
HAL Id: hal-00692121
https://hal.science/hal-00692121

Submitted on 28 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Crystal Nucleation in binary hard-sphere mixtures: The
effect of order parameter on the cluster composition

Ran Ni, Frank Smallenburg, Laura Filion, Marjolein Dijkstra

To cite this version:
Ran Ni, Frank Smallenburg, Laura Filion, Marjolein Dijkstra. Crystal Nucleation in binary hard-
sphere mixtures: The effect of order parameter on the cluster composition. Molecular Physics, 2011,
109 (07-10), pp.1213-1227. �10.1080/00268976.2011.554333�. �hal-00692121�

https://hal.science/hal-00692121
https://hal.archives-ouvertes.fr


For Peer Review
 O

nly
 

 
 

 
 

 
 

Crystal Nucleation in binary hard-sphere mixtures: The 

effect of order parameter on 

the cluster composition 
 
 

Journal: Molecular Physics 

Manuscript ID: TMPH-2010-0457.R1 

Manuscript Type: Special Issue paper - In honour of Bob Evans 

Date Submitted by the 
Author: 

16-Dec-2010 

Complete List of Authors: Ni, Ran; Utrecht University 
Smallenburg, Frank; Utrecht University 
Filion, Laura; Utrecht University 
Dijkstra, Marjolein; Univeriteit Utrecht, Soft Condensed Matter 

Keywords: 
nucleation, computer simulation, binary mixtures, colloids, hard 
spheres 

  

Note: The following files were submitted by the author for peer review, but cannot be converted 
to PDF. You must view these files (e.g. movies) online. 

nucleation.tex 

 
 

 

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics



For Peer Review
 O

nly

Crystal Nucleation in binary hard-sphere mixtures: The effect of order parameter on
the cluster composition

Ran Ni∗, Frank Smallenburg,∗ Laura Filion, and Marjolein Dijkstra
Soft Condensed Matter, Debye Institute for NanoMaterials Science,

Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
(Dated: December 16, 2010)

We study crystal nucleation in a binary mixture of hard spheres and investigate the composition
and size of the (non)critical clusters using Monte Carlo simulations. In order to study nucleation
of a crystal phase in computer simulations, a one-dimensional order parameter is usually defined
to identify the solid phase from the supersaturated fluid phase. We show that the choice of order
parameter can strongly influence the composition of noncritical clusters due to the projection of
the Gibbs free-energy landscape in the two-dimensional composition plane onto a one-dimensional
order parameter. On the other hand, the critical cluster is independent of the choice of the order
parameter, due to the geometrical properties of the saddle point in the free-energy landscape, which
is invariant under coordinate transformation. We investigate the effect of the order parameter on
the cluster composition for nucleation of a substitutional solid solution in a simple toy model of
identical hard spheres but tagged with different colors and for nucleation of an interstitial solid
solution in a binary hard-sphere mixture with a diameter ratio q = 0.3. In both cases, we find
that the composition of noncritical clusters depends on the order parameter choice, but are well
explained by the predictions from classical nucleation theory. More importantly, we find that the
barrier height and properties of the critical cluster do not depend on the order parameter choice.

PACS numbers:

The process of nucleation in colloidal systems has at-
tracted significant attention in recent years, both in ex-
perimental and simulation studies. The framework with
which phenomena like these have been described tradi-
tionally is classical nucleation theory (CNT), which is
based on the notion that a thermal fluctuation sponta-
neously generates a small droplet of the thermodynami-
cally stable phase into the bulk of the metastable phase.
In CNT as developed by Volmer [1], Becker [2], and Zel-
dovich [3], the free energy of formation of small nuclei
of the new phase in the parent phase is described by us-
ing the ”capillary approximation”, i.e., the free energy to
form a cluster of the new phase relative to the homoge-
neous metastable phase is described by their difference
in bulk free energy and a surface free-energy term that
is given by that of a planar interface between the two
coexisting phases at the same temperature. Thus the
droplet is assumed to be separated from the metastable
bulk by a sharp step-like interface in CNT. The bulk free-
energy term is proportional to the volume of the droplet
and represents the driving force to form the new phase,
while the surface free-energy cost to create an interface
is proportional to the surface area of the cluster. Hence,
small droplets with a large surface-to-volume ratio have
a large probability to dissolve, while droplets that exceed
a critical size and cross the free-energy barrier, can grow
further to form the new stable bulk phase.

CNT has successfully explained simulation results for
the nucleation of spherical particles, such as the fluid-
solid and gas-liquid nucleation in Lennard-Jones systems

∗These authors contributed equally to this work.

[4–6] and crystal nucleation of hard spheres [7, 8]. A
modified CNT has been used to explain the nucleation of
anisotropic clusters of the nematic or solid phase (also
called tactoids) from a supersaturated isotropic phase
of colloidal hard rods [9–11] and the nucleation of 2D
assemblies of attractive rods [12, 13]. This state of af-
fairs should be contrasted with the case of binary nu-
cleation for which various nucleation theories have been
developed that differ substantially in the way they de-
scribe the composition of the cluster [14–16]. For in-
stance, Reiss assumed the surface tension to be indepen-
dent of composition [14], while Doyle extended CNT by
taking into account a surface tension that depends on the
cluster composition [17]. However, more than 20 years
later, it was shown by Renninger [18], Wilemski [19, 20],
and Reiss [21] that Doyle’s derivation leads to thermo-
dynamic inconsistencies. A revised thermodynamically
consistent classical binary nucleation theory was devel-
oped by Wilemski in which the composition of the surface
layer and the interior of the cluster could vary indepen-
dently [19, 20]. However, in the case of strong surface
enrichment effects, this approach can lead to unphysical
negative particle numbers in the critical clusters [22, 23].
In addition, it was shown in Ref. [24] that the deriva-
tion by Wilemski starts off with the wrong equations,
but the resulting equations are correct. Moreover, binary
nucleation can be accompanied with huge fractionation
effects, i.e., the compositions of the metastable phase and
of the phase to be nucleated can differ enormously from
the compositions of the two coexisting bulk phases. It
is therefore unclear i) how to determine the surface free-
energy term for a cluster, which is in quasi-equilibrium
with a metastable parent phase with a composition that
is very different from those of the two coexisting bulk
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phases, ii) whether the interfacial tension depends on
composition, curvature, and surface enrichment effects,
and finally iii) whether or not one can use the capillary
approximation in the first place to describe binary nu-
cleation in systems where fractionation and surface ac-
tivity of the species are important. To summarize, there
is no straightforward generalization to multicomponent
systems of classical nucleation theory that is thermody-
namically consistent, does not lead to unphysical effects,
and can be applied to small nuclei [16, 25].

Numerical studies may shed light on this issue, as the
nucleation barrier can be determined directly in com-
puter simulations using the umbrella sampling technique
[26, 27]. In this method, an order parameter is chosen
and configuration averages for sequential values of the or-
der parameter are taken. While this makes it possible to
measure properties of clusters with specific values for the
order parameter, it should be noted that the results can
depend on the choice of order parameter. In the present
paper, we investigate whether the size and composition
of (non)critical clusters can be affected by the order pa-
rameter choice employed in simulation studies of multi-
component nucleation. For simplicity, we focus here on
crystal nucleation in binary hard-sphere mixtures, where
surface activity of the species can be neglected, and we
assume the surface tension to be composition indepen-
dent. The paper is organized as follows. In Sec. I, we
describe the general nucleation theorem as derived by
Oxtoby and Kashchiev [16], which does not rely on the
”capillary approximation” and can even be employed to
describe small clusters. Starting from the multicompo-
nent nucleation theorem, it is straightforward to repro-
duce the usual CNT for binary nucleation, which is the
focus in the remainder of the paper. In Sec. II and III, we
define the (Landau) free energy as a function of an order
parameter, and we describe the order parameter that is
employed to study crystal nucleation. Additionally, we
discuss the effect of order parameter choice on the nu-
cleation barrier in more detail. We present results for
binary nucleation for a simple toy model of hard spheres
in Sec. IV, and subsequently, we study the nucleation
of an interstitial solid solution in an asymmetric binary
hard-sphere mixture in Sec. V.

I. CLASSICAL NUCLEATION THEORY FOR
MULTI-COMPONENT SYSTEMS

We study the formation of a multicomponent spheri-
cal cluster of the new phase in a supersaturated homoge-
neous bulk phase α consisting of species i = 1, 2, . . . . We
note that the thermodynamic variables corresponding to
the metastable phase α are denoted by the subscript α,
whereas those corresponding to the new phase do not
carry an extra subscript to lighten the notation. We first
consider a homogeneous bulk phase α characterized by an
entropy So

α, volume V o
α , and particle numbers No

i,α Note
that the superscripts denote the original bulk phase. The

internal energy Uo
α of the original bulk phase reads

Uo
α = T oSo

α − P o
αV o

α +
∑

µo
i,αNo

i,α (1)

with T o the temperature, P o
α the bulk pressure, µo

i,α the
bulk chemical potential of species i, and the summation
runs over all species.

Following the derivation in Refs. [16, 25], we now con-
sider a spherical cluster of the new phase with a volume
V separated from the original phase by an arbitrarily
chosen Gibbs dividing surface. The volume of the inter-
face is set to zero, and the particle number of species i in
the cluster is given by Ni +Ni,s, where Ni is the number
of particles of species i in a volume V which is homo-
geneous in the new bulk phase, and Ni,s is the surface
excess number of particles of species i that corrects for
the difference between a step-like interfacial density pro-
file and the actual one. The surface excess number Ni,s

depends on the choice of dividing surface. The internal
energy U of the resulting system is then given by

U = TSα + TS − PαVα − PV + Ψ +
∑

µi,αNi,α +
∑

µiNi +
∑

µi,sNi,s, (2)

where P and S denote the bulk pressure and entropy of
the nucleated phase, and µi and µi,s are the chemical
potentials of species i in the new phase and the surface
phase, T is the temperature of the system with the clus-
ter, and Ψ = Ψ({Ni}, {Ni,s}, V ) is the total surface en-
ergy of the spherical cluster. As the volume of the surface
layer is zero, the corresponding pressure is not defined.

The difference in the appropriate thermodynamic po-
tential as a function of cluster size depends on the quan-
tities that are kept fixed during the nucleation process. If
the nucleus is formed at constant temperature and con-
stant total number of particles of each species i, and if
we keep the pressure of the original phase fixed, then
T = T o, Ni,α + Ni + Ni,s = No

i,α, and P o
α = Pα. The

corresponding Gibbs free energy of the initial system Go
α

and that of the final system G are then given by the
Legendre transformation

Go
α = Uo

α − T oSo
α + P o

αV o
α =

∑
µo

i,αNo
i,α

G = U − TS + P o
α(Vα + V )

= (P o
α − P)V + Ψ +

∑
µi,αNi,α +

∑
µiNi

+
∑

µi,sNi,s. (3)

If we now assume that the composition of the metastable
phase α remains unchanged and we consider the Maxwell
relation

(
∂Vα

∂Ni,α

)

T,Pα,{Nj 6=i,α}
= vi,α =

(
∂µi,α

∂Pα

)

T,{Ni,α}
(4)

with vi,α the partial particle volumes of species i in phase
α, we find that at constant pressure, the chemical poten-
tial for each species i remains constant µo

i,α = µi,α. Sub-
sequently, we obtain for the change in Gibbs free energy
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∆G = G − Go
α when a nucleus is formed in the bulk of

the original phase:

∆G = (P o
α − P)V + Ψ +

∑
(µi(P)− µo

i,α(P o
α))Ni +

∑
(µi,s − µo

i,α(P o
α))Ni,s. (5)

Consequently, the Gibbs free energy ∆G of a grow-
ing cluster depends on the number of particles Ni and
Ni,s in the cluster and the surface energy of the cluster.
Hence, one can define a free-energy surface in the multi-
dimensional composition plane with a saddle point that
corresponds to the critical nucleus [14]. The conditions
for the critical cluster read

(
∂∆G

∂Ni

)

V,{Nj 6=i},{Ni,s}
= 0,

(
∂∆G

∂Ni,s

)

V,{Ni},{Nj 6=i,s}
= 0, (6)

(
∂∆G

∂V

)

{Ni},{Ni,s}
= 0.

To recover the chemical and mechanical equilibrium
conditions, we use the above conditions as well as the
Gibbs-Duhem equation and the Gibbs adsorption equa-
tion. The Gibbs-Duhem equation at constant tempera-
ture for the nucleated bulk phase is

−V dP +
∑

Nidµi = 0, (7)

and the Gibbs adsorption equation for the surface at con-
stant temperature is

Adγ +
∑

Ni,sdµi,s = 0, (8)

where we have employed Ψ = γA. Note that γ denotes
the surface free energy per unit area and A is the surface
area of the cluster. The resulting equilibrium conditions
for all particle species i in the critical cluster, the surface,
and the metastable parent phase are then given by

µ∗i (P
∗) = µ∗i,s = µo

i,α(P o
α), (9)

and for the pressure difference inside and outside the
droplet we find

P ∗ − P o
α =

∂γ∗A∗

∂V ∗ , (10)

where ∗ denotes quantities associated with a system
where a critical cluster is present. Hence, the composi-
tion of the critical cluster can be determined from these
saddle point conditions.

In order to obtain the usual classical nucleation the-
ory for multicomponent systems, we assume a spherical
droplet with radius R. Note that the surface area is then
A = 4πR2. In addition, we use the fact that the volume

of a spherical droplet can be expressed in terms of the
partial particle volumes vi of species i:

V =
4
3
πR3 =

∑
Nivi. (11)

Combining this with Eq. (10), we arrive at the gener-
alised Laplace equation:

P ∗ − P o
α =

2γ∗

R∗
+

[
∂γ∗

∂R∗

]
, (12)

where the square brackets denote a derivative associated
with the displacement of the dividing surface. One can
now choose the dividing surface so that

[
∂γ∗

∂R∗

]
= 0, (13)

and hence one recovers the usual Laplace equation. This
choice for the dividing surface, corresponding to a specific
value for R∗ and γ∗, is called the surface of tension. In
addition, if we use the Gibbs adsorption isotherm (8)
and the Maxwell relation (4) for the bulk phase of the
nucleated cluster, we find for the critical cluster

dµ∗i,s = dµ∗i = vidP (14)

and
[
A

∂γ∗

∂R∗

]
= −

∑
Ni,svi

[
∂P ∗

∂R∗

]
= 0, (15)

which is the condition for a curvature independent sur-
face tension. Since ∂P ∗/∂R∗ 6= 0, Eq. (15) implies that
the dividing surface has to be chosen such that

∑
Ni,svi = 0, (16)

which is called the equimolar surface, as for one-
component systems Ni,s = 0, i.e. the number of particles
in the cluster equals the number of particles in a uniform
bulk phase with the same volume. It is generally not pos-
sible in a multicomponent system to choose the dividing
surface such that Ni,s = 0 for all species. Thus, as vi is
usually positive, Ni,s < 0 for at least one of the species.
This may lead to (unphysical) negative particle numbers
when Ni + Ni,s < 0 as noted in Refs. [22, 23]. However,
as will be discussed in sections IV and V, there are cases
in which the assumption Ni,s = 0 for all i is valid.

If the nucleated phase is assumed to be incompress-
ible, one can integrate the Gibbs-Duhem equation (7) at
constant temperature to arrive at

V(P o
α − P) =

∑
(µi(P o

α)− µi(P))Ni, (17)

and using Eq. (5), we find

∆G = γA +
∑

(µi(P o
α)− µo

i,α(P o
α))Ni +

∑
(µi,s − µo

i,α(P o
α))Ni,s. (18)
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Again using the Gibbs-Duhem equation at constant
temperature and pressure and the Gibbs adsorption
isotherm, and minimizing the free energy with respect to
Ni at fixed {Ni,s}, we recover the Gibbs-Thomson (also
called Kelvin) equations for multi-component spherical
critical clusters

∆µ∗i = −2γ∗vi

R∗
, (19)

where ∆µ∗i = µ∗i (P
o
α)− µo

i,α(P o
α). The radius of the crit-

ical cluster R∗ and the barrier height ∆G∗ read

R∗ =
2γ∗vi

|∆µ∗i |
(20)

∆G∗ =
4πR∗2γ∗

3
=

16πγ∗3

3(∆µ∗i /vi)2
. (21)

Using Eq. (20) or the Maxwell relation (4), one can show:

vi∆µi = vj∆µj , (22)

and the radius of the critical cluster R∗ can be expressed
in terms of the bulk composition xi = Ni/

∑
Ni of the

critical cluster and v = V/
∑

Ni:

R∗ =
2γ∗v∑
xi|∆µ∗i |

. (23)

In order to study multi-component nucleation, MC
simulations are often performed in the isobaric-
isothermal ensemble, in which the number of particles
No

1,α and No
2,α, the pressure of the original bulk phase

P o
α, and the temperature T are kept fixed. One of the as-

sumptions of classical nucleation theory is that the com-
position of the metastable bulk phase remains constant,
while nucleating the new phase, see Eq. (4). In sim-
ulations this can only be achieved if the system is suf-
ficiently large, i.e., the volume of the metastable bulk
phase is much larger than that of the nucleating clus-
ter. Especially, for binary (multicomponent) nucleation,
where the composition of the stable phase is very different
from that of the metastable phase, this can lead to a huge
depletion of one of the components in the metastable
fluid phase, and therefore a change in composition. In
order to circumvent this problem, simulation studies on
binary nucleation are often carried out in the semi-grand
canonical ensemble [28, 29], i.e. the total number of par-
ticles No

α =
∑

No
i,α, the chemical potential difference

∆µo
12,α = µo

2,α − µo
1,α between the two species, the pres-

sure P o
α, and the temperature T are kept fixed of the

original bulk phase. The corresponding thermodynamic
potential is obtained by a Legendre transformation

Y (N, ∆µ12, P, T ) = G(N,N2, P, T )−N2∆µ12 (24)

Combining Eq. (3) with the conditions that the to-
tal number of particles are fixed No

1,α + No
2,α = N1 +

N2 +N1,α +N2,α, the chemical potential difference in the
metastable phase is kept fixed ∆µo

12,α = ∆µ12,α, constant

pressure of the metastable phase P o
α = Pα and constant

temperature T = T o, we find for the corresponding ther-
modynamic potentials

Y o
α = Go

α −No
2,α∆µo

12,α = µo
1,α(No

1,α + No
2,α)

Y = G− (N2,α + N2)∆µ12,α

= (P o
α − P)V + Φ + µ1,α(N1,α + N2,α) +

µ1(N1 + N2)−∆µ12N2 −∆µ12,αN2, (25)

where we have set the surface excess numbers Ni,s to
zero. Using the Maxwell equation

(
∂µ1

∂P

)

N,∆µ12,T

=
(

∂V

∂N

)

∆µ12,P,T

= v, (26)

we find that due to constant pressure, the chemical po-
tential of species 1 remains unchanged µo

1,α = µ1,α.
Hence, we find that the change in free energy due to
the formation of a nucleus ∆Y = Y − Y o

α equals ∆G as
given in Eq. (5) and the nucleation barrier can be calcu-
lated in the semi-grand canonical ensemble. Similarly,
one can show that in any statistical ensemble (grand
canonical, canonical, etc. ), the change in the corre-
sponding thermodynamic potential as a function of clus-
ter size is always the same, provided that the metastable
parent phase is sufficiently large. A similar result was
also obtained by Oxtoby and Bob Evans, who showed
that the nucleation free-energy barriers in the isobaric-
isothermal and grand canonical ensemble are identical,
i.e., ∆G = ∆Ω for a one-component system [30].

II. FREE-ENERGY BARRIER

While nucleation is an inherently non-equilibrium pro-
cess, the assumption of local equilibrium is often made
to describe the behavior of the system during the nucle-
ation process. In essence, this assumption states that the
nucleus is in quasi-equilibrium with the parent phase for
every cluster size. This is approximately true if the time
required to reach an equilibrium distribution of clusters
is short compared to the time needed to nucleate. Af-
ter the system crosses the free-energy barrier, the cluster
of the new phase grows too rapidly for this assumption
to be accurate, but during the nucleation process itself,
local equilibrium has proven to be a useful assumption.

In order to compute the free-energy barrier that sep-
arates the metastable phase from the stable phase, an
order parameter Φ (or reaction coordinate) should be
defined that quantifies how much the system has trans-
formed to the new phase. A common order parameter
that is employed in nucleation studies is the size of the
largest cluster in the system as defined by a certain clus-
ter criterion. In the present paper, we restrict ourselves
to binary nucleation. From Eq. (18), we find that the
Gibbs free energy ∆G of a growing binary cluster de-
pends on the number of particles of species 1 and 2 in the
cluster, and hence, one can define a free-energy surface in
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the (N1, N2)-plane with a saddle point that corresponds
to the critical nucleus [14]. By projecting the phase space
of the system onto the (usually) one-dimensional order
parameter, one can define the (Landau) Gibbs free en-
ergy ∆G(Φ) as a function of this order parameter Φ

β∆G(Φ) = Gc − lnP (Φ), (27)

where β = 1/kBT , kB Boltzmann’s constant, T the tem-
perature, Gc is a normalization constant generally taken
to correspond to the free energy of the homogeneous
metastable phase, and P (Φ) is the probability of observ-
ing an order parameter of value Φ. In a system of N
particles, at fixed pressure P , and constant temperature
T , the probability P (Φ) is given by:

P (Φ) =∫
dV

∫
drN exp[−β(U(rN ) + PV )]δ(Φ− Φ(rN ))∫
dV

∫
drN exp[−β(U(rN ) + PV )]

(28)

with V the volume of the system, U the potential energy,
and δ the Kronecker delta function. The order parameter
function Φ(rN ) is a function that assigns to each configu-
ration rN of the system a value for the order parameter.
The probability distribution P (Φ) can be obtained from
Monte Carlo (MC) simulations via the umbrella sampling
technique [26, 27]. In this method, an additional exter-
nal potential Ubias is added to the system to bias the
sampling towards configurations corresponding to a cer-
tain window of order parameter values centered around
Φo. By increasing Φo sequentially, the entire free-energy
barrier as a function of Φ can be sampled. The typical
biasing potential used in umbrella sampling simulations
is given by:

βUbias(rN ) = k(Φ(rN )− Φo)2, (29)

where the constants k and Φo determine the width and
location of the window, and rN are the positions of all
N particles in the simulation.

III. ORDER PARAMETER

In order to follow a phase transformation, a cluster cri-
terion is required that is able to identify the new phase
from the supersaturated phase. In this paper, we focus
on the formation of a solid cluster in a supersaturated
fluid phase. In order to study crystal nucleation, the lo-
cal bond-order parameter is used to differentiate between
liquid-like and solid-like particles and a cluster algorithm
is employed to identify the solid clusters [5]. In the calcu-
lation of the local bond order parameter a list of “neigh-
bours” is determined for each particle. The neighbours
of particle i include all particles within a radial distance
rc of particle i, and the total number of neighbours is
denoted Nb(i). A bond orientational order parameter
ql,m(i) for each particle is then defined as

ql,m(i) =
1

Nb(i)

Nb(i)∑

j=1

Yl,m(θi,j , φi,j), (30)

where Yl,m(θ, φ) are the spherical harmonics, m ∈ [−l, l]
and θi,j and φi,j are the polar and azimuthal angles of the
center-of-mass distance vector rij = rj − ri with ri the
position vector of particle i. Solid-like particles are iden-
tified as particles for which the number of connections
per particle ξ(i) is at least ξc and where

ξ(i) =
Nb(i)∑

j=1

H(dl(i, j)− dc), (31)

H is the Heaviside step function, dc is the dot-product
cutoff, and

dl(i, j) =

l∑

m=−l

ql,m(i)q∗l,m(j)

(
l∑

m=−l

|ql,m(i)|2
)1/2( l∑

m=−l

|ql,m(j)|2
)1/2

.

(32)
A cluster contains all solid-like particles which have a
solid-like neighbour in the same cluster. Thus each par-
ticle can be a member of only one cluster.

The parameters contained in this algorithm include the
neighbour cutoff rc, the dot-product cutoff dc, the critical
value for the number of solid-like neighbours ξc, and the
symmetry index for the bond orientational order param-
eter l. The hard-sphere crystals considered in this paper
are expected to have random hexagonal order, thus the
symmetry index is chosen to be 6 in the present study.

This choice of order parameter Φ, defined as the num-
ber of solid-like particles in the largest crystalline clus-
ter, has been used to study crystal nucleation in various
one-component systems, e.g., Lennard-Jones systems [5],
hard-sphere systems [7], and Yukawa systems [31].

On the other hand, for binary systems, a variety of
crystal structures can appear in the bulk phase diagram,
e.g., substitutionally ordered (superlattice) crystal struc-
tures with varying stoichiometries, substitutionally dis-
ordered solid solutions, interstitial solid solutions, crys-
talline phases of species 1 with a dispersed fluid of species
2, etc. Nucleation of a substitutionally disordered solid
solution and a crystal with the CsCl structure has been
studied in a binary mixture of hard spheres using the to-
tal number of particles in the largest crystalline cluster
as an order parameter, i.e. Φ = N1 + N2 [28]. This or-
der parameter has also been employed in a crystal nucle-
ation study of a substitutionally disordered face-centered
cubic crystal and a crystal with the CsCl structure of
oppositely charged colloids [32], and nucleation of the
NaCl salt crystal from its melt using the symmetry in-
dex l = 4 instead of l = 6 for the bond orientational
order parameter [33]. However, one can also define other
linear combinations of N1 and N2 as an order parameter.
When the partial particle volumes of the two species are
very different, one can employ the volume of the largest
crystalline cluster Φ = V = N1v1 + N2v2 as an order
parameter. While, if the crystal structure consists of
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only one species, say species 1, with the other species
randomly dispersed, the number of particles of species 1
in the largest crystalline cluster would be more appro-
priate to use as an order parameter Φ = N1. On the
other hand, one can also use the stoichiometry n of the
ABn superlattice structure to define the order parameter
Φ = N1 +N2/n in order to prevent a strong bias towards
one of the species. More generally, if the cluster size is
measured by the order parameter Φ = N1 + λN2, the
sensitivity of the order parameter to particles of species
2 can be tuned via the parameter λ. For λ = 1, this
corresponds to the total number of particles in the clus-
ter, while for λ = 0, this corresponds to the number of
particles of type 1.

As already mentioned above, the umbrella sampling
technique is often employed to determine the probability
distribution P (Φ) and the Gibbs free energy ∆G(Φ). To
this end, a biasing potential is introduced to sample con-
figurations with certain values for this order parameter
Φ. In this paper, we investigate the effect of the choice of
order parameter on the properties of the clusters during
nucleation in a binary mixture of hard spheres, where we
assume that the surface excess numbers of species i are
negligible. Using Eq. (18), we now write down explicitly
the change in Gibbs free energy for binary nucleation

∆G = γA + ∆µ1N1 + ∆µ2N2, (33)

where ∆µi = µi(P o
α) − µo

i,α(P o
α). The Gibbs free energy

∆G depends on the particle numbers N1 and N2 and the
composition of the critical cluster can be determined from
the saddle point conditions for ∆G. The free-energy sur-
face in the two-dimensional composition plane (N1, N2)
is projected in umbrella sampling MC simulations onto
a one-dimensional order parameter, e.g. Φ = N1 + λN2.
Hence, the projected ∆G(Φ) and the averaged (or pro-
jected) cluster composition of noncritical clusters both
depend on the order parameter. We note that this is not
an artifact of the umbrella sampling MC simulations, but
merely the projection of a correctly measured equilibrium
distribution. To determine the averaged composition of
noncritical spherical clusters with radius R as a function
of Φ, we can minimize ∆G with respect to N2 while keep-
ing the order parameter Φ fixed:

(
∂∆G

∂N2

)

Φ

= ∆µ2 − λ∆µ1 +
2γv1

R
(ω − λ) = 0, (34)

where ω = v2/v1. If we use the umbrella sampling tech-
nique in MC simulations to determine the Gibbs free en-
ergy ∆G(Φ) as a function of Φ, one can easily determine
the slope of the barrier from the simulations, which is
equal to

d∆G

dΦ
= (∆µ2 +

2γv1

R
ω)

(
∂N2

∂Φ

)
+

(∆µ1 +
2γv1

R
)
(

∂N1

∂Φ

)
(35)

with

∂N1

∂Φ
=

1− x− λN ∂x
∂Φ

1− x + λx
(36)

∂N2

∂Φ
=

x + N ∂x
∂Φ

1− x + λx
, (37)

where we define the composition x = N2/N and N =
N1 + N2. Combining Eqs. (34) and (35) yields

ω∆µ1 −∆µ2 = (ω − λ)
d∆G

dΦ
. (38)

We wish to make a few remarks here. First, we re-
cover the Gibbs-Thomson equations for the critical clus-
ter (19) when we set d∆G/dΦ in Eq. (35) to zero, and
we recover Eq. (22) from Eq. (38) for critical clusters.
Consequently, the barrier height, size and composition
of the critical cluster are independent of the choice of
λ. This can also be understood from the fact that the
saddlepoint in the free-energy landscape is invariant un-
der coordinate transformations. As long as the top of
the nucleation barrier corresponds to this saddle point,
the average properties of the cluster will be dominated
by the configurations around this saddlepoint, regardless
of the chosen order parameter. While most reasonable
choices of order parameter fulfill this requirement, it is
possible to design order parameters that shift the top of
the barrier away from the saddle point. In this case, the
clusters at the top of the barrier are non-critical clusters,
and rates calculated from the resulting free energy bar-
rier are unreliable. It is important to note that a different
choice of order parameter can change the height of the
nucleation barrier, since the barrier height is determined
by the fraction of phase space mapped to the same or-
der parameter value at the top of the barrier. However,
this effect should be small, as the probability of finding
a cluster at the top of the nucleation barrier is domi-
nated by the probability of being in the saddle point of
the free-energy landscape. For noncritical clusters, we
clearly find that the slope of the barrier, and hence the
composition of the cluster, depends on the choice of or-
der parameter via λ. Below, we study the effect of the
choice of order parameter for a simple toy model of hard
spheres and for the nucleation of an interstitial solid so-
lution in an asymmetric binary hard-sphere mixture. It
is interesting to compare this to past studies investigat-
ing one-component systems with higher-dimensional or-
der parameters [34, 35]. For the Lennard-Jones system,
Moroni et al., have shown that the number of particles
in the cluster alone is insufficient to provide a good pre-
diction for the probability a cluster will grow out to a
large crystal [34]. Using a two-dimensional order param-
eter, they observed a strong correlation between the crys-
tallinity and the size of clusters with a 50% probability of
growing out. Specifically, clusters with a large amount of
face-centered-cubic (fcc) ordering require much smaller
sizes to grow out than those with more body-centered-
cubic (bcc) ordering. They found that this correlation
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FIG. 1: Gibbs free energy ∆G(Φ)/kBT as a function of order
parameter Φ = N1 +λN2 for a binary mixture of red (species
1) and blue (species 2) hard spheres with equal diameter σ
as obtained from umbrella sampling MC simulations at a re-
duced pressure of P ∗ = P o

ασ3/kBT = 17 with λ = 1 and
λ = 0.5.

was not visible in the two-dimensional free-energy land-
scape, and argued that the shape and structure of a nu-
cleus could determine whether it will grow out. How-
ever, we note that the two-dimensional order parame-
ter is still a projection from a higher-dimensional phase
space. Thus, the properties of non-critical clusters likely
depend on the choice of order parameter as well.

IV. A SUBSTITUTIONAL SOLID SOLUTION

In order to obtain more insight in the effect of order pa-
rameter choice on the cluster composition of noncritical
clusters, we first investigate binary crystal nucleation in
a toy model of hard spheres. Here, we consider a system
consisting of two species of hard spheres with identical
sizes, but tagged with different colors, say species 1 is red
and species 2 is blue. Obviously, the stable solid phase to
be nucleated is a substitutional disordered face-centered-
cubic (fcc) crystal phase with the red and blue parti-
cles randomly distributed on an fcc lattice. Refs. [7, 8]
showed that the nucleation barriers for pure hard spheres
are well-described by the predictions from classical nu-
cleation theory, where because of the condition of the
equimolar surface, the surface excess number Ns = 0. It
is therefore safe to neglect the surface excess numbers for
the present model as well. In addition, it is clear that the
partial particle volumes vi and volume per particle v are
identical, and ω = v2/v1 = 1. Using the Gibbs-Thomson
equations for a binary critical cluster (19), we find that
the supersaturation ∆µ∗1 = ∆µ∗2 = −2γ∗v/R∗, and hence
the composition of the critical cluster follows straight-
forwardly from the bulk chemical potentials µ∗1(P

o
α) and

µ∗2(P
o
α), which depends on the bulk chemical potentials

of the original bulk phase and the supersaturation.

ææææ
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FIG. 2: Composition x = N2/N of the largest crystalline clus-
ter as a function of order parameter Φ = N1+λN2 for a binary
mixture of red (species 1) and blue (species 2) hard spheres
with equal diameter σ as obtained from umbrella sampling
simulations at pressure P ∗ = P o

ασ3/kBT = 17 with λ = 1
(red circles) and λ = 0.5 (green squares). For comparison, we
plot the theoretical prediction (38) using the measured nucle-
ation barrier of Fig. 1 (black solid line) and the composition
determined from a steady-state cluster size distribution for
λ = 0.5 (blue dashed line). The critical cluster size is Φ ' 79
and 96 for λ = 0.5 and 1, respectively.

As already mentioned above, the composition of non-
critical clusters depends on the choice of order parameter,
i.e., the projection of the two-dimensional composition
plane onto a one-dimensional order parameter Φ. Using
Eq. (38), we find that for λ = 1, the composition of
noncritical cluster is determined by the supersaturation
∆µ1 = ∆µ2 and the bulk chemical potentials of the orig-
inal bulk phase. For λ = 0, we only measure the number
of particles of one color, say red, in the cluster. How-
ever, a thermodynamic average of all clusters with N1

red particles also includes all post-critical clusters with
many blue particles, and as a result, the order parameter
fails to work for λ = 0. For non-zero values of λ, the en-
semble of clusters of each size is well-defined, and we can
perform umbrella sampling MC simulations to measure
the average cluster composition.

In order to keep the composition of the metastable fluid
fixed, we perform Monte Carlo simulations on a binary
mixture with N = 1000 hard spheres in the semi-grand
canonical ensemble. Both species of hard spheres are
identical in size with diameter σ, and are either tagged
red (species 1) or blue (species 2). The simulations were
carried out in a cubic box with periodic boundary con-
ditions and the Metropolis sampling consists of parti-
cle displacements and volume changes, and attempts to
switch the identity (color) of the particles. The accep-
tance rule for the identity swap moves is determined by
the chemical potential difference ∆µo

12,α [28, 29]. We
use the umbrella sampling technique to determine the
nucleation barrier ∆Y = ∆G as a function of an order
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parameter Φ = N1 + λN2, where N1(N2) denotes the
number of red (blue) solid-like particles in the largest
crystalline cluster in the system as determined by the lo-
cal bond-order parameter and cluster criterion described
in Sec. III with cutoff radius rc = 1.3σ, dot-product cut-
off dc = 0.7, and number of solid bonds ξc ≥ 6. We first
calculate the nucleation barrier for λ = 1, for which the
order parameter Φ is simply the total number of solid-
like particles in the largest cluster. We set the reduced
pressure P ∗ = P o

ασ3/kBT = 17, and ∆µo
12,α = 0, which

corresponds on average to an equimolar mixture of red
and blue hard spheres for the metastable fluid phase.
We plot the resulting nucleation barriers ∆G as a func-
tion of Φ in Fig. 1. We note that the nucleation bar-
rier for λ = 1 is equivalent to the nucleation barrier for
a pure system of hard spheres [7, 8]. In addition, we
show the composition of the largest cluster as a function
of Φ in Fig. 2. We find that the averaged composi-
tion x = N2/N = 0.5 as it should be since ∆µ1 = ∆µ2

and the bulk chemical potentials of the metastable fluid
are equal µo

1,α = µo
2,α. Using the binomial coefficients

and the measured one-dimensional free-energy barrier,
we determine the two-dimensional free-energy landscape
∆G(N1, N2)/kBT = − ln P (N1, N2) from the probability
distribution function

P (N1, N2) = exp[−∆G(N1 + N2)/kBT ] 2N

(
N
N1

)
.

(39)
Fig. 3 presents a contour plot of the two-dimensional
free-energy landscape β∆G(N1, N2) as a function of N1

and N2. Exemplarily, we also plot isolines for the order
parameter Φ = N1 + λN2 for λ = 1 and 0.5 to show
the projection of the two-dimensional composition plane
onto a one-dimensional order parameter.

In order to check the effect of order parameter choice
in the biasing potential (29) on the nucleation barrier
and the composition of the clusters, we also calculate the
nucleation barrier for λ = 0.5 at the same reduced pres-
sure. We plot the nucleation barrier in Fig. 1 and the
averaged composition of the cluster as a function of Φ
in Fig. 2. We clearly find that the barrier height is not
affected by the choice of order parameter in the biasing
potential in agreement with our predictions in Sec. III,
but the critical cluster ”size” as measured by Φ, i.e. ' 79
and 96 for λ = 0.5 and 1, respectively, depends on the
order parameter choice as expected. While the barrier
height is not significantly affected by the choice of order
parameter in the biasing potential, in agreement with
our predictions in Sec. III, the critical cluster ”size” as
measured by Φ, i.e. ' 79 and 96 for λ = 0.5 and 1,
respectively, depends on the order parameter choice as
expected. In addition, we determine the theoretical pre-
diction for the cluster composition using Eq. (38). Using
the measured slope of the nucleation barrier from Fig. 1,
we obtain the chemical potential difference ∆µ12(Φ) of
species 1 and 2 in the cluster from Eq. (38). Using Eq.

(39), we find

P (N1, N2) ∝ 2N N !
N2!(N −N2)!

exp[−βN2∆µ12(Φ)]

(40)
from which we determine the most probable (or aver-
aged) composition x = 1 − exp[−β∆µ12(Φ)]. The theo-
retical prediction for the composition is plotted in Fig.
2. We find good agreement with the measured compo-
sition, except for very small cluster sizes, where we do
not expect CNT to match our nucleation barriers. For
comparison, we also plot the same predictions for the nu-
cleation paths in Fig. 3. We clearly observe that the two
nucleation paths cross at the saddle point yielding the
same size and composition of the critical cluster for both
order parameters, as expected.

Finally, we also determine the composition of the clus-
ters from the steady-state distribution. In systems where
the nucleation of the new phase is measured directly, ei-
ther in experiments or simulations, the measured cluster
size distribution corresponds to a steady-state distribu-
tion rather than an equilibrium distribution. The steady-
state distribution observed during the nucleation process
is different from the equilibrium distribution, as clusters
that exceed the critical cluster size during the steady-
state process will continue to grow further. The steady-
state distribution depends both on the free-energy land-
scape and the dynamics of the system, and includes a flux
across the free-energy barrier, whereas the equilibrium
distribution can only be determined by preventing the
system from nucleating, i.e, constraining the maximum
cluster size by e.g. umbrella sampling MC simulations.
While the equilibrium and steady-state distributions are
in good agreement for small cluster sizes, they disagree
strongly for postcritical cluster sizes, i.e., when the sys-
tem crosses the free-energy barrier. In particular, the
equilibrium cluster size distribution shows a minimum
corresponding with the maximum in the free-energy bar-
rier, and the steady-state distribution generally decreases
continuously (even) beyond the critical cluster size.

We calculate the cluster composition from the steady-
state distribution for our binary mixture of hard spheres.
To this end, we determine the free energy as a function
of cluster size N1 and N2 from Eq. (39) using a fit to the
free-energy barrier obtained from umbrella sampling MC
simulations with λ = 1. The dynamics of the cluster are
described by the following rates:

k+,1
N1,N2

= 1

k+,2
N1,N2

= 1

k−,1
N1,N2

= exp[−β(G(N1 − 1, N2)−G(N1, N2))]

k−,2
N1,N2

= exp[−β(G(N1, N2 − 1)−G(N1, N2))].

Here, k
+(−),i
N1,N2

is the rate associated with adding (remov-
ing) a particle of species i to (from) the nucleus consisting
of N1 and N2 particles. Hence, clusters can only grow or
shrink by one particle at a time with a rate determined
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by the corresponding free-energy difference. In order to
determine the steady-state cluster size distribution, we
set a limit to the steady-state distribution by defining
a maximum cluster size, which exceeds the critical clus-
ter size. As a barrier crossing can be considered as a
one-way event, subsequent nucleation events should start
again from the metastable fluid phase. To this end, we
impose that the addition of an extra particle to a nucleus
with this maximum cluster size falls back to size zero. We
note that this step is not reversible, and results in slightly
modified rates for nuclei with the maximum cluster size
and for clusters of zero size. With the exception of these
steps, the dynamics obey detailed balance.

In order to determine the steady-state distribution, we
set the rate at which clusters of size (N1, N2) are cre-
ated to zero. Hence, the flux with which clusters of size
(N1, N2) are created should balance the flux with which
clusters of this size disappear:

Pss(N1, N2)
∑

i

(k+,i
N1,N2

+ k−,i
N1,N2

) =

Pss(N1 + 1, N2)k
−,1
N1+1,N2

+ Pss(N1 − 1, N2)k
+,1
N1−1,N2

+

Pss(N1, N2 + 1)k−,2
N1,N2+1 + Pss(N1, N2 − 1)k+,2

N1,N2−1.

Here, Pss(N1, N2) denotes the steady-state cluster size
distribution. The equations for cluster size zero and the
maximum cluster size are slightly different due to a flux
of clusters from maximum to zero cluster size. By solv-
ing this set of linear equations numerically, we obtain
the steady-state distribution. Subsequently, the average
cluster composition can be obtained from the steady-
state distribution by averaging over clusters with equal
Φ = N1 + λN2. The resulting cluster composition is
shown in Fig. 2 for λ = 0.5. Since the two-dimensional
steady-state cluster size distribution, which is symmet-
ric in N1 and N2 decreases monotonically with cluster
size, the resulting projected composition is always lower
than 0.5 and matches well with the cluster compositions
obtained from umbrella sampling MC simulations and
the theoretical prediction, except at small cluster sizes
as expected. Moreover, in the limit of large (postcritical)
clusters, the cluster growth rate approaches a constant
for the current choice of dynamics, resulting in a nearly
flat steady-state cluster size distribution and a cluster
composition of 0.5.

In conclusion, we have shown using a simple model
for a binary mixture of hard spheres that the composi-
tion of the critical cluster does not depend on the choice
of order parameter, while the composition of noncritical
clusters is affected by the order parameter. This is a di-
rect consequence of the projection of the two-dimensional
free-energy landscape onto a one-dimensional order pa-
rameter, say Φ = N1 + λN2, which influence directly the
projected (Landau) ∆G(Φ) and the averaged (or pro-
jected) cluster composition. Moreover, as the umbrella
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FIG. 3: Contour plot of the two-dimensional free-energy land-
scape ∆G(N1, N2)/kBT as a function of N1 and N2. We also
plot a few isolines for the order parameter Φ = N1 + λN2 for
λ = 0.5 and 1 (dashed lines), and we plot the nucleation path
(solid lines labeled with λ = 1 and λ = 0.5) for the two order
parameters that we considered as predicted by (38). The two
nucleation paths cross at the saddle point corresponding to
the critical cluster size.

sampling method allows us to equilibrate the system for
various values of the order parameter, the system can be
regarded to be in local equilibrium for each value of the
order parameter. The nucleation paths that the system
then follows remain close to the minimum free-energy
path (see Fig. 3), and thus the height of the nucleation
barrier is largely unaffected by the choice of order pa-
rameter.

V. AN INTERSTITIAL SOLID SOLUTION

We consider crystal nucleation of an interstitial solid
solution in a highly asymmetric binary mixture of large
and small hard spheres with size ratio q = σ2/σ1 = 0.3,
where σ1(2) denotes the diameter of species 1 (large
spheres) and 2 (small spheres). The interstitial solid so-
lution consists of a face-centered-cubic crystal phase of
large spheres with a random occupancy of the octahedral
holes by small spheres, and hence the composition of the
interstitial solid solution can vary from x = N2/N ∈ [0, 1]
[36]. As the volume of this solid phase is not largely af-
fected by the density of small spheres, we set the partial
particle volume v2 and ω = v2/v1 to zero. Using Eq.
(38), we find the following relation if the system is in
local equilibrium at fixed order parameter Φ = N1 +λN2

∆µ2 = λ
d∆G

dΦ
. (41)

For λ = 0, the order parameter Φ = N1 measures only
the large spheres in the cluster, and the cluster com-
position of both critical and noncritical clusters is deter-
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mined by the chemical equilibrium condition for the small
spheres in the cluster and the metastable fluid phase, i.e.,
∆µ2 = 0. For λ = 1, when all particles in the clusters
are counted by the order parameter Φ = N1 + N2, the
composition of precritical clusters will have a higher den-
sity of small particles compared to the chemical equilib-
rium condition for the small particles in the cluster and
the metastable fluid phase, as the slope of the nucleation
barrier is positive, and similarly postcritical clusters will
have a lower density of small particles. For both order
parameters, we find that the critical cluster satisfies the
Gibbs-Thomson equation (19), and thus for a partial par-
ticle volume v2 = 0, we obtain chemical equilibrium for
the small particles in the critical cluster and the fluid
phase independent of the order parameter choice.

As the composition and size of the critical cluster
and the corresponding barrier height are not affected by
the choice of order parameter, we set λ = 0 in order to in-
vestigate whether or not we observe diffusive equilibrium
for species 2 for all noncritical clusters. To keep the com-
position of the fluid fixed, it would be convenient to use
again Monte Carlo simulations in the semi-grand canoni-
cal (NPT −∆µ12,α) ensemble. However, the acceptance
probability of changing small spheres into large spheres
is extremely small, which makes the equilibration time of
the simulation prohibitively long, even when we use the
augmented semigrand ensemble presented in Ref. [28],
where the diameter of the particles is changed gradually
in different stages. In order to solve this problem, we de-
termine the free-energy barrier using the umbrella sam-
pling technique in isothermal-isobaric MC simulations,
in which the pressure P o

α, the temperature T , and the
particle numbers No

1,α and No
2,α are kept fixed of the

original metastable bulk phase. We perform successive
simulations for each window, but in such a way that the
composition xo

α = N2,α/(No
1,α + No

2,α) of the metastable
fluid phase is on average kept fixed during the growth of
the nucleus. To this end, we first measure the instan-
taneous composition xα of the fluid phase in the initial
configuration for the successive umbrella sampling win-
dows centered around a new order parameter value Φ. If
the composition of the fluid has changed more than 0.1%,
we resize random particles in the fluid phase during an
equilibration run until the fluid phase reaches its original
composition xo

α. We then start the production run to
measure the probability distribution function P (Φ) and
the corresponding part of the free-energy barrier in a nor-
mal isobaric-isothermal MC simulation. We assume that
the composition of the fluid phase during MC simulations
of a single umbrella sampling window does not change
significantly, since the cluster size is approximately con-
stant. In order to determine the composition of the fluid
phase, we first determine the largest crystalline cluster in
the system by using the local bond-order parameter and
cluster criterion as described in Sec. III with cutoff ra-
dius rc = 1.1σ1, dot-product cutoff dc = 0.7, and number
of solid bonds ξc ≥ 6. The composition of the fluid is de-
fined as xα = (No

2,α−N2)/(No
2,α +No

1,α−N2−N1) where

N1 is the number of large spheres in the cluster and N2 is
the number of small spheres which have at least 6 neigh-
bors of large spheres in the cluster within cut-off distance
rc = 1.1σ1. No

1,α and No
2,α denote the total number of

large and small spheres in the MC simulation.
In addition, we determine the composition of the solid

nucleus x = N2/N . In order to avoid surface effects and
defects in the crystal structure of the solid nucleus, we de-
termine the fraction of octahedral holes that is occupied
by a small sphere in the fcc lattice of the large spheres in
the solid cluster. An octahedral hole is defined as a set
of 6 large particles, where each particle is a neighbour of
4 other particles in the same set, and the octahedral hole
is occupied by a small particle if all 6 large particles are
within a cutoff radius of 0.22σ1 of the center-of-mass of
this small sphere.

We first determine the nucleation barrier in a normal
No

1,αNo
2,αP o

αT MC simulation using the umbrella sam-
pling technique for system sizes No

α = No
1,α + No

2,α =
3000, 6000, and 9000 particles. The initial fluid com-
position is set to xo

α = 0.5 and reduced pressure P ∗ =
βP o

ασ3
1 = 25. We plot the Gibbs free energy ∆G/kBT as

a function of the number of large spheres N1 in the largest
crystalline cluster in Fig. 4. We observe that the nu-
cleation barrier height and critical cluster size decreases
upon increasing system size. This can be explained by a
change in the composition of the metastable fluid phase
during the growth of a crystalline cluster. In Fig. 5,
we plot the composition of the metastable fluid phase
as a function of the cluster size N1 for the various sys-
tem sizes. We clearly find that the fluid composition
changes significantly during the growth of a solid nucleus
for smaller system sizes. In order to corroborate this re-
sult, we perform umbrella sampling MC simulations in
which the composition of the metastable fluid phase is
kept fixed in each successive umbrella sampling window
using the method as described above. The composition
of the fluid phase is indeed kept fixed by this method
as shown in Fig. 5. The nucleation barrier as obtained
by fixing the composition of the metastable fluid phase
is presented in Fig. 4. As the nucleation barrier calcu-
lated at fixed fluid composition should correspond to an
infinitely large system size, we plot the barrier heights
∆G∗/kBT as a function of 1/No

α with No
α = No

1,α +No
2,α.

We find that the barrier height depends linearly on 1/No
α

within errorbars. Moreover, extrapolating the barrier
heights obtained from No

1,αNo
2,αP o

αT MC simulations to
the thermodynamic limit, we find that the finite-size cor-
rected barrier height agrees well within errorbars with the
barrier height determined from umbrella sampling MC
simulations with fixed fluid composition corresponding
to an infinitely large system size. In addition, we plot
the composition of the solid cluster as a function of clus-
ter size N1 in Fig. 5, and we find no strong dependence
of the cluster composition on system size.

Finally, we determine the composition of (non)critical
clusters for the nucleation of the interstitial solid solu-
tion for four different fluid compositions xo

α = 0.2, 0.5, 0.7
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FIG. 4: a) Gibbs free energy ∆G/kBT as a function of num-
ber of large particles N1 in the largest crystalline cluster us-
ing normal No

1 No
2 PT MC simulations and isobaric-isothermal

MC simulations with fixed fluid composition xα = 0.5, and
pressure P ∗ = βP o

ασ3
1 = 25. b) Free-energy barrier height

∆G∗/kBTas a function of 1/No
α.
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FIG. 5: The composition of the largest crystalline cluster
x = N2/N (top) and the metastable fluid phase xα(bottom)
as a function of cluster size N1. The green lines denotes the
simulation in which the composition of the fluid was reset
to the original value at the start of each US window. The
other lines correspond to normal No

1,αNo
2,αP o

αT MC simula-
tions, where the overall composition of the system is kept
fixed for various system sizes.

and 0.8 at statepoints well-inside the fluid-solid coex-
istence region using umbrella sampling MC simulations
with fixed fluid composition and system size No

α = 3000.
Following Ref. [28], the ”supercooling” was kept fixed,
i.e., P o

α/P ∗coex = 1.2, where P ∗coex is the pressure at the
bulk fluid-solid coexistence at the corresponding fluid
composition. We note however that these statepoints
correspond to different values for the supersaturation,
and can therefore lead to significantly different barrier
heights. We determine the Gibbs free-energy barrier
and the cluster composition as a function of cluster size
N1 using umbrella sampling MC simulations, and plot
the results in Fig. 6 and 7 for the four different fluid

compositions. In Fig. 7, the dashed lines indicate the
compositions predicted by Eq. (41) with λ = 0, i.e.,
chemical equilibrium for species 2 in the clusters and
the metastable fluid phase. For comparison, we also
plot the composition of the coexisting solid phase at P o

α.
We clearly observe that the measured cluster composi-
tions obtained from umbrella sampling MC simulations
are in good agreement with the predictions from CNT
for cluster sizes larger than 30, which predicts chemical
equilibrium for the small spheres in the cluster and the
metastable parent phase. If we now take a closer look at
the statepoint defined by xo

α = 0.2 and P o
α/P ∗coex = 1.2

for the metastable fluid phase, we find from Ref. [36] that
the composition of the coexisting fluid and solid phase
after full phase separation should be x ' 0.47 and 0.15,
respectively. Interestingly, we find that the composition
of the nucleating clusters is much lower (x ' 0.07) than
that of the coexisting bulk crystal phase. Hence, the
phase separation is mainly driven by the nucleation of
large spheres while maintaining chemical equilibrium for
the smaller species throughout the whole system. Only
when the chemical potential of the large spheres in the
metastable fluid is sufficiently low due to a depletion of
large spheres as a result of crystal nucleation and crystal
growth, small spheres will diffuse into the crystal phase
in order to increase the composition of the solid phase.
However, we note that the chemical equilibrium condition
for the smaller species only holds for the present order
parameter choice Φ = N1, whereas any other choice of
order parameter would certainly yield different results for
the cluster composition.

For highly asymmetric binary hard-sphere mixtures,
where the stable solid phase corresponds to a fcc of
large spheres with a dispersed fluid of small particles,
one would naively expect that the small particles are al-
ways in chemical equilibrium during the nucleation pro-
cess. Hence, in order to study crystal nucleation in highly
asymmetric mixtures, one can employ an effective pair-
wise depletion potential description as described by Bob
Evans and coworkers in Ref. [37–39] provided that three-
and higher-body interactions are negligible and the deple-
tion potentials are determined at fixed chemical potential
of the small spheres. Such an effective pair potential ap-
proach was employed in a nucleation study in the vicinity
of a critical isostructural solid-solid transition in a binary
mixture of hard spheres with size ratio q = σ2/σ1 = 0.1,
but this study showed according to the authors a break-
down of classical nucleation theory [40]. It would be in-
teresting to investigate whether or not the breakdown
is caused by the (false) assumption of chemical equilib-
rium of small spheres during the nucleation process. For
less asymmetric binary hard-sphere mixtures, where the
small spheres cannot diffuse freely in the solid cluster,
chemical equilibrium of the smaller species is harder to
maintain, especially when the nucleated crystal phase has
long-range crystalline order for both species as in the case
of a superlattice structure where the chemical potentials
of the two species are not independent as it is determined
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and 0.8 for a binary mixture of hard spheres with size ratio
0.3 at 20% supercooling, i.e., P o

α/P ∗coex = 1.2 with P ∗coex the
bulk coexistence pressure.
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FIG. 7: Cluster compositions x = N2/N as a function of
cluster size N1 for four different fluid compositions xo

α =
0.2, 0.5, 0.7, and 0.8 for a binary mixture of hard spheres
with size ratio 0.3 at supercooling P o

α/P ∗coex = 1.2. The long
dashed lines denote the composition predicted by CNT, which
corresponds to chemical equilbrium of species 2 in the solid
clusters and the metastable fluid phase, while the dotted lines
denote the composition of the coexisting bulk crystal phase.

by the stoichiometry of the crystal structure. It would
be interesting to investigate at which size ratio and pres-
sures this crossover occurs.

VI. CONCLUSIONS

In this paper, we have studied crystal nucleation in a
binary mixture of hard spheres and we have investigated
what the effect is of the choice of order parameter on the
composition and size of both critical and noncritical clus-
ters. We have studied nucleation of a substitutional solid
solution in a simple toy model of identical hard spheres
but tagged with different colors and we investigate the

nucleation of an interstitial solid solution in a binary
hard-sphere mixture with a diameter ratio q = 0.3. In
order to study nucleation of a crystal phase in computer
simulations, a one-dimensional order parameter is usually
defined to identify the solid phase from the supersatu-
rated fluid phase. We have shown that the choice of order
parameter can strongly influence the composition of non-
critical clusters, as the free-energy landscape in the two-
dimensional composition plane (N1, N2) is projected onto
a one-dimensional order parameter, say Φ = N1+λN2, in
umbrella sampling MC simulations. This is supported by
the good agreement that we found between our results on
the composition of noncritical clusters obtained from um-
brella sampling MC simulations and the predictions from
CNT for the nucleation of a substitutional solid solution
in a toy model. While the effect is clearly visible in the
case of a binary system, it should occur more generally
whenever a higher-dimensional free-energy landscape is
projected onto a single order parameter. For the nucle-
ation of an interstitial solid solution in a highly asym-
metric hard-sphere system, we found that the composi-
tion of noncritical clusters is determined by the chemical
equilibrium condition of the small spheres in the cluster
and the fluid phase, as the partial particle volume of the
small spheres in the solid phase can be neglected. We
compared the composition of the noncritical clusters ob-
tained from umbrella sampling MC simulations and the
theoretical prediction from CNT, and found again good
agreement. More importantly, we find that the barrier
height and the composition of the critical cluster are not
significantly affected by the choice of order parameter. As
a result, critical clusters and the barrier height should be
comparable even with different order parameters.
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Response to the Referee

• The referee inquired if the invariance of the barrier height and critical
cluster to the choice of the one-dimensional order parameter is a general
result. For the properties of the critical cluster, this is indeed a result of
the geometrical properties of the saddle point in the free energy landscape,
which is invariant under coordinate transformations. However, it should be
noted that the height of the nucleation barrier is not exactly independent
of the choice of order parameter. We have removed all reference to a
constant barrier height from the manuscript, and have added the following
to address this question: “This can also be understood from the fact that
the saddlepoint in the free-energy landscape is invariant under coordinate
transformations. As long as the top of the nucleation barrier corresponds
to this saddle point, the average properties of the cluster will be dominated
by the configurations around this saddlepoint, regardless of the chosen
order parameter. While most reasonable choices of order parameter fulfill
this requirement, it is possible to design order parameters that shift the
top of the barrier away from the saddle point. In this case, the clusters at
the top of the barrier are non-critical clusters, and rates calculated from
the resulting free energy barrier are unreliable. It is important to note
that a different choice of order parameter can change the height of the
nucleation barrier, since the barrier height is determined by the fraction
of phase space mapped to the same order parameter value at the top of
the barrier. However, this effect should be small, as the probability of
finding a cluster at the top of the nucleation barrier is dominated by the
probability of being in the saddle point of the free-energy landscape.”

• We thank the referee for pointing out the work of Moroni et al. We have
now included a reference to their work in the manuscript, and added the
following discussion: “It is interesting to compare this to past studies
investigating one-component systems with higher-dimensional order pa-
rameters [Moroni et al, Phys. Rev. Lett. 94 (2005), P. R. ten Wolde
et al, Science 277 (1997)]. For the Lennard-Jones system, Moroni et al.,
have shown that the number of particles in the cluster alone is insuffi-
cient to provide a good prediction for the probability a cluster will grow
out to a large crystal. Using a two-dimensional order parameter, they ob-
served a strong correlation between the crystallinity and the size of clusters
with a 50% probability of growing out. Specifically, clusters with a large
amount of face-centered-cubic (fcc) ordering require much smaller sizes to
grow out than those with more body-centered-cubic (bcc) ordering. They
found that this correlation was not visible in the two-dimensional free-
energy landscape, and argued that the shape and structure of a nucleus

2

Page 16 of 17

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
could determine whether it will grow out. However, we note that the two-
dimensional order parameter is still a projection from a higher-dimensional
phase space. Thus, the properties of non-critical clusters likely depend on
the choice of order parameter as well.“

• The typo on page 5 has been corrected.
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