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Abstract

Starting with a model of electrons interacting with point-like positively charged
nuclei I derive an approximate but parameter free and quantitative theory of the
coeffcients in a Landau theory of second order phasetransition.I then point out
that the same arguments can be deployed to derive classica density-functional
theories for emergent classical variables such as the order parameter used to
describe symmetry breaking in condensed matter.
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1 From electrons to models and to phenomenol-

ogy

To a very good approximation condensed matter consists of point like positively
charged nuclei and the electron ’glue’which holds them together. From this
point of view , what a particle physicist would call the ’Theory of Everything’
is Quantum Electrodynamics. In short all we need to concern ourselves with
are point charges, described by the Dirac or Schrödingers equations, interacting
via the Coulomb potential, or more precisely the electromagnetic field described
by the Maxwells equations, with a single coupling constant α = e2/h̄c. That
this remarkably simple conceptual framework should give rise to an account of
all forms of matter we encounter in our daily lives from gases to solids to soft
matter etc.. all the way to the phenomena of life is one of the most surprising
examples of the fact that simple rules can, and usually have, spectacularly
complex consequences. The challenge to make sense of this inspires much good
theoretical and experimental physics .
The by now generally accepted way to proceed is to establish, by mathe-

matical analysis and expererimental observations, hierarchies of theories each
with its appropriate spacial and time scales of applicability. Thus one goes from
’first principles’calculations involving electrons, ions and photons to microscopic
models of interacting atoms and molecules and on to phenomenological equa-
tions such as those Navier-Stokes equation of hydrodynamics to mention but
the first few steps. Usually, it is the transition from one level to an other that
represents the most conceptual diffi culties. Here I will illustrate this by a theory
of getting from ’first principles’to the frankly phenomenological Landau Theory
of symmetry breaking in condensed matter physics[1] . Appropriately in this
volume I will also aim to elucidate how classical density functional theories[2] [3]
can arise from the quantum density functional theory (DFT) for electrons and
ions[4]. The focus will be on the change in the level of description and therefore
the phrase ’first principles’should not be taken to imply that the theory is in
any way exact but only that it is a one parameter, α, electron-ion theory in some
commonly used approximation like the Local Density Approximation (LDA)[4]
Recall that the construction of a Landau Theory consists of three separate

maneuvers: a.) The choice of the order parameter η which is zero in the high
temperature high symmetry phase and non zero, indicating that some of the
symmetry has been lost, below the transition temperature Tc.In general η has
a number of components and is defined at a continuum of spacial pints −→r or
lattice sites labeled by i. It stands to reason that near Tc η is small and the
appropriate part of the free energy δΦ can be expanded in powers of η. b.)
Writing δΦ as a sum of polynomials in η that are invariants under symmetry G
of the high temperature phase using group theory. In such expansion each of
such invariant polynomial has a coeffi cient γn which is a function of T and other
thermodynamic variables and is to be determined by experiments.c.) Finally in
the pre Wilson, original formulation, δΦ is minimized with respect to arbitrary
variations in η.The value of η which minimizes δΦ is its thermodynamic value

1
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and it is zero or non-zero depending on whether T> Tc or T< Tc. Evidently,
because of the nature of γn this theory is frankly phenomenological. What I
shall mean by a ’first principle’Landau theory is the one where such coeffi cients
are calculated from ’first principles’in the sense I referred to this notion above.
Landau Theories are a powerful way of describing a great variety of phase

transitions. Perhaps the most noted examples are those in ferromagnets, ferro-
electrics, superfluids, superconductors and multi-component alloys. To discuss
all of them within a single framework would lead to a level of abstraction out
of place in this valume. Therefore, I have chosen the classic example, treated
in Landau’s original paper[7], of ’ordering and clustering in binary crystalline
alloys’to illustrate the central points I wish to make.

2 Landau Theory of compositional order in crys-
talline binary alloy

A liquid mixture of A and B atoms have two independent thermodynamic den-
sities: ρA(−→r ) and ρB(−→r ) or, equivalently, the total density ρ(−→r ) = ρA(−→r ) +
ρB(−→r ) and the concentration c(−→r ) defined by ρA(−→r ) − ρB(−→r ) = ρ(−→r )(2
c(−→r ) − 1).Usually, as the temperature lowered, order appears in the variable
ρ(−→r ) while the concentration variable remains disordered. Once the system
crystallized a thermodynamic state is characterize by a configuration {ci} where
ci is the probability that a site located at

−→
R i is occupied by and A atom. Just

below the temperature of crystallization , namely the melting temperature TM
, the equilibrium state is characterized by ci = c for all i and is often referred
to as a solid solution. On further lowering the temperature at some critical
temperature T0 the alloy will either order or phase separate[5].These are the
phenomena I shall be concern here.
It is conventional to develop the theory of such concentration fluctuations

by introducing the occupational variables ξi which take on the value 1 if the
site i is occupied by an A atom and 0 if the atom at that site is of the B type.
Then

〈ξi〉 = ci (1)

where the average denoted by the brackets is with respect to an ensemble com-
positional configurations with an appropriate measure An elegant way to study
ordering processes is to look for the temperature T0 below which the equilibrium
concentration is given by a superposition of concentration waves[5]

ci = c+
1

2

∑
ν

(
cνe

i
−→
k ν ·
−→
R i + c∗νe

−i−→k ν ·
−→
R i
)

with characteristic wave vectors
−→
k ν and amplitudes cν .For instance the L12

ordered state of Cu3Au on an FCC lattice is described by

ci = c+
1

4
η
(
ei
−→
k 1·
−→
R i + ei

−→
k 2·
−→
R i + ei

−→
k 3·
−→
R i
)

(2)

2
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where the wave vectors are

−→
k 1 = 2π

a (1, 0, 0) ,
−→
k 2 = 2π

a (0, 1, 0) ,
−→
k 3 = 2π

a (0, 0, 1)
and η is the convenient order parameter whose non zero value below T0 indi-
cates that the translational symmetry of the homogeneous solid solution has
been broken and only the L12.symmetry remains’
According to Landau what drives such ordering process is the generalized

free energy difference δΦ ({ci}) between that of the state characterized by the
configuration {ci} and that of the solid solution. Assuming that near T0 the
deviations δci = ci − c are small he then expands δΦ ({ci}) as fallows

δΦ ({ci}) =
1

2!

∑
i,j

γ
(2)
i,j δciδcj +

1

3!

∑
i,j,k

γ
(3)
i,j δciδcjδck + .. (3)

where the γ(n)
ij...s are the symmetry allowed coeffi cients referred to in the in-

troduction. The equilibrium configuration is then determined by minimizing
δΦ ({ci}) with respect to all configurations by solving

∑
i

∂δΦ

∂δci
|{ci}= 0 (4)

where {ci} is the equlibrium configuration. Forinstance, for parametrization of
δΦ appropriate to Cu.75Au25 the solution is the concentration wave given in
eq.2 and 4 turns into an algebraic equation which determines the size of η.
Up to now, apart from symmetry restrictions, the above coeffi cients are ma-

terial dependent characteristics of the solid solution. They are to be determined
by experiments. Clearly much would be gained if they could be calculated either
from semi-phenomenological models or from ’first principles’.What concerns us
here are ways of accomplishing this task.

3 Effective model Hamiltonians versus ’first prin-
ciples’calculations.

A conceptually simple procedure is to start by forgetting the electrons altogether
and assuming that the lattice sites are occupied by atoms interacting by effective
pair potentials vA,Ai,j , vA,Bi,j , vB,Ai,j , vB,Bi,j .Then, determine these pair potentials
by demanding that the energy of a selection of configurations {ξi}:

Heff ({ξi}) =
∑
i,j

ξiξjv
A,A
i,j +ξi(1−ξj)v

A,B
i,j +(1−ξi)ξjv

B,A
i,j +(1−ξi)(1−ξj)v

B,B
i,j

(5)
agrees with the result of ’first principles’ground state calculations of E0({ξi})
for the same configurations. Evidently, one must chose configurations {ξi} such
that they represent periodic arrangements of A and B atoms so that the Bloch

3
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Theorem can render such calculations tractable. Moreover,the number of po-
tential parameters , vA,Ai,j etc..., can not be larger then a few nearest neigh-
bours. Once such fit to ’first principles’ calculations have been achieved, the
second step of the procedure is to use Heff {ξi}) as a model Hamiltonian in a
standard classical statistical mechanics calculation on a lattice[6]. Namely, for
instance,calculate the partition function

Z(T, V,N, ν) = .
∑
{ξi}

exp−β
[
Heff ({ξi}) + ν

∑
(1− 2ξi)

]
(6)

and the grand potential

Ω(T, V,N, ν) = − 1

β
lnZ(T, V,N, ν) (7)

where T is the temperature, β = 1/kBT, V is the volume, N the number of
sites and ν is the chemicalpotential difference ν = µA − µB .The object of the
exercise here is to develop an alternative to the above scheme for eliminating
the electrons in favor of a classical Hamiltonian.
Whilst the above route from a one parameter theory of electrons and ions

to the classical statistical mechanics of interacting atoms,with many materials
dependent parameters, performs the theoretical task set in the introduction
it has a number of shortcomings. The problem is not that it is in no way
exact, the alternative I shall propose will not be exact either, but that, from
the point of view of the Landau theory, it starts at the wrong place in the
phase diagram. In short, the information that goes into the determination of
the effective Hamiltonian Heff ({ξi}) refers to the electrons in one of the many
selected , low symmetry, ground states where as the Landau parameters in eq.3
are properties of the high temperature high symmetry phase. Thus other things
being equal one should start with electronic structure calculations in the high
symmetry phase Namely, the first principles approach should be deployed in
the disordered, sold solution phase. How one might implement this idea is the
theme of what fallows

4 The concentration ’functional’approach on a
lattice

For the purpose at hand, it turns out to be very convenient to rephrase the
classical configurational statistical mechanical problem in Sec2 as a classical
concentration ’functional’theory CCFT. This approach is the lattice-gas ana-
logue of the genuinely density functional theories such as those for classical
liquids[2] or electrons[4] where the relevant densities , unlike the countably in-
finite concentration variable ci, are continuous functions of the spacial position−→r . As its predecessor CCFT is based on a surprising theorem. In the present
context it may be summarized as fallows:

4
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Take a lattice Hamiltonian of the form

H({ξi}) = H0({ξi}) +
∑
i

vi(1− 2ξi) (8)

where H0({ξi} is an arbitrary generalization of the effective lattice Hamiltonian
Heff ({ξi}) in eq.5 and the second term is an external perturbation speci-
fied by the set of local chemical potentials parameters{vi} .Using eqs6and7 the
Hamiltonian in eq.8leads to a grand potential Ω(T, V,N, ν; {vi}) ’functional’
(function of countable infinitely many variables) of the external ’potential’{vi}
and is the generator of correlation functions as in ∂Ω

∂vi
= 2 〈ξi〉 − 1, ∂2Ω

∂vi∂vj
=

qi,j ≡ 〈ξiξj〉 − 〈ξi〉〈ξj〉 etc..Clearly, for every set of external potentials {vi} one
can find a set of concentrations {ci} by applying the above rules of statistical
mechanics. The first part of the theorem is that this relation can be inverted.
That is to say the for any chosen set {ci} one can fin a unique set {vi} such
that it will produce {ci} The proof is straight forward fallowing the arguments
of Mermin[8] and Evans[2].The next move is to show that there is a generalized
internal Helmhotz free energy Ω(T, V,N, ν, {ci}) such that its minimum with
respect to arbitrary variations of {ci} is the thermodynamic equilibrium value of
the internal Helmhotz free energy. Moreover, the concentration configuration
{ci} for which the minimum Ω(T, V,N, ν, {ci}) occurs is the equilibrium con-
centration distribition. Finally one finds that Ω(T, V,N, ν, {ci}) can be written
in the fallowing very convenient form

Ω(T, V,N, ν, {ci}) =
∑
i

vi(1− 2ci) + F( {ci}) + ν
∑
i

(1− 2ci) (9)

where, remarkably, the ’functional’F( {ci}) is independent of {vi} .Note however
that it depends on the potential parameteres which define H0({ξi}).
In the non-interacting limit, namely when H0({ξi}) is independent of the oc-

cupation configuration {ξi} ,and F0( {ci}) = β−1
∑
i

[ci ln ci]+[(1− ci) ln(1 + ci)].Thus,

with great generality, we may write

F( {ci}) = β−1
∑
i

[ci ln ci] + [(1− ci) ln(1− ci)]− Φint ({ci}) (10)

where Φint ({ci}) is an interaction functional independent of of the external
perturbations {vi} .
Ofcourse,whilst the above theorem is an exact statement in itself it is not

helpful because the exact functional F( {ci}) is not known. However, if useful
approximate interactin functionals can be constructed eq.4 becomes a powerful
tool [2],[4]. In in the next section I will discuss an approximate functional which
can be calculated using a first principles method without an intemediate step
of fitting such calculations to classical model Hamiltonians. However, before
moving on I pause to conclude this section with a brief summary of how this
CCFT is to be used.

5
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As mentioned above Ω(T, V,N, ν; {vi}) is the generator of the occupation

variable correlation functions. As it terns out ,in a similar manner,Φint(ν, {ci})
is the generator of the direct correlation functions:

S
(1)
i = −β ∂Φint

∂ci
|{ci}, S

(2)
i,j = −β ∂Φint

∂ci∂cj
|{ci} etc.. (11)

In terms of these the equation of state , which fallows from the extremal condi-
tion ∂Ω

∂ci
= 0, is

1

β
ln

ci
1− ci

+
1

β
S

(1)
i − 2vi = 0 (12)

and the two point correlation function is given by

qi,j = ci(1− ci)δi,j − ci(1− ci)
∑
l

S
(2)
i,l ql,j

These are the most useful relations in studies of binary alloy phase diagrams on
the bases of pair-wise interacting atoms. Indeed one readily recalls that in the
mean-field approximation S(2)

i,l is the pairwise interchange energy v
A,A
i,j +vB,Bi,j −

2vA,Bi,j and qi,j measures the chemical short range order (SRO) in an alloy.

Moreover its the lattice Fourier transform q(
−→
k ) is proportional to the X-ray

diffuse scattering intensity.
Here the relevant point is that Ω(T, V,N, ν, {ci}) provides a means of calcu-

lating the Landau parameters defined in eq.3.Namely

γ
(2)
i,j =

kBT

c(1− c)δi,j − S
(2)
i,l (13)

γ
(3)
i,j,k =

kBT (2c− 1)

6c2(1− c)2
δi,jδi,k − S(3)

i,j,k

etc...

where c is the equilibrium concentration in the high symmetry disordered state
where ci = c for all i. As mentioned above Landau regarded these coeffi cients as
phenomenological properties of the high symmetry phase. By contrast, accord-
ing to the view taken here they should be calculated on the bases of microscopic
models either based on interacting atoms or on interacting electrons and ions.

5 A ’First Principles’theory of the interaction
functional Φint ({ci})

5.1 The Mean-field Theory of concentration fluctuations

The quantum mechanical Density Functional Theory of Hohenberg and Kohn[9]
and Kohn and Sham[10] provides a method for calculating the electronic grand

6
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potential Ωe(V, {ξi} , µ, T ) at a volume V, temperature T, electronic chemical
potential µ for a fixed occupational configuration {ξi} .On a time scale long
compared with the diffusion time of the atoms on the lattice Ωe(V, {ξi} , µ, T )
can be used as the effective configuration Hamiltonian H0({ξi}) in the previ-
ous section. Then an interaction ’functional’Φint ({ci}) can, in principle, be
constructed as fallows

Φint ({ci}) =
∑
{ξi}

P ({ξi} ; {ci})Ωe(V, {ξi} , µ, T )

where P ({ξi} ; {ci}) the probability that a given configuration {ξi} occurs under
the constraint that the configuration of the averages {〈ξi〉} has been prescribed
by {ci}. Of course this recipe poses and impossible task. However, interestingly,
it becomes tractable in a sequence of mean field approximations.
Firstly, one assumes,as is appropriate in a mean-field theory, that the occupa-

tion of a site i fluctuates independently from the others. Namely, the probability
that the site is occupied by an A atom is ci and that for a B atom is 1 − ci
.Then, the distribution function P ({ξi} ; {ci}) factorizes:

P ({ξi} ; {ci}) =
∏
i

Pi (ξi; ci) (14)

Pi (ξi; ci) = ciξi + (1− ci) (1− ξi)
Clearly, as advertised, P ({ξi} ; {ci}) is parametrized by the concentration con-
figuration {ci}
Secondly, let us imagine that the electronic grandpotential Ωe(V, {ξi} , µ, T )

is calculated in the Local Density Approximation (LDA) to the quantum me-
chanical DFT for the electrons. This is a very successful approximation for
describing the energetics of interacting electrons in the external field due to the
charged nuclei of a solid and is widely regraded of the meanfield theory for this
problem. Thus

Φint ({ci}) = −
µ∫
0

dε
〈
NLDA(ε; {ξi})

〉
+ δΩ (15)

where NLDA(ε; {ξi}) is the LDA integrated density of state and δΩ is the fully
averaged double counting correction fully discussed in[15] but, in the interest of
accessible presentation, will be neglected here.
Thirdly, the appropriate method for taking the average over an ensemble of

independent random occupation numbers in eq.15 is chosen to be the Coherent
Potential Approximation (CPA) which the mean field theory of such disorder
for electrons moving in a random potential field[11].Thus

Φint ({ci}) = −
µ∫
0

dε
〈
NLDA(ε)

〉CPA
+ δΩ (16)

where the CPA averaged integrated density of state
〈
NLDA(ε)

〉CPA
depends on

the whole concentration configuration {ci} and hence may be usefully referred
to as N

CPA
(ε; {ci}).The way the average of {ξi}is to be implemented will be

described in the next section.

7
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5.2 The combined Local Density and Coherent Potential

Approximation

The LDA for a fixed occupation number configuration {ξi} requires the solution
of a selfconsistant one electron Schrodingers eqation, namely the Kohn-Sham
equation, for the corresponding arrangement of the atoms. In principle, using
such solution one can calculate the integrated density of states N(ε; {ξi}) and
average it with respect to the distribution function given in eq.14. Given the
number of such configurations and the fact that the crystal potential for most
of them is not periodic, and therefore one can not make use of the Boch Theo-
rem, this is still an impossible task. Remarkably the CPA render this problem
tractable at the cost of inverting the order in which the averaging over all config-
urations and the iterating to charge selfconsistancy required by the Kohn-Sham
equation are implemented. This inversion is facilitated by the local nature of
LDA and made the maximal use of by the single site nature of the local CPA.
How this central maneuver of present the approach to the problem works can
be readily see as fallows:
Recall that for a fixed configuration the Kohn-Sham equation[10] can be

written as (
− h̄

2∇2

2m
+
∑
i

vi (−→r i; [ρ])

)
ψn(−→r ) = εnψn(−→r )

where vi (−→r i; [ρ]) describes the external, Hartree and exchange correlation po-
tentials in the i-th unit cell as a function of the position vector −→r i measured
from the centre of the i-h unit cell which is , for simplicity, assumed to contain
only one atom. Whilst in general the local potential vi (−→r i; [ρ]) depends on the
full configuration {ξi} in the combined LDA and CPA theory it depends only
on the local density

ρi(
−→r , ξi) = ξiρ

A
i (−→r ) + (1− ξi) ρBi (−→r ) (17)

where ρAi (−→r ) and ρBi (−→r ) are the local charge densities averaged over all con-
figurations with the local occupation number fixed at ξi = 1 or 0 respectively.
If we assume that each unit cell is neutral on the average and therefore the
Medelung contribution to the selfconsistant potential can be neglected the local
potentialvi (−→r i; [ρ]) at the site i takes the same form as the local charge density
in eq.17

vi(
−→r , ξi) = ξiv

A
i (−→r ) + (1− ξi) vBi (−→r ) (18)

where the partially averaged potentials vAi (−→r ) and vBi (−→r ) depend only on
the partially averaged charge densities ρAi (−→r ) and ρBi (−→r ).This approximation
,which is remedied in the more recent versions of the theory based on the non-
local version of the KKR-CPA [12],[13],[14], then solves the inversion problem
mentioned above since the KKR-CPA provides as an output partially averaged
charge densities ρAi (−→r ) and ρBi (−→r ) from which a new random crystal potential
can be constructed as fallows:∑

i

vi (−→r i; [ρ]) '
∑
i

ξiv
A
i (−→r ) + (1− ξi) vBi (−→r ) (19)
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and hence at the end of a KKR-CPA calculation the procedure can be re-
peated until convergence on ρAi (−→r ) and ρBi (−→r ) is reached. At this point it
should be stressed that the partially averaged quantities vAi (−→r ), vBi (−→r ), ρAi (−→r )
andρBi (−→r ) depend not on the occupation configuration{ξi} but on the con-
centration configuration{ci} .As a consequence, at least in principle, the re-
sult is a fully self-constant combined LDA CPA calculation of the ’total en-
ergy’Φint ({ci}) .Of course, this is still only a formal theory since the corre-
sponding calculations can not be implemented for an arbitrary inhomogeneous
set{ci}.However , the standard single site KKR-CPA solves the problem for
the case where all the concentrations are the same. Namely ci = c for all i.
Moreover, the calculation of the low order derivatives of Φ ({ci}) , evaluated in
the homogeneous ci = c, state are also tractable. Thus, the above ’first prin-
ciples’material specific procedure represents a practical scheme for calculating
the ’first principles’Landau parameters defined in eq. 13For the sake of com-
pleteness, how the above program can be actually implemented using a multiple
scattering approach to calculating the electronic structure of condensed matter
will be presented in the next section.

5.3 The self-consistent Korringa-Kohn Rostoker-Coherent-
Potential-Approximation:SCF-KKR-CPA

Unlike most band theory methods those based on Multiple Scattering Theory,
like the KKR or LMTO, can deal directly ,if approximately, with disorder. For
the problem at hand these approaches begin by constructing non overlapping
potential wells vAi (−→r ) about each atom using the local charge density ρi(

−→r ) and
the recipe of the LDA. Since the interstitial potential is assumed to be a constant
it turns out to be suffi cient to solve the local Schrödinger equation for the ’on
the energy shell’part of the t-matrix to construct the energy spectrum for the
whole lattice. For spherically symmetric potentials the t-matrix is diagonal in
the angular momentum labels L≡ l,m and can be represented in terms of the
scattering phase shifts ηL(ε) at the energy ε as

ti;L(ε) = −
sin ηi,L(ε)
√
ε

eiηi,L(ε) (20)

Then the condition that the incident wave to each site should be the sum of the
outgoing waves from all other sites leads to the requirement on ε that∥∥∥t−1

L,i(ε)δL,L′δi,j −GL,i;L′,j(ε)
∥∥∥ = 0 (21)

where GL,i;L′,j(ε) is the so called structure constant which is the angularmo-
mentum expansion of the free space Greensfunction about the sites i and j and
the determinant is that of the KKR matrix[17],[16] in lattice site i and angu-
lar momentum L space. Remarkably, the energies ,ε, for which eq.21 holds are
energy eigenvalues, εν , of the Schrödinger equation for the whole lattice even if
the potential wells at each site are different. If, in addition to the spectrum,
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the calculation of the charge density ρi(

−→r ) at each site i is called for the exact
formal result to be used is

ρi(
−→r ) =

∑
L,L′

µ∫
0

dεZ∗i,L(−→r , ε)τ i,iL,L′(ε)Zi,L′(
−→r , ε) (22)

where the scattering path matrix τ i,jL,L′(ε)[18] is the inverse of the KKR-matrix

τ i,jL,L′(ε) =
(
t−1
L,i(ε)δL,L′δi,j −GL,i;L′,j(ε)

)−1

and Zi,L(−→r , ε) is the single site scattering solution for the local potential vi(−→r ).Thus,for
a fixed configuration {ξi} and a corresponding set of local potentials {vi} by
solving for local orbitals Zi,L′(

−→r , ε) and the scattering path matrix τ i,jL,L′(ε) we
can calculate the local charge densities{ρi} and from these, using the LDA
functional, we can recalculate the local potentials for the next iteration. At
least formally such iterations can be continued to convergence and the result is
a remarkably succinct formulation for of the LDA for an arbitrary arrangement
of A and B atoms on a lattice. With this in hand one can embark on CPA
program of averaging outlined in the previous section.
Clearly the local charge density ρi(

−→r ; {ξi}) averaged over all configurations
{ξi} with the constraint that at

−→
R i the potential is vαi (−→r ) for α = A,B is de-

termined by the local scattering solution Zαi,L′(
−→r , ε) and the similarly averaged

site diagonal part of the scattering path matrix
〈
τ i,iL,L′(ε)

〉
i,α

:

ραi (−→r ) =
∑
L,L′

µ∫
0

dεZα∗i,L(−→r , ε)
〈
τ i,iL,L′(ε)

〉
i,α
Zαi,L′(

−→r , ε) (23)

Note that, unlike ρi(
−→r ; {ξi}) which depends on a fixed occupation configuration

{ξi}, ραi (−→r ) ≡ ραi (−→r , {ci}) depends on the concentration configuration. More-
over, as explained in the previous section, from ραi (−→r ) we can calculate, via the
LDA, local partially averaged potentials vAi (−→r ) and vBi (−→r ) to be used in eq.19
to start a new random potential problem with

t−1
L,i = ξit

−1
A,L,i + (1− ξi) t−1

B,L,i

Evidently, thanks to the inversion of the order in which we average over configu-
rations is taken and implementation of the LDA selfconsistancy is accomplished
this procedure can repeated until the partially averaged charge densitiesρAi (−→r )
and ρBi (−→r ) converged. In short the theory is selfconsistant on the average
Remarkably, the concentration functional Φint ({ci}) so obtained is stationary
with respect to arbitrary variations on in the partially averaged charge den-
sities ρAi (−→r ) and ρBi (−→r ) [15].This extremely useful property is the combined
consequence of the corresponding features of LDA and CPA
Finally, we came to the implementation of the CPA idea within the KKR

framework[18] to calculate
〈
τ i,iL,L′(ε)

〉
i,α
in eq.23The CPA is an extremely versa-

tile , none-perturbative method for dealing with disordered systems [14].Usually,
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it is applied to cases when the disorder is uniform. However, in the problem at
hand we need an inhomogeneous version of it since the lattice sites are different
even on the average due to the fact that Pi(ξi; ci) in eq.14 varies from site to site.
It is a great virtue of the real space KKR , depicted in eq.21 that it facilitates
the deployment of the CPA idea even in this case. This is because the structure
constants GL,i;L′,j(ε) which connect sites i and j are not dependent on the crys-
tal potential and hence in the KKR matrix the randomness appears only on the
site diagonals.In short the formal solution to the problem may be summarized
as fallows: replace a the t-matrecies on each site ti;L(ε) by an effective (coherent
potential) t-matrix tc,i;L(ε) and consider impurities in this effective lattice by
exchanging t−1

c,i;L(ε) on a particular site by ξit
−1
A,i;L(ε) + (1− ξi) t−1

B,i;L(ε).As a
consequence of such replacement the site diagonal component of the scattering
path matrix for the effective lattice, τ c;i,iL,L′(ε) , changes to τ

c,A;i,i
L,L′ (ε) or τ c,B;i,i

L,L′ (ε)
for ξi = 1 or 0 respectively. The CPA condition, on the effective t-matrecies
t−1
c,i;L(ε), that such replacement does not change τ c;i,iL,L′(ε) on the average can be
written as

ciτ
c,A;i,i
L,L′ (ε) + (1− ci) τ c,B;i,i

L,L′ (ε) = τ c;i,iL,L′(ε) (24)

It turns out that the requirement that this relation is fulfilled on every site
constitutes a set of coupled equations which determine all the effective t-matrices
t−1
c,i;L(ε) on every site i ..Clearly, these depend on the concentration configuration.
Finally, the principle results of the CPA averaging is that

〈
τ i,iL,L′(ε)

〉
i,α

= τ c,α;i,i
L,L′ (ε) =

[(
1
≈

+ τ
≈
c;ii

(
t
≈
−1

i,α
− t
≈
−1

c,i,α

))−1

τ
≈
c;ii

]
L,L′

here symbols with curly underscores are matrices with indices L and L’and
the interaction functional is given by

Φ ({ci}) = −
µ∫
0

dεN
KKR−CPA

(ε; {ci}) + δΩ (25)

Moreover

N
KKR−CPA

(ε; {ci}) = − 1

π

µ∫
0

dε
∑
i,α

Im ln
∥∥∥t−1
c,i,α1

≈
δi,j −G≈(i, j; ε)

∥∥∥ (26)

− 1

π

µ∫
0

dε
∑
i

ci Im ln

∥∥∥∥1
≈
δi,j +

(
t
≈
−1

i,A
− t
≈
−1

c,i

)
τ
≈
c;i,i

∥∥∥∥
− 1

π

µ∫
0

dε
∑
i

(1− ci) Im ln

∥∥∥∥1
≈
δi,j +

(
t
≈
−1

i,B
− t
≈
−1

c,i

)
τ
≈
c;i,i

∥∥∥∥
In summary the aim of providing a formal base from which tractable first-
principles procedures can be derived systematically for calculating the Landau
coeffi cients in eq.3 has been achieved and is encapsulated in Eqs.25and26 .Some
of its immediate practical consequences are explored in the next section.
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5.4 First principles calculations of the direct correlation

functions: S(1)i ,S
(2)
i,j ...

What is meant by proceeding from eqs. 25,26 in a systematic fashion to tractable
mean-field theory schemes is that one can take various, increasingly higher order,
derivatives of the basic inhomogeneous KKR-CPA equation eq.24 and derive
equations for the derivatives of τ c;i,iL,L′(ε) , τ

c,A;i,i
L,L′ (ε) and τ c,B;i,i

L,L′ (ε) cj evaluated
in the homogeneous state where ci = cj = c for all i and j. For low order
derivatives these become computationally tractable and their solutions can be
used to evaluate the direct correlation functions defined in eq.11

5.4.1 Total energy:

If all the concentrations ci are taken to be the same , say c, the framework of
the previous section reduces to what is now days called the standard SCF-KKR-
CPA. In particular eq.24 can be solved numerically by codes that are part of a
reasonably complete KKR package. Much useful work gets done using these but
to illustrate its power in the context of the present discussion its first applica-
tion will suffi ce.The credibility of the whole ’first principles’, Density Functional
Theory project rests on the fact that all modern band theory methods can solve
the Kohn-Sham equation within the LDA or some othe similar approximation
and calculate the zero temperature total energy as a function of the lattice
parameter ’a’.Moreover, they can determine the equilibrium aeq by finding ’a’
for which the total energy is the minimum in reasonable agreement with experi-
ments.One of the principle virtues of the KKR and LMT -CPA methods is that
they can do the same for homogeneous random alloys. This is illustrated below
in Fig 1. and Fig.2 where aeq is plotted as a function of concentration for the
FCC solid solutions CucZn1−c [15]
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Fig.1 Variation of the total energy (Ry)

with lattice parameter (a.u.) for fcc Cu.5Zn.5alloy
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Fig.2 Variation of the lattice constant with

concentration for fcc CucZn1−c alloys

Note that these calculations have been carried out in the high temperature
high symmetry state where , according to the arguments in the introduction the
Landau parameters are to be calculated.

5.4.2 Phase Diagrams

Recall that the equation of state, recorded in eq.12, involves the direct corre-
lation function S(1)

i = β ∂Φ
∂ci

evaluated in the in the homogeneous state ci = c
.Using the strategy out line in above one readily derives

µ∫
0

dε
(
NKKR−CPA
A (ε)−NKKR−CPA

B (ε)
)

+ kBT ln
c

1− c = ν

where the local integrated density of states are to be calculated by the standard
homogeneous KKR CPA mentioned above. As an example of results from such
calculation we display the coexistence curve for the phase separating,FCC
PdcRh1−c alloy system.

Fig.3The phaseseparation phase diagram for RhcPd1−c

alloy triangles are SCF-KKR-CPS calculations and the

dots are experimental data

The calculated critical temperature To is in good agreement with the exper-
imental data. Once again it is to be noted that these first priciple results are in
no way based on zero temperature total energy calculations.
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5.4.3 Correlation functions:

The calculation of the direct correlation function S(2)
i,l in the homogeneous state

is also tractable. In this state S(2)
i,l depends only on the coordinate difference−→

R i−
−→
R j and hence the interest focuses on its lattice Fourier transform S(2)(

−→
k )

which determines the correlation function q(
−→
k ) measured in a diffuse scaterring

experiments. Namely

q(
−→
k ) =

c(1− c)
kBT − c(1− c)S(2)(

−→
k )

An example of the calculated diffuse scattering intensity for the FCC CucPd1−c
alloy , just above its ordering temperature[19] is shown below

Fig.4 The concentration-concentration correlation function

q(
−→
k ) for Cu.75Pd25 above the ordering temperature T0

The four peaks are the split [110] superlattice peak which, in a usual FCC
lattice, indicates a tendency to order into the L12 structure. The splitting is an
interesting consequence of the Fermi Surface geometry.

5.5 The higher order direct correlation functions S(n)i,j,k.. for
n 〉 2

Very little is known about these beyond perturbation theory within effective
pair potential models and the constraint imposed on them by group-theory.
They remain a challenge to the ’first principle’approach the theory of alloy
phases.
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6 Concluding remarks

As was stressed in the introduction ordering and clustering in metallic alloys is
just one of the many applications of the Landau theory. It is then appropriate
to conclude with comments on the applicability of the above theoretical strategy
to other cases of interest.
Evidently, the methodology can be viewed as a theory of disorder in the

quantum density functional theory for electrons where the disorder is treated
by a classical density functional theory. The approximate functional in the first
part is LDA and the classical functional was provided by the CPA. The physics
behind this two pronged theoretical treatment is the fact that the electrons
move fast and the atomic configurations change, by interdiffusion, slowley. This
separation of time scales is being exploited when the slow degrees of freedom
is treated classically. Looked at it from this point of view the order parame-
ters in the Landau theories can be identified with slow degrees of freedoms
and their fluctuations, which destabilize the high symmetry phase, are good
candidates for being treated by classical density functional theories. Indeed,
there are a number of cases,such as magnetism[20], valance fluctuations[21] and
superconductivity[22] ,where this kind of reasoning have paid handsome didv-
idents although calculations of full sets of Landau parameters have not been
attempted.
An other point of general interest concern the good fit between density func-

tional theory for the electrons and the slow degrees of freedom which play the
role of order parameter in the Landau theories. To be effective an electronic
density functional theory feature a number of densities in addition to the charge
density n(−→r ) in the original theory[10].For instance in the case of magnetism
the selfconsistant one electron ,Kohn-Sham, potential is functional of both the
charge density n(−→r ) and the magnetization density −→m(−→r ).In the paramagnetic
, high symmetry, state the thermal average of this quantity is zero but below
the Curie temperature Tc it is not and hence the rotational symmetry is broken
in the sense of a Landau Theory. However, even above Tc

−→m(−→r ) is not zero on
a time scale which is, while short compared to the thermal time scale h̄

kBT
, is

long compared to the time an electron spends on a lattice site, namely the time
scale of charge fluctuations. In short, in the paramagnetic state of an itinerant
ferromagnet like Iron local moment form but they are randomly oriented and
hence do not break the rotational symmetry. This Disordered Local Moment
(DLM) picture is well capture by the two functional construction advocated in
this essay:the fast charge fluctuations are described by LDA and the slow, clas-
sical, orientational fluctuations of the local moments are treated by the CPA
average over the corresponding random exchange fields experienced by the elec-
trons. In the case of alloys where the SCF-KKR-CPA calculations of the direct
correlation functions gave a good account of the experimental ordering temper-
ature T0 the corresponding DLM predictions are also in good agreement with
experiment[23]
Finally, it is noteworthy that means for going beyond the standard mean

field theory functionals have also been developed. They are based on replacing
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the single site CPA at the heart of the above methodology by the non-local
SCF-KKR-CPA[12],[13],[14].which considers compact clusters in place of single
site impurities in defining the effective medium. As a consequence it affords a
much improved description of the local environmental effects.
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