each void. The
rastering procedure is visualised in Fig. 3, where accessible grains located inside
the tetrahedron are indicated by squares shaded in a medium (pink) tone, whereas
grains that belong to the tetrahedron but are not accessible are represented by
dark (grey) squares. The lattice depicted in Fig. 3 features merely six grains per
particle diameter; this resolution is considerably coarser than the one used in our
investigations. For computing most observables we employed a lattice spacing of
15 grains per particle diameter; for determining the unweighted void size distribu-
tion (Fig. 7 in Sec. 3.2) we increased this figure to as much as 100. Unless stated
otherwise in Sec. 3, uncertainties associated with the finite size of the grains are
much less significant than statistical errors.
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3. Results

3.1. Statistics of the Delaunay decomposition

Before we turn to a detailed discussion of the voids, we investigate some of the
statistical features of the underlying Delaunay decomposition and the accessible
volume. For this, no information about the notion of traps and percolating voids
is required. In Fig. 4, three quantities are presented that vary with the matrix
packing fraction, φm, and can easily be extracted from the procedure discussed
in Sec. 2. Panel (a) shows Ptetrhed(φm), the probability that a fluid particle can
be placed inside the circumsphere of a Delaunay tetrahedron; panel (b) depicts
the related quantity Pface(φm), the probability that a Delaunay face is connecting.
Panel (c) presents Pgrain(φm), the probability that a grain centre is accessible to a
fluid particle. The latter quantity can of course be calculated without the Delaunay
decomposition; it merely represents the overall volume accessible to the centre of
a fluid particle. By combining Eq. 2 in [37] and Eq. 2.7 in [38], it is also possible
to obtain the analytic expression

PCS
grain(φm) = exp

{

−
8φm − 9φ2

m + 3φ3
m

(1 − φm)3

}

(1)

for the accessible volume; the derivation is based on the Carnahan-Starling (CS)
equation of state [39] and the excess chemical potential. (Note that the index
“grain” was retained for notational simplicity only; the derivation is ignorant of
the concept of grains.) For comparison, PCS

grain is included in Fig. 4(c) as a light
grey background curve.

Anticipating that the φm range considered in Fig. 4 includes φ∗
m, the density at

which the percolation transition of the voids takes place (indicated by the dashed
vertical line), the most striking feature of these three probabilities is that nothing
even remotely indicates this fact. On the contrary, none of the quantities considered
decreases by more than a factor of two over the entire range of φm, and all do so
in a strictly monotonic fashion. Therefore, as has been discovered before [31, 37],
a simple analysis of Pgrain cannot be capable of predicting the correct dynamics
of a QA mixture if φm is close to φ∗

m, and neither could an analysis based on
the other two probabilities. As expected, Ptetrhed, Pface, and Pgrain are found to
be independent of the size of the system; thanks to the large number of averaged
elements, the curves for different system sizes are virtually indistinguishable and
errors are minute. The accuracy of the data is even more evident from panel (c),
where they are superposed to PCS

grain, which can be regarded to be essentially exact.
As an interesting side finding (not shown in a plot), we determined the that average
number of Delaunay tetrahedra per matrix particle, ntetrhed(φm), monotonically
decreases from ntetrhed(0.235) = 6.584 ± 0.003 to ntetrhed(0.270) = 6.547 ± 0.003.
Note that in a periodic system the number of Delaunay faces is exactly twice that
of the tetrahedra.

3.2. Statistics of the voids

Figure 5 gives a visual impression of a Delaunay decomposition (a) and of the
subsequent volume rastering (b) for a sample system containing Nm = 714 matrix
particles; the latter number is typical for the simulations performed in [25, 27, 28].
In both panels, elements coded in darker (red) shade constitute traps, whereas
elements in lighter (green) shade belong to the percolating void. In panel (a), only
Delaunay tetrahedra were considered for which a fluid particle can be placed at
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(a) (b)

Figure 5. Three-dimensional representation of the objects resulting from a Delaunay decomposition and a
subsequent rastering (cf. Sec. 2) applied to a sample matrix consisting of 714 particles. Dark (red): objects
pertaining to traps. Light (green): objects that constitute the percolating void. (a) Delaunay tetrahedra
for which a fluid particle can be placed at the circumsphere centre. (b) Grains for which a fluid particle
can be placed at the centre.
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Figure 6. Probabilities indicating the presence of a percolation transition which can be extracted from
the percolation analysis and the rastering procedure. (a) Probability that a system at a given φm contains
a percolating void. (b) Probability that a given grain belongs to a trap. Error bars and vertical dashed
line: see Fig. 4.

the centre of the circumsphere. Panel (b) indicates that for the major part of
the accessible volume, the rastering technique yields results of adequate accuracy;
merely for very small voids the method suffers from inaccuracies. However, since
the latter voids comprise only a minute fraction of the accessible volume, those
inaccuracies should have negligible impact when analysing the dynamics of an
annealed fluid in conjunction with information about the void sizes. From panel (b),
it is also evident that the structure of the accessible volume is highly nonuniform,
with the voids covering a large range in size and shape.

The most straight-forward quantity to extract from the percolation analysis de-
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scribed in Sec. 2.3 is of course the probability Ppercol(φm) that a system contains a
percolating void; naturally it provides one means to estimate φ∗

m, the percolation
threshold of the void space. Ppercol depends not only upon the matrix packing frac-
tion φm, but also on the size of the system, here quantified by the number of matrix
particles Nm. Since periodic boundary conditions were employed, with respect to an
infinitely-large system Ppercol in small systems is enhanced above φ∗

m, while below
φ∗

m the reverse is true. From Fig. 6, panel (a), this smearing-out in small systems is
immediately evident; such finite-size effects are well-known from order parameters
in first- and second-order phase transitions where they are associated with cutting
off a divergent length scale (see, e.g., [40]). As expected, Ppercol approaches a step
function as Nm is increased. An estimation of φ∗

m is provided by the interval over
which Ppercol changes from 1 to 0 for the largest system considered. This proce-
dure yields 0.248 < φ∗

m < 0.254, an interval that indeed encloses the more precise
value that we will later extract from Fig. 8, indicated by the vertical dashed line
in Fig. 6. Note that it is a coincidence that the Ppercol curves for different Nm

intersect at points distributed over a narrow φm range; this is unrelated to scaling
considerations and does not serve as a more precise estimate [36].

Panel (b) of Fig. 6 shows another interesting quantity, namely Ptrap(φm), the
fraction of accessible volume that is located in traps (as opposed to the percolating
void). As expected, Ptrap approaches unity as φm is increased towards φ∗

m; finite-
size effects similar to those in Ppercol can be observed. However, unlike the latter,
Ptrap does not converge to a step function as Nm is increased since below φm

traps are encountered in systems of any size. Consequently, distilling the interval
containing φ∗

m from Ptrap is somewhat less precise than extracting it from Ppercol.
The significance of Ptrap lies in a different reason: recall that for setting up QA
systems the particles of the fluid component are inserted into the matrix at random
positions [25, 27]. Considering this, it is clear that Ptrap describes precisely the
average fraction of fluid particles that are located in a trap. Therefore, Ptrap at a
certain φm can be used to obtain some observable of the full fluid by performing (at
the same φm) an appropriately-weighted average of the same observable pertaining
to the trapped and to the free particles.

As mentioned previously, voids of vastly differing size and shape are present in a
QA system. The latter finding is not unexpected and can be quantified in a more
succinct fashion by computing, at fixed φm, the probability distribution of void
volumes. First, recognise that given a system at a specific φm and Nm, the volume
of the percolating void(s) is known as

Vpercol(φm) = [1 − Ptrap(φm)] Pgrain(φm)
[π

6
Nmφ−1

m

]

. (2)

Since this means that Vpercol(φm) can be calculated solely from quantities already
discussed, in the following we will consider only traps.

In Fig. 7(a) we present the probability P (V ) that a given void contains an acces-
sible volume V ; panel (b) shows the same quantity weighted with V . In the case of
P (V ), the probability distribution exhibits interesting features over a large range of
void volumes (note the logarithmic volume scale in Fig. 7), including in particular
very small values of V . In order to trace out the distribution to such small volumes,
we considered systems containing merely 100 particles. This necessity arose from
the fact that a small grain volume entails a large number of grains, and from the
fact that computer memory is limited. However, considering that P (V ) does not
show interesting features above V ∼ 101, the choice of Nm = 100 is sufficient.
Using a grain edge length Lgrain = 0.01 (i.e., 100 grains per particle diameter), the
systems comprised Ngrain ∼ 6003 grains; this allowed reliable calculations of void
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Figure 7. Probability that a given void extends over an accessible volume V . Curves represent matrix
packing fractions φm below, close to, and above the percolation transition. (a) Unweighted probability, for
Nm = 100 matrix particles. (b) Probability weighted with V , for Nm = 64 000. Error bars: see Fig. 4.

volumes for voids exceeding V ∼ 10−5. Below this value of V , data in Fig. 7(a)
suffers from finite-size effects; this concerns in particular the upward “kink” in this
range of V .

The most interesting feature of Fig. 7(a) is the fact that there is, almost like in
Fig. 4, little (if any) indication of a percolation transition. Merely a small shoulder
for φm = 0.251 and V ∼ 101 hints at this fact. Instead, the location of the dis-
tribution peak continuously shifts to larger values as φm is increased. Conversely,
the volume-weighted distribution P (V )V , presented in panel (b), shows clear ev-
idence of a percolation transition. Since by definition this quantifier emphasises
large volumes, differences therein are enhanced: For φm = 0.251, the distribution
assumes values of 0.05 for volumes as large as V ∼ 103; for the other two densities
P (V )V falls off to lower values already at volumes smaller by two orders of mag-
nitude. Considering that P (V )V is essentially zero beyond V = 104 and that for
Nm = 64000 and φm = 0.251 the total system volume is ∼ 503 ∼ 105, uncertainties
in P (V )V arise solely from statistics and not from the finite size of the system.

Finally, we turn to the quantity that—disregarding finite-size scaling
techniques—allows for the most accurate [36] determination of the percolation
transition: the second moment of the void volume distribution

〈V 〉vol (φm) =

∫ ∞

0
P (V )V 2 dV

∫ ∞

0
P (V )V dV

≃

Nvoids
∑

i=1

V 2
i

Nvoids
∑

i=1

Vi

. (3)

Here, Vi denotes the volume of void i in a configuration at a given value of φm; note
that, like in P (V ), the percolating void is not included in Nvoids. In an infinitely-
large system the latter quantity diverges at φ∗

m; a convergence to this behaviour can
immediately be seen from Fig. 8(a). The divergence can easily be rationalised: First,
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Figure 8. Average volume of the voids formed by the matrix, depending of the matrix packing fraction
φm. (a) Volume-weighted average 〈V 〉vol (φm). (b) Number-weighted average 〈V 〉num (φm). The vertical
dashed line represents the best estimate of the percolation threshold φ∗m based on position of the peak in
panel (a). Error bars: see Fig. 4. [Note that panel (a) of this figure corresponds to panel (b) in Fig. 7, and
vice versa].

consider that just above the percolation threshold very large voids exist, which
are “almost” percolating in the sense that only in few locations a connection is
disrupted by the matrix. Just below the percolation transition voids are also large,
since with an increasing number of obstacles substantial accessible volumes are
disconnected from the percolating void. Realising, then, that 〈V 〉vol is the volume-
weighted version of the average void size

〈V 〉num (φm) =
1

V

∫ ∞

0
P (V )V dV ≃

1

Nvoids

Nvoids
∑

i=1

Vi (4)

it is clear that a large void will have large weight. Since in we excluded the per-
colating void, for φm 6= φ∗

m no infinite weight can be present in 〈V 〉vol. Therefore,
the latter can diverge only at φ∗

m. For completeness, in panel (b) of Fig. 8 we also
show 〈V 〉num; note, however, that the maximum of the latter does not correspond
to φ∗

m. Focusing, finally, on the position of the peak in 〈V 〉vol, the best estimate
emanating from the present work for the percolation threshold in QA systems of
equal hard spheres is φ∗

m ≃ 0.251(2 ± 2).

4. Discussion and Conclusions

The primary objective of this work was to introduce a geometric method that
reliably identifies which of the voids formed by an arbitrary matrix of immobile hard
spheres are of finite volume and which are infinitely large. In Sec. 2 we presented an
efficient algorithm based on a Delaunay decomposition that suits this requirement
specifically in the presence of periodic boundary conditions. Given a set of mobile
hard-sphere particles that occupy random locations within such a matrix, this
method provides a clear-cut means to determine which among the mobile particles
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are “trapped” (located in a void of finite size) and which are “free” (located in
an infinitely large void). It is worth noting that although trapped particles may
not be relevant or not even realised in experimental setups, it is of paramount
importance to explicitly include these particles when testing theoretical frameworks
that explicitly require their presence—only this way such theories, which represent
the state of the art to describe fluids in disordered confinement, can be scrutinised
and subsequently improved.

The method introduced in Sec. 2 also enables to evaluate various statistical
properties of the voids formed by such matrices, which is interesting and useful
on its own right. In Sec. 3 of this work, we chose to focus on matrices quenched
from an equilibrated hard-sphere fluid since such matrices are the key feature of
QA systems. The result that stands out from this study is the highly accurate
determination of φ∗

m, the packing fraction at which the percolation transition of
the voids takes place for QA systems of identical hard spheres. This percolation
transition is intimately connected to the dynamic arrest of the fluid particles that
move in the host matrix, and its determination using the method introduced in this
work provides an independent verification of previous investigations such as Refs.
[25, 27, 28, 41]. We determined the percolation transition to take place at φ∗

m =
0.2512, which is in excellent agreement with the findings of the above works, which
unanimously found the fluid to exhibit subdiffusive behaviour for φm ∼ 0.25 (or
slightly above this value) and in all cases this fact was attributed to the underlying
percolation transition of the voids. There is an apparent slight disagreement with
the investigation by Sung and Yethiraj on the “random matrix” protocol [31], for
which they found the percolation transition to take place at φm ∼ 0.24. However,
considering that in this protocol the matrix particles are serially inserted into the
simulation volume and remain fixed at their insertion locations (see [31] for details),
this discrepancy can probably be attributed to the fact that random matrices of
this kind do not represent configurations of an equilibrated fluid. This would be in
agreement with the finding of the same authors, as well as other authors [26, 32, 42],
that φ∗

m depends sensitively on details of the matrix preparation protocol.
There are several possible applications and routes of action emerging from the

geometric method presented in this contribution. One of the most straight-forward
uses, namely performing a separation in trapped and free particles for QA systems
of equal hard spheres, has been been investigated by the authors in a concurrent
publication [28]. The results in that contribution have turned out to provide inter-
esting insights into the capabilities of MCT to describe the dynamics of dense QA
systems. Furthermore, it is possible to apply our method without modification to
systems in which the fluid particles have a radius different from that of the matrix
particles, and even to systems with polydisperse fluid particles. In the latter case,
the only caveat is an increasingly involved analysis since the void connectivity has
to be evaluated separately for each fluid particle, which unfortunately also renders
the interpretation intricate. Our method is not directly suited for application to
matrices consisting of polydisperse particles; however, it can be extended to this
case in a straight-forward façon by making use of the solutions to the so-called
“Apollonius’ Problem” (i.e., the problem to find a circle that touches three other
circles) and its higher-dimensional generalisations in appropriate places of the al-
gorithm. In this context it is due to mention a different route to geometrically
analysing polydisperse matrices which has been explored by Sastry and coworkers,
who extended the Voronoi construction (which is dual to the Delaunay decom-
position) to this case [30]. Another natural application of our method would be
to analyse matrices constituted by particles that interact through a continuously
varying pair potential. If the hard-sphere potential represents a low-temperature
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limit of such a potential (which is the case, e.g., for the Lennard-Jones potential)
the decomposition method could be used to perform a separation in regions of low
and high energy, as has been done in Refs. [37, 43].

Finally, also the quantities presented in Sec. 3 and related descriptors of the void
structure offer promising routes to directly compute the dynamics of a confined
fluid from structural information of the host matrix. For instance, advanced sim-
ulational methods can be devised, like the Monte Carlo simulations on Voronoi
networks performed in [31], and theoretical approaches can be worked out which
involve not only the total accessible volume [37] but also the distributions of the
void volumes and of the void connectivities. This way, hopefully, answers can be
provided to the dire need for improved theories and extended simulations on flu-
ids in disordered confinement, to thus finally rationalise the existing plethora of
experimental information in this field.
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