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Given a multi-leveled meromorphic linear di¤erential system, we deduce from the factorization theorem explicit formulae allowing to express all the …rst level's Stokes multipliers in terms of connection constants in the Borel plane, generalizing thus the formulae displayed by M. Loday-Richaud and the author in the case of single-leveled systems. As an illustration, we develop three examples. No assumption of genericity is made.

Introduction

All along the article, we are given a linear di¤erential system (in short, a di¤erential system or a system) of dimension n 2 with meromorphic coef-…cients of order r + 1 at 0 in C, r 2 N , of the form normalized as follows:

1 e F (x) 2 M n (C[[x]]
) is a formal power series in x satisfying e F (x) = I n + O(x r 1 ), where I n is the identity matrix of size n and where r 1 is an integer 1 …xed below, L = J M j=1 ( j I n j + J n j ) where J is an integer 2, the eigenvalues j verify 0 Re( j ) < 1 and where if n j 2 is an irreductible Jordan block of size n j , Q(1=x) is a diagonal matrix with polynomial entries in 1=x of the form

J n j = 8 > > > > > > < > > > > > > : 0 if n j = 1
Q 1 x = J M j=1 q j 1 x I n j ; q j 1 x 2 1 x C 1 x :
Recall that any meromorphic linear di¤erential system with an irregular singular point at 0 can always be reduced to System (1.1) by means of a …nite algebraic extension x 7 ! x , 2 N , of the variable x and a meromorphic gauge transformation Y 7 ! T (x)Y where T (x) has explicit computable polynomial entries in x and 1=x ( [START_REF] Balser | A general theory of invariants for meromorphic di¤erential equations; Part I, formal invariants[END_REF]).

In addition, we suppose that there exist j and `such that q j 6 q `, otherwise e F (x) is a convergent series and System (1.1) has no Stokes phenomenon.

Under the hypothesis that System (1.1) has the unique level r 1 (see Def. 2.1 below for the exact de…nition of levels), M. Loday-Richaud and the author displayed in [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF] (case r = 1) and [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] (case r

2) formulae making explicit the Stokes multipliers of e F (x) in terms of connection constants in the Borel plane. More precisely, these constants are given by the singularities of the Borel transforms b F [u] ( ) of the sub-series e F [u] (t), u = 0; :::; r 1 and t = x r , of terms r by r of e F (x), also called r-reduced series of e F (x).

In the present paper, we suppose that System (1.1) is a multi-leveled system. Our aim is to make explicit formulae similar to those in [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF][START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] for the …rst level's Stokes multipliers of e F (x) (Section 3.6, Theorem 3.12), i.e., the Stokes multipliers of e F (x) associated with the smallest level r 1 1 of System (1.1).

Such formulae, obtained by various integral methods such as Cauchy-Heine integral and Laplace transform, were already given by many authors under su¢ciently generic hypothesis (see [START_REF] Balser | Formal power series and linear systems of meromorphic ordinary di¤erential equations[END_REF][START_REF] Balser | Transfer of connection problems for …rst level solutions of meromorphic di¤erential equations and associated Laplace transforms[END_REF][START_REF] Braaksma | Multisummability and Stokes multipliers of linear meromorphic di¤erential equations[END_REF] for instance).

Here, besides no assumption of genericity is made, our approach is quite di¤erent and is based on the factorization theorem of e F (x) ( [START_REF] Loday-Richaud | Stokes phenomenon, multisummability and di¤erential Galois groups[END_REF][START_REF] Ramis | Phénomène de Stokes et resommation[END_REF][START_REF] Ramis | Filtration de Gevrey sur le groupe de Picard-Vessiot d'une équation di¤érentielle irrégulière[END_REF], Section 2.3 below) and on the results of [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF][START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF].

More precisely, we proceed in two steps. First, we show that a "good normalization" of the r 1 -summable factor of e F (x) allows to see the …rst level's Stokes multipliers of e F (x) as Stokes multipliers of convenient systems with a single level equal to r 1 (Section 3.2). Thus, according to [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF][START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF], the …rst level's Stokes multipliers of e F (x) are expressed in terms of connection constants in the Borel plane relative to these single-leveled systems.

Second, we prove that these connection constants are actually given by the singularities of the Borel transforms b F [u] ( ), u = 0; :::; r 1 1, of the r 1 -reduced series of e F (x) (Sections 3.4 and 3.5). To this end, we prove a resurgence theorem for the r 1 -reduced series e F [u] (t) of e F (x) (Theorem 3.7) and we display a precise description of the singularities of the Borel transforms b F [u] ( ) (Theorem 3.9). In Section 4, as an illustration of the …rst level's connection-to-Stokes formulae, we develop three examples.

Preliminaries

Some De…nitions and Notations

We recall here below some de…nitions about levels and singular directions also called anti-Stokes directions of System (1.1).

Given a pair (q j ; q `) such that q j 6 q `, we denote (q j q `) 1 x = j;x r j;`+ o 1 x r j;`

; j;`6 = 0: De…nition 2.1 (Levels of System (1.1)) One calls levels of System (1.1) all the degrees r j;`o f polynomials q j q `6 0. Notice that, according to normalizations of System (1.1), levels are integers. One refers sometimes this case as the unrami…ed case.

1. The anti-Stokes directions of System (1.1) (or e F (x)) are the directions of maximal decay of the exponentials e (q j q `)(1=x) with q j q `6 0. The coe¢cients j;`g enerating these directions are called Stokes values of System (1.1). The k th level's anti-Stokes directions of System (1.1) (or e F (x)) are the anti-Stokes directions of System (1.1) given by the exponentials e (q j q `)(1=x) with r j;`= r k . In this case, j;`i s called k th level's Stokes value of System (1.1).

2. Let `2 f1; :::; Jg.

The anti-Stokes directions associated with e F ;`( x) are the anti-Stokes directions of e F (x) given by the exponentials e (q j q `)(1=x) for all j such that q j q `6 0. The k th level's anti-Stokes directions associated with e F ;`( x) are the anti-Stokes directions of e F (x) given by the exponentials e (q j q `)(1=x) for all j such that q j q `6 0 and r j;`= r k . In this case, j;`i s called k th level's Stokes value of System (1.1) associated with e F ;`( x).

Notice that a given anti-Stokes direction of System (1.1) or of e F ;`( x) may be with several levels. Notice also that the denomination "anti-Stokes directions" is not universal. Indeed, such directions are called sometimes "Stokes directions".

Stokes-Ramis Automorphisms

Given a non anti-Stokes direction 2 R=2 Z of System (1.1) and a choice of an argument of , say its principal determination ? 2] 2 ; 0]1 , we consider the sum of e Y in the direction given by Y (x) = s r 1 ;r 2 ;:::

;rp; ( e F )(x)Y 0; ? (x)
where s r 1 ;r 2 ;:::;rp; ( e F ) is the uniquely determined (r 1 ; r 2 ; :::; r p )-sum of e F at and where Y 0; ? (x) is the actual analytic function Y 0; ? (x) := x L e Q(1=x) de…ned by the choice arg(x) close to ? (denoted below arg(x) ' ? ). Recall that s r 1 ;r 2 ;:::;rp; ( e F ) is an analytic function de…ned on a sector bisected by with opening larger than =r p ( [START_REF] Martinet | Elementary acceleration and multisummability[END_REF]).

When 2 R=2 Z is an anti-Stokes direction of System (1.1), we consider the two lateral sums s r 1 ;r 2 ;:::;rp; ( e F ) and s r 1 ;r 2 ;:::;rp; + ( e F ) respectively obtained as analytic continuations of s r 1 ;r 2 ;:::;rp; " ( e F ) and s r 1 ;r 2 ;:::;rp; +" ( e F ) to a sector with vertex 0, bisected by and opening =r p . Notice that such analytic continuations exist without ambiguity when " > 0 is small enough. We denote by Y and Y + the two sums of e Y respectively de…ned for arg(x) ' ? by Y (x) := s r 1 ;r 2 ;:::;rp; ( e F )(x)Y 0; ? (x) and Y + (x) := s r 1 ;r 2 ;:::;rp; + ( e F )(x)Y 0; ? (x). The two lateral sums s r 1 ;r 2 ;:::;rp; ( e F ) and s r 1 ;r Notice that the matrix I n + C ? is uniquely determined by the relation

Y (x) = Y + (x)(I n + C ? )
for arg(x) ' ? :

Split the matrix C ? = [C j;` ? ] into blocks …tting to the Jordan structure of L (C j;`

? is a n j n `-matrix). The block C j;` ? is zero as soon as e (q j q `)(1=x) is not ‡at in the direction . When e (q j q `)(1=x) is ‡at in the direction and r j;`( = deg(q j q `)) = r k , the entries of the block C j;` ? are called k th level's Stokes multipliers of e F ;`( x) in the direction . Recall that the aim of this article is to display formulae making explicit the …rst level's Stokes multipliers in terms of connection constants in the Borel plane. Our approach is based on the factorization theorem of e F (x) which we recall in Section 2.3 below.

Factorization Theorem and Stokes-Ramis Matrices

The factorization theorem (Theorem 2.4 below) states that e F (x) can be written essentially uniquely as a product of r k -summable formal series e F k (x) for the di¤erent levels r k of System (1.1). It was …rst proved by J.-P. Ramis in [START_REF] Ramis | Phénomène de Stokes et resommation[END_REF][START_REF] Ramis | Filtration de Gevrey sur le groupe de Picard-Vessiot d'une équation di¤érentielle irrégulière[END_REF] by using a technical way based on Gevrey estimates. A quite di¤erent proof based on Stokes cocycles and mainly algebraic was given later by M. Loday-Richaud in [START_REF] Loday-Richaud | Stokes phenomenon, multisummability and di¤erential Galois groups[END_REF]. Both proofs are nonconstructive. However, as we shall see in Section 3, the factorization theorem provides su¢cient informations about the …rst level to allow to make explicit the …rst level's connection-to-Stokes formulae in full generality.

Theorem 2.4 (Factorization theorem, [START_REF] Loday-Richaud | Stokes phenomenon, multisummability and di¤erential Galois groups[END_REF][START_REF] Ramis | Phénomène de Stokes et resommation[END_REF][START_REF] Ramis | Filtration de Gevrey sur le groupe de Picard-Vessiot d'une équation di¤érentielle irrégulière[END_REF]) Let R = fr 1 < r 2 < ::: < r p g denote the set of levels of System (1.1) 3 . Then, e F (x) can be factored in e F (x) = e F p (x)::: e F 2 (x) e F 1 (x) where, for all k = 1; :::; p, e

F k (x) 2 M n (C[[x]]
) is a r k -summable formal series with singular directions the k th level's anti-Stokes directions of System (1.1). This factorization is essentially unique: let e F (x) = e G p (x)::: e G 2 (x) e G 1 (x) be another decomposition of e F (x); then, there exist p 1 invertible matrices P 1 (x); :::

; P p 1 (x) 2 GL n (Cfxg[x 1 ]) with meromorphic entries at 0 such that e G 1 = P 1 e F 1 , e G k = P k e F k P 1
k 1 for k = 2; :::; p 1 and e G p = e F p P 1 p 1 . In particular, we can always choose e F k so that e F k (x) = I n + O(x r 1 ) for all k = 1; :::; p 4 .

3 Recall that we suppose p 2 in this paper. 4 Actually, such conditions, like the initial condition e F (x) = I n + O(x r1 ), allow us to have "good" normalizations for the r 1 -reduced series and thus to simplify calculations below (see Sections 3.3 to 3.6).

Denote e

G(x) := e F p (x)::: e F 2 (x). Denote also by

A 1 (x) := e G 1 A(x) e G x r+1 e G 1 d e G dx
the matrix of the system obtained from System (1.1) by the formal gauge transformation Y = e G(x)Y 1 . Then ( [START_REF] Loday-Richaud | Stokes phenomenon, multisummability and di¤erential Galois groups[END_REF]), A 1 (x) is analytic at 0 and the matrix e

Y 1 (x) := e F 1 (x)x L e Q(1=x
) is a formal fundamental solution of the system (2.1)

x r+1 dY dx = A 1 (x)Y:
Notice that System (2.1) has, like System (1.1), the levels r 1 < r 2 < ::: < r p .

Notice also that e Y 1 (x) has same normalizations as e Y (x). The structure of A 1 (x) will be precised in Theorem 3.3 below. In particular, we shall show that the matrix A 1 (x) (and, consequently, the matrix e F 1 (x)) can always be chosen with a convenient "block-diagonal form".

Consider now 2 R=2 Z a …rst level's anti-Stokes direction of System (1.1). Recall that may also be a k th level's anti-Stokes direction for some k 2 f2; :::; pg.

By construction, is also a …rst level's anti-Stokes direction of System (2.1). Denote then by I n + C 1; ? the Stokes-Ramis matrix associated with e Y 1 in the direction and split as before C 1; ? = [C j;1

; ? ] into blocks C j;1 ; ? of size n j n `…tting to the Jordan structure of L. Recall that C j;1 ; ? = 0 as soon as e (q j q `)(1=x) is not ‡at in the direction . Proposition 2.5 below precises the Stokes multipliers of e F 1 (x) in the direction .

Proposition 2.5 ([7, 13, 15]) Let j; `2 f1; :::; Jg be such that e (q j q `)(1=x) is ‡at in the direction . Let r j;`d enote the degree of (q j q `)(1=x) (see Section 2.1). Then,

C j;1 ; ? = C j;` ? if r j;`= r 1 0 n j n `if
r j;`2 fr 2 ; :::; r p g :

In other words, Proposition 2.5 states that 1. the non-trivial Stokes multipliers of the `th column-block e F ;1 (x) are those of the …rst level, 2. the …rst level's Stokes multipliers of e F ;1 (x) and e F ;`( x) coincide.

Main Results

Any of the J column-blocks e F ;`( x) (`= 1; :::; J) of e F (x) associated with the Jordan structure of L (matrix of exponents of formal monodromy) can be positionned at the …rst place by means of a permutation P on the columns of e Y (x). Observe that the same permutation P acting on the rows of e Y (x) allows to keep initial normalizations of e Y (x). More precisely, the new formal fundamental solution P e Y (x)P reads P e Y (x)P = P e F (x)P x P 1 LP e P 1 Q(1=x)P with P e F (x)P = I n + O(x r 1 ). Thereby, we can restrict our study to the …rst column-block e F ;1 (x) denoted below e f (x) (the size of e f (x) is n n 1 ). Note that e f (x) = I n;n 1 + O(x r 1 ) where I n;n 1 denotes the …rst n 1 columns of the identity matrix I n . Remark 3.1 It is worth to notice here that, by means of a convenient permutation on the columns and the rows with indices n 1 + 1 of e Y (x), we can always order the polynomials q j , j = 2; :::; J, as we want, while maintaining the initial normalizations of e Y (x) and the …rst place of e f (x).

Setting the Problem

In addition to normalizations of e Y (x), we suppose that (3.1) 1 = 0 and q 1 0, conditions that can be always ful…lled by means of the change of unknown vector Y = x 1 e q 1 (1=x) Z.

According to (3.1), the anti-Stokes directions of System (1.1) associated with e f (x) are the directions of maximal decay of the exponentials e q j (1=x) with q j 6 0 (cf. Def. 2.2, 2.). Denote then by R 0 := fr 0 1 < ::: < r 0 p 0 g , p 0 1, the set of degrees in 1=x of polynomials q j 6 0. Obviously, R 0 R (the degrees r 0 j 's are levels of System (1.1)), r 0 p 0 = r p the highest level of System (1.1) and r 1 r 0 1 r p . Notice that, when r 0 1 > r 1 , there exists no …rst level's anti-Stokes direction (hence, no …rst level's Stokes multipliers) for e f (x). Henceforward, we suppose p 0 2 and r 0 1 = r 1 . The aim of Section 3 is to display formulae making explicit the …rst level's Stokes multipliers of e f (x) in terms of the connection constants of the Borel transforms b f [u] ( ) of the r 1 -reduced series e f [u] (t) of e f (x) (Theorem 3.12), generalizing thus formulae given in [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF][START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] for single-leveled systems.

Recall that the r 1 -reduced series of e f (x) 2

M n;n 1 (C[[x]]) are the formal series e f [u] (t) 2 M n;n 1 (C[[t]]
), u = 0; :::; r 1 1, de…ned by the relation

(3.
2) e f (x) = e f [0] (x r 1 ) + x e f [1] (x r 1 ) + :::

+ x r 1 1 e f [r 1 1] (x r 1 ):
Notice that the normalization e f (x) = I n;n 1 + O(x r 1 ) implies e f [0] (t) = I n;n 1 + O(t) and e f [u] (t) = O(t) for u = 1; :::; r 1 1. Our approach is based on the relation between e F (x) and e F 1 (x) (Factorization Theorem 2.4 and Proposition 2.5) and on Block-Diagonalisation Theorem 3.3 below allowing to "reduce" System (2.1) into a convenient singleleveled system.

A Block-Diagonalisation Theorem

According to Remark 2.1, we suppose from now on that the polynomials q j for j = 2; :::; J are ordered so that the matrix Q read in the form

(3.3) Q = Q 1 Q 2 ::: Q p 0
where Q 1 is formed by all the polynomials q j 0 and all the polynomials q j of degree r 1 , i.e., by all the polynomials q j of degrees r 1 , for k = 2; :::; p 0 , Q k is formed by all the polynomials q j of degree r 0 k and its leading term

Q k := x r 0 k Q k j x=0 has a block-decomposition of the form L s k `=1 Q k;`Im k;`w ith Q k;`2 C and Q k;`6 = Q k;`0 if `6 = `0.
We denote by N k , k = 1; :::; p 0 , the size of the square matrix Q k and we split the matrix L of exponents of formal monodromy like Q:

L = L 1 L 2 ::: L p 0 with L k 2 M N k (C):
Observe that each sub-matrix L k has a Jordan structure induced by the one of L.

Block-Diagonalisation Theorem 3.3 below states that, up to analytic gauge transformation, System (2.1) can be split into p 0 sub-systems …tting to the block-decomposition (3.3), i.e., the matrix A 1 (x) can be reduced into a block-diagonal form like Q.

Recall that a (formal, meromorphic) gauge transformation Z = T (x)W transforms any system of the form

x r+1 dW dx = A(x)W into the system x r+1 dZ dx = T A(x)Z where T A(x) = T A(x)T 1 + x r+1 dT dx T 1 :
Let us start with a technical lemma based on the results of [START_REF] Malgrange | Modules microdi¤érentiels et classes de Gevrey[END_REF].

Lemma 3.2 Let d 2 f2; :::; p 0 g. Denote

N <d = N 1 + ::: + N d 1 and N d = N <d + N d , L <d = L 1 ::: L d 1 and L d = L <d L d , Q <d = Q 1 ::: Q d 1 and Q d = Q <d Q d .
Consider a system

(3.4) x r 0 d +1 dW dx = A(x)W ; A(x) 2 M N d (Cfxg)
together with a formal fundamental solution at 0 of the form

f W (x) = e H(x)x L d e Q d (1=x)
where e

H(x) 2 M N d (C[[x]]) veri…es e H(x) = I N d + O(x r 1
). Suppose that e H(x) is r 1 -summable. Then, there exists an invertible matrix T d (x) 2 GL N d (Cfxg) with analytic entries at 0 such that

1. T d (x) = I N d + O(x r 1 ), 2. the gauge transformation Z = T d (x)W transforms System (3.4) into a system (3.5) x r 0 d +1 dZ dx = A <d (x) 0 0 A d (x) Z with A <d (x) 2 M N <d (Cfxg) and A d (x) 2 M N d (Cfxg), 3. the formal fundamental solution e Z(x) = T d (x) f W (x) of System (3.5) has a block-diagonal decomposition e Z(x) = e H <d (x)x L <d e Q <d (1=x) e H d (x)x L d e Q d (1=x)
where (a) the formal series e 1=x) is a formal fundamental solution of the system 1=x) is a formal fundamental solution of the system

H <d (x) 2 M N <d (C[[x]]) and e H d (x) 2 M N d (C[[x]]) verify e H <d (x) = e H d (x) = I + O(x r 1 ), (b) the matrix e Z <d (x) = e H <d (x)x L <d e Q <d (
(3.6) x r 0 d 1 +1 dZ <d dx = A <d (x)Z <d ; (c) the matrix e Z d (x) = e H d (x)x L d e Q d (
x r 0 d +1 dZ d dx = A d (x)Z d :
Moreover, both formal series e H <d (x) and e H d (x) are r 1 -summable.

Proof. Since e

H(0) = I N d , the matrix A(x) of System (3.4) reads A(x) = x r 0 d +1 dQ d dx + x r 0 d B(x)
with B(x) analytic at 0. Hence, according to the block-decomposition (3.3) of the matrix Q, the heading term

A(0) = 0 N <d ( r 0 d Q d ) of A(x) has the block-decomposition A(0) = 0 N <d s d M `=1 r 0 d Q d;`Im d;`! with Q k;`6 = 0 and Q k;`6 = Q k;`0 if `6 = `0.
Thus, by applying [10, Thm. 1.5], there exists an invertible matrix

T d;1 (x) 2 GL N d (C[[x]] 1=r 0 d [x 1 ]
) with meromorphic 1=r 0 d -Gevrey entries at 0 5 such that the matrix T d;1 A(x) has a block-decomposition like A(0). Observe that the entries of T d;1 A(x) are in general meromorphic 1=r 0 d -Gevrey and not convergent. Denote then by A (`) (x), `= 0; :::; s d , the blocks of T d;1 A(x). By construction, the sub-systems [START_REF] Malgrange | Modules microdi¤érentiels et classes de Gevrey[END_REF]Thm. 1.4] applies: for all `= 0; :::; s d , there exists an invertible matrix T (`) d;2 (x) with meromorphic 1=r 0 d -Gevrey entries at 5 Recall that a series

x r 0 d +1 dW dx = A (`) (x)W ; `= 0; :::; s d have levels < r 0 d . Therefore,
P a m x m 2 C[[x]
] is said to be 1=k-Gevrey and denoted

P a m x m 2 C[[x]] 1=k when the series P am (m!) 1=k x m is convergent.
0 such that the matrix T (`) d;2 A (`) (x) has meromorphic entries at 0. Finally, by normalizing if neccessary the formal fundamental solutions of these last systems by means of convenient polynomial gauge transformations in x and 1=x, we deduce from calculations above that there exists a matrix

T d (x) 2 GL N d (C[[x]] 1=r 0 d [x 1 ]
) satisfying Points 2. and 3. of Lemma 3.2. Notice that Point 1. results from equalities

(3.7) T d (x) e H(x) = e H <d (x) e H d (x) = I N d + O(x r 1 )
and from the assumption e

H(x) = I N d + O(x r 1
). Notice also that, by construction, the formal series e H <d (x) and e H d (x) are both summable of levels < r 0 d . In particular, the …rst equality of (3.7) and the hypothesis " e H(x) is r 1 -summable" show that T d (x) is both 1=r 0 d -Gevrey and summable of levels < r 0 d (indeed, r 1 < r 0 d for all d = 2; :::; p 0 ). Thus, due to [12, Prop. 7, p. 349], T d (x) is analytic at 0. Therefore, T d (x) e H(x) keeps being r 1 -summable and, consequently, e H <d (x) and e H d (x) are also both r 1 -summable. This ends the proof of Lemma 3.2.

Note that the hypothesis " e H(x) is r 1 -summable" plays a fundamental role in the proof of Lemma 3.2. Note also that Lemma 3.2 can be again applied to sub-system (3.6) when d 3... and so on as long as d 6 = 2.

In the case of System (2.1), an iterative application of Lemma 3.2 starting with d = p 0 allows us to state the following result:

Theorem 3.

(Block-Diagonalisation Theorem)

There exists an invertible matrix T (x) 2 GL n (Cfxg) with analytic entries at 0 such that

1. T (x) = I n + O(x r 1 ), 2. the gauge transformation Z 1 = T (x)Y 1 transforms System (2.1) into a system (3.8) x r+1 dZ dx = T A 1 (x)Z
where the matrix T A 1 (x) 2 M n (Cfxg has a block-diagonal decomposition like Q:

T A 1 (x) = p 0 M k=1 A 1;k (x) with A 1;k (x) 2 M N k (Cfxg); 3. the formal fundamental solution e Z 1 (x) = T (x) e Y 1 (x) of System (3.8) has a block-diagonal decomposition e Z 1 (x) = p 0 M k=1 e F 1;k (x)x L k e Q k (1=x)
where, for all k = 1; :::; p 0 , (a) e 1=x) is a formal fundamental solution of the system

F 1;k (x) 2 M N k (C[[x]]) veri…es e F 1;k (x) = I N k + O(x r 1 ), (b) the matrix e Z 1;k (x) = e F 1;k (x)x L k e Q k (
(3.9) x r 0 k +1 dZ 1;k dx = A 1;k (x)Z 1;k (recall that r 0 k is the degree of Q k , r 0 1 = r 1 and r 0 p 0 = r p = r).
In particular, the matrix T (x) e F 1 (x) has the block-decomposition

T (x) e F 1 (x) = p 0 M k=1 e F 1;k (x)
and all the formal series e F 1;k (x) are r 1 -summable.

Notice that, by construction, System (3.9) has (multi)-levels r 0 k when k = 2; :::; p 0 and has the unique level r 1 when k = 1 (indeed, r 1 is the smallest level of System (1.1), hence, of Systems (3.9) for all k).

Let us now make two remarks about the interest of Block-Diagonalisation Theorem 3.3:

1. Since T (x) is analytic at 0, the "unicity" of Factorization Theorem 2. [START_REF] Braaksma | Multisummability and Stokes multipliers of linear meromorphic di¤erential equations[END_REF] implies that we can respectively choose for e F 1 (x) and A 1 (x) the two matrices

L p 0 k=1 e F 1;k (x) and T A 1 (x).
2. With these choices, Proposition 2.5 implies that the …rst level's Stokes multipliers of e f (x) are actually the Stokes multipliers of the system with the unique level r 1

(3.10) x r 1 +1 dZ 1;1 dx = A 1;1 (x)Z 1;1 associated with the …rst n 1 columns e f 0 (x) of e F 1;1 (x).
Denote as before by e f 0[u] (t), u = 0; :::; r 1 1, the r 1 -reduced series of e f 0 (x) and by b f 0[u] ( ) their Borel transforms. According to Point 2. above and normalizations of the formal fundamental solution e 

Z 1;1 (x) = e F 1;1 (x)x L 1 e Q 1 (

A Fundamental Identity

According to Factorization Theorem 2.4, the …rst n 1 columns e f (x) of e F (x) are related to the …rst n 1 columns e f 0 (x) of e F 1;1 (x) by the relation

e f (x) = e F p (x)::: e F 2 (x) e f 1 (x) ; e f 1 (x) := e f 0 (x) 0 (N 2 +:::+N p 0 ) n 1 where e F k (x) is r k -summable and e F k (x) = I n + O(x r 1
) for all k = 2; :::; p; 0 (N 2 +:::+N p 0 ) n 1 denotes the null-matrix of size (N 2 + :::

+ N p 0 ) n 1 .
Denote by

e f (t) := 2 6 4 e f [0] (t) . . . e f [r 1 1] (t) 3 7 5 2 M r 1 n;n 1 (C[[t]]) the matrix of size r 1 n n 1 formed by the r 1 -reduced series of e f (x), e f [u] 1 (t) := e f 0[u] (t) 0 (N 2 +:::+N p 0 ) n 1
for all u = 0; :::; r 1 1 and

e f 1 (t) := 2 6 4 e f [0] 1 (t) . . . e f [r 1 1] 1 (t) 3 
Denote also by e F

[u] k (t), u = 0; :::; r 1 1, the r 1 -reduced series of e F k (x).

Then, the r 1 -reduced series e f [u] for all k:

k (t) t e F [r 1 1] k (t) t e F [1] k (t) e F [1] k (t) e F [0] k ( 
k (t) t e F [r 1 1] k (t) e F [r 1 1] k (t) e F [1] k (t) e F [0] k (t)
Notice that e 

F k (t) = I r 1 n + O(t) and e F k (t) is r k r 1 -summable with r k r 1 > 1 for all k = 2; :::; p. In particular, the Borel transform b F k ( ) of e F k (t) reads for all k in the form b F k = I r 1 n + b G k with b G k an entire
f [u] = b f 0[u] 0 (N 2 +:::+N p 0 ) n 1 + E u b f 0[u] 0 (N 2 +:::+N p 0 ) n 1
where E u is an entire function on all C with exponential growth of order r 1;2 at in…nity. Recall that r 1;2 = r 2 =(r 2 r 1 ).

We are now able to compare the structure of the singularities of the Borel transforms b f [u] and b f 0 [u] for all u = 0; :::; r 1 1. Let us …rst start by a resurgence theorem to locate their possible singular points.

We denote below

Q 1 1 x = J 1 M j=1 q j 1 x I n j
where q j (1=x) is a polynomial in 1=x of the form

q j 1 x = a j;r 1 x r 1 a j;r 1 1 x r 1 1 ::: a j;1 x 2 1 x C 1 x :
Recall that n j denotes the size of the j th Jordan block of the matrix L of exponents of formal monodromy of System (1.1) (cf. page 2). In particular, the sub-matrix L 1 of L corresponding to Q 1 has the Jordan structure

L 1 = J 1 M j=1 ( j I n j + J n j ):
Recall also that, by de…nition of Q 1 (cf. Section 3.2), the polynomials q j for j = 1; :::; J 1 are zero or of degree r 1 . In particular, q j 0 , a j;r 1 = 0:

We denote also by S 1 (Q) := fq j ; j = 1; :::; J 1 g the set of polynomials q j of degree r 1 of Q, i.e., the set of all the polynomials of Q 1 ,

1 := fa j;r 1 ; j = 1; :::; J 1 g the set of …rst level's Stokes values of System (1.1) associated with e f (x) (cf. Def. 2.2, 2.)

Notice that, following Section 3.1, a 1;r 1 = 0 (since q 1 0) and there exists j 2 f1; :::; J 1 g such that a j;r 1 6 = 0. Notice also that 1 is also the set of Stokes values of System (3.10) associated with e f 0 (x).

Resurgence Theorem

Recall that a resurgent function is an analytic function at 0 2 C which can be analytically continued to an adequate Riemann surface R associated with a so-called singular support C. For a more precise de…nition, we refer to [START_REF] Sauzin | Resurgent functions and splitting problems[END_REF] and [9, Def. 2.1 and 2.2]. Recall that the di¤erence between R and the universal cover of Cn lies in the fact that R has no branch point at 0 in the …rst sheet.

In the linear case, the singular support is a …nite set containing 0. In a more general framework, convolutions of singularities may occur what requires to consider for a lattice, possibly dense in C (cf. [START_REF] Écalle | Les fonctions résurgentes, tome III : l'équation du pont et la classi…cation analytique des objets locaux[END_REF][START_REF] Malgrange | Introduction aux travaux de J. Écalle. Enseign[END_REF][START_REF] Sauzin | Resurgent functions and splitting problems[END_REF] for instance).

To state Resurgence Theorem 3.7 below, we need to extend the classical de…nition of sectorial regions of C used in summation theory into the one of sectorial regions of R . These regions are called -sectorial regions (cf. Given > 0, a resurgent function de…ned on R is said to be with exponential growth of order and with singular support when it grows at most exponentially at in…nity with an order on any -sectorial region of R .

We denote by d

Res the set of resurgent functions with exponential growth of order and with singular support . We are now able to state the result in view in this section:

When = 1,
Theorem 3.7 (Resurgence Theorem) With notations as above:

1. For all u = 0; :::; r 1 1,

e f 0[u] (t) 2 g Res sum 1 :
2. For all u = 0; :::; r In particular, Theorem 3.7 tells us that, for all u = 0; :::; r 1 1, the Borel transforms b f 0[u] ( ) and b f [u] ( ) are all analytic on the same Riemann surface R 1 , their possible singular points being the …rst level's Stokes values of 1 , including 0 out of the …rst sheet. Section 3.5 below is devoted to the analysis of these singularities.

Singularities in the Borel Plane

For the convenience of the reader, we …rst recall some vocabulary used in resurgence theory (see [START_REF] Écalle | Les fonctions résurgentes, tome III : l'équation du pont et la classi…cation analytique des objets locaux[END_REF][START_REF] Malgrange | Introduction aux travaux de J. Écalle. Enseign[END_REF][START_REF] Sauzin | Resurgent functions and splitting problems[END_REF] for instance).

Denote by O the space of holomorphic germs at 0 on C and e O the space of holomorphic germs at 0 on the Riemann surface e C of the logarithm. One calls singularity at 0 any element of the quotient space C := e O=O 6 . A singularity is usually denoted with a nabla. A representative of the singularity r ' in e O is called a major of r ' and is often denoted by ' b . Given ! 6 = 0 in C, the space of the singularities at ! is the space C translated from 0 to !. Then, a function ' b ! is a major of a singularity at ! if ' b ! (! + ) is a major of a singularity at 0.

Front of a Singularity

For any ! 2 1 , we call …rst level's front of ! (or simply front of ! when we refer to the single-leveled system (3.10)) the set F r 1 (!) := fq j 2 S 1 (Q) ; a j;r 1 = !g of polynomials q j (1=x)'s of degree r 1 , the leading term of which is !=x r 1 . Since r 1 is the smallest level of Systems (1.1) and (3.10), F r 1 (!) is a singleton:

F r 1 (!) = ! x r 1 + _ q 1;! 1 
x where _ q 1;! 0 or _ q 1;! (1=x) is a polynomial in 1=x of degree r 1 1 and with no constant term.

When _ q 1;! 0, ! is said to be with monomial front; the corresponding singularities of b f [u] ( ) and b f 0[u] ( ), u = 0; :::; r 1 1, at ! are then called singularities with monomial front. As in the case of single-leveled systems, the study of these singularities is su¢cient to state the …rst level's connectionto-Stokes formulae in full generality (see Section 3.6.2 below).

Structure of Singularities with Monomial Front

For all u = 0; :::; r 1 1, the behavior of the functions b f [u] ( ) and b f 0[u] ( ) at any point ! 2 1 depends on the sheet of the Riemann surface R 1 where we are, i.e., it depends on the "homotopic class of" the path of analytic continuation followed from 0 (…rst sheet) to a neighborhood of !. We denote by Besides, given a matrix M split into blocks …tting to the Jordan structure of L (matrix of exponents of formal monodromy of System (1.1), cf. p. 2) or L 1 (matrix of exponents of formal monodromy of System (3.10), cf. p. 16), we denote by M j; the j th row-block of M . So, M j; is a n j p-matrix for all j = 1; :::; J (resp. j = 1; :::; J 1 ) when M is a n p-matrix (resp. N 1 p-matrix). Recall that n j is the size of the j th Jordan block of L and L 1 .

Since System (3.10) has the unique level r 1 , the structure of the singu- ( ) for all j = 1; :::; J 1 with a remainder

rem 0[u]j; !; ( ) = X `;a `;r 1 =! r 1 1 X v=0 ` v r 1 R 0[u]j; `;v;!; (ln )
where

K 0[u]j; !;
denotes a constant n j n 1 -matrix such that K 0[u]j; !;

= 0 as soon as a j;r 1 6 = !, R 0[u]j; `;v;!; (X) denotes a polynomial matrix with summable-resurgent coef-…cients in d Res sum 1 ! , the columns of which are of log-degree

N [`] = 8 < : (n ` 1) (n ` 1) + 1 (n ` 1) + (n 1 1) if `6 = 0 n `n`+ 1 n `+ (n 1 1) if `= 0 : The constants K 0[u]j; !;
and the remainders rem

0[u]j; !;
depend on the path of analytic continuation and on the chosen determination of the argument around !. Recall (cf. 

(! + ) = j u r 1 1 Jn j r 1 K [u]j; !; Jn 1 r 1 + rem [u]j; !;
( ) for all j = 1; :::; J with a remainder

rem [u]j; !; ( ) = X `;a `;r 1 =! r 1 1 X v=0 ` v r 1 R [u]j; `;v;!; (ln )
where

K [u]j; !;
denotes a constant n j n 1 -matrix such that ! ? ;+ for j = 1; :::; J 1 and a j;r 1 = !.

K [u]j; !; = 8 < : 0 n j n 1 if j = 2 
Notice that, in practice, the matrix K [u]j; ! ? ;+ for j = 1; :::; J 1 and a j;r 1 = ! can be determined as the coe¢cient of the monomial ( j u)=r 1 1 in the major f b [u]j;

! ? ;+ (! + ).
We are now able to state the …rst level's connection-to-Stokes formulae.

First Level's Connection-to-Stokes Formulae

Recall (cf. Def. 2.2, 2.) that the …rst level's anti-Stokes directions of System (1.1) associated with e f (x) are the directions of maximal decay of the exponentials e q j (1=x) with q j 2 S 1 (Q) and q j 6 0 (we refer to page 16 for the notations). Therefore, each non-zero …rst level's Stokes value a j;r 1 2 1 := 1 nf0g generates a collection of r 1 …rst level's anti-Stokes directions 0 ; 1 ; :::; r 1 1 2 R=2 Z respectively given by the r th 1 roots of a j;r 1 . Of course, when r 1 = 1, such a collection just reduces to the direction 0 2 R=2 Z given by a j;r 1 . Note besides that, when r 1 2, the directions k 's are regularly distribued around the origin x = 0. Such a collection ( k ) being chosen, we assume, to …x ideas, that their principal determinations ? k 2] 2 ; 0] verify 2 < ? r 1 1 < ::: < …tting to the Jordan structure of L.

The …rst level's Stokes multipliers of e f (x) in the direction k are the entries of c j; ? k for j = 1; :::; J 1 and a j;r 1 2 1;r 1 0 . We shall make explicit here below formulae to express these entries in terms of the connection constants of the b f [u] 's, u = 0; :::; r 1 1. To this end, we need the following more precise de…nition: De…nition 3.11 When j = 1; :::; J 1 and a j;r 1 = ! 2 1;r 1 0 , the entries of the matrix c j; ? k are called …rst level's Stokes multipliers of e f (x) associated with ! in the direction k .

Case of Singularities with Monomial Front

We denote by 1 := e 2i =r 1 , j := j I n j + J n j the j th Jordan block of the matrix L of exponents of formal monodromy of System (1.1). Let ! 2 1;r 1 0 be a non-zero …rst level's Stokes value of System (1.1) associated with e f (x) generating the collection ( k ) k=0;:::;r 1 1 . We assume besides, in this section, that the front of ! is monomial.

As we said at the end of Section 3.2, [9, Thm. 4.3] and [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF]Thm. 4.4] tell us that the …rst level's Stokes multipliers of e f (x) associated with ! in the directions k , k = 0; :::; r 1 1, are expressed in terms of the connection constants at ! of the Borel transforms b f 0[u] ( )'s, u = 0; :::; r 1 1. On the other hand, we showed in Section 3.5 above that these connection constants are also the connection constants at ! of the Borel transforms b f [u] ( )'s. Consequently, the connection-to-Stokes formulae relative to e f 0 (x) displayed in [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF][START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] coincide with the …rst level's connection-to-Stokes formulae relative to e f (x). Hence, the theorem: Theorem 3.12 (First level's connection-to-Stokes formulae) For all j = 1; :::; J 1 such that a j;r 1 = !, the data of (c j;

? k

) k=0;:::;r 1 1 and of (K

[u]j;

! ? ;+ ) u=0;:::;r 1 1 are equivalent and are related, for all k = 0; :::; r 1 1, by the relations (3.12) c j;

? k = r 1 1 X u=0 k(uIn j j ) 1 I [u]j; ! ? kJn 1 1
where

(3.13) I [u]j; ! ? := Z 0 j u r 1 1 Jn j r 1 K [u]j; ! ? ;+ Jn 1 r 1 e d
and where 0 is a Hankel type path around the non-negative real axis R + with argument from 2 to 0.

An expanded form providing each entry of First Level's Connection-to-Stokes Formulae (3.12) is given in [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF]Cor. 4.6]. This can be useful for e¤ective numerical calculations. We recall this expanded form below in the particular case where the matrix L of exponents of formal monodromy is diagonal: L = L n j=1 j (we keep denoting by j = 1; :::; J 1 the indices of polynomials q j 2 S 1 (Q)). In this case, the matrices c j;

? k and K

[u]j; ! ? ;+ are reduced to just one entry which we respectively denote c j ? k and K

[u]j ! ? ;+ . Since the Jordan blocks J n j are zero for all j, Identity (3.13) becomes

Z 0 j u r 1 1 K [u]j ! ? ;+ e d = 2i e i j u r 1 1 j u r 1 K [u]j ! ? ;+ :
Therefore, for all j = 1; :::; J 1 such that a j;r 1 = !, the …rst level's Stokes multipliers c j ? k are related to the connection constants K

[u]j ! ? ;+ by the formulae

(3.14) c j ? k = 2i r 1 1 X u=0 k(u j ) 1 e i j u r 1 1 j u r 1 K [u]j ! ? ;+
for all k = 0; :::; r 1 1:

General Case

Let us now consider a non-zero …rst level's Stokes value ! 2 1;r 0 of System (1.1) associated with e f (x) generating the collection ( k ) k=0;:::;r 1 1 . Recall that the …rst level's front of ! reads

F r 1 (!) = q 1;! 1 x := ! x r 1 + _ q 1;! 1 x
where _ q 1;! 0 or _ q 1;! (1=x) is a polynomial in 1=x of degree r 1 1 and with no constant term (cf. Section 3.5.1).

When ! is with monomial front (i.e., _ q 1;! 0), Theorem 3.12 above allows us to express the …rst level's Stokes multipliers of e f (x) associated with ! in terms of connection constants in the Borel plane. In particular, in the special case where r 1 = 1, Theorem 3.12 allows us to calculate all the …rst level's Stokes multipliers since all the singularities of b f are with monomial front. In the case when r 1 2 and ! is not with monomial front (i.e., _ q 1;! 6 0), a result of the same type exists, but requires to reduce ! into a …rst level's Stokes value with monomial front by means of a convenient change of the variable x in System (1.1) (see Lemma 3.13 below). Recall that such a method was already used in [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] to state the connection-to-Stokes formulae in the case of systems with a single level 2.

Lemma 3.13 (M. Loday-Richaud, [6])

1. There exists, in the x-plane (also called Laplace plane), a change of the variable x of the form

(3.15) x = y 1 + 1 y + ::: + r 1 y r 1
; 1 ; :::; r 1 2 C such that the polar part p 1;! (1=y) of q 1;! (1=x(y)) reads

p 1;! 1 y = ! y r :
2. The Stokes-Ramis matrices of System (1.1) are preserved by the change of variable (3.15).

Observe that, although Lemma 3.13 be proved in [START_REF] Loday-Richaud | Calcul des invariants de Birkho¤ des systèmes d'ordre deux[END_REF] in the case of systems of dimension 2 (hence, with a single level), it can be extended to any system of dimension n 3. Indeed, the change of variable (3.15) being tangent to identity, it "preserves" levels, Stokes values and summation operators. Lemma 3.13 allows us to construct a new system, denoted below (S), verifying the following properties:

(S) has levels r 1 < r 2 < ::: < r p and satis…es normalizations as System (1.1) (cf. page 1), (S) has the same …rst level's Stokes values as System (1.1), ! is a …rst level's Stokes value of (S) with monomial front, (S) has the same Stokes-Ramis matrices as System (1.1).

Hence, applying Theorem 3.12 to System (S), we can again express the …rst level's Stokes multipliers of e f (x) associated with ! in terms of connection constants in the Borel plane. Note however that these constants are calculated from System (S) and not from System (1.1).

E¤ective Calculation of the First Level's Stokes Multipliers

According to Theorem 3.12, the e¤ective calculation of the …rst level's Stokes multipliers of e f (x) is reduced, after possibly applying Lemma 3.13, to the e¤ective calculation of the connection constants of the Borel transforms b f [u] ( )'s of the r 1 -reduced series e f [u] (t)'s of e f (x). For the convenience of the reader, we brie ‡y recall here below how to characterize the series e f [u] (t)'s and their Borel transforms b f [u] ( )'s.

Case r 1 = 1: The series e f [u] (t)'s are reduced to just one series e f [0] (t) = e f (x); we keep denoting the variable x for t. According to normalizations of the formal fundamental solution e Y (x) of System (1.1) (cf. p. 1), the formal series e F (x) is uniquely determined by the homological system

x r+1 dF dx = A(x)F F A 0 (x) ; A 0 (x) := x r+1 dQ dx + x r L
of System (1.1) jointly with the initial condition e F (0) = I n ( [START_REF] Balser | A general theory of invariants for meromorphic di¤erential equations; Part I, formal invariants[END_REF]). Hence, by considering its …rst n 1 columns, we deduce that e f (x) is uniquely determined by the system (3.16)

x 2 df dx = x 1 r A(x)f xf J n 1
jointly with the initial condition e f (0) = I n;n 1 (…rst n 1 columns of the identity matrix of size n). Recall that q 1 0 and 1 = 0 (cf. Assumption (3.1)).

Case r 1 2:

In this case, a system characterizing the formal series e f [u] (t)'s, u = 0; :::; r 1 1, is provided by the classical method of rank reduction ( [START_REF] Loday-Richaud | Rank reduction, normal forms and Stokes matrices[END_REF]) by considering the homological system of the r 1 -reduced system associated with System (1.1). More precisely, writing System (1.1) in the form

x r 1 +1 dY dx = A(x)Y ; A(x) := x r 1 r A(x) 2 M n (Cfxg[x 1 ])
one can prove, similarly as in the case r 1 = 1, that the formal series

e f (t) = 2 6 4 e f [0] (t) . . . e f [r 1 1] (t) 3 7 5 2 M r 1 n;n 1 (C[[t]])
is uniquely determined by the system (3.17)

r 1 t 2 df dt = A(t)f tf J n 1
jointly with the initial condition e f (0) = I r 1 n;n 1 (…rst n 1 columns of the identity matrix of size r 1 n); the matrix

A(t) 2 M r 1 n (Cftg[t 1 ]) is de…ned by A(t) = 2 6 6 6 6 6 6 4 A [0] (t) tA [r 1 1] (t)
tA [1] (t)

A [1] (t)

A [0] (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . A [0] (t) tA [r 1 1] (t) A [r 1 1] (t)
A [1] (t)

A [0] (t) 3 7 7 7 7 7 7 5 r 1 1 M u=0 utI n
where A [u] (t), u = 0; :::; r 1 1, denote the r 1 -reduced series of A(x).

Then, by applying the formal Borel transformation to Systems (3.16) and (3.17 

[[t]][t 1 ] to C[ (k) ; k 2 N] C[[ ]].

Examples

To end this article, we develop three examples. Although the given systems may seem a little bit involved, they are simple enough to allow the exact calculation of the connection constants and so of the …rst level's Stokes multipliers. This "simplicity" is due to the fact that the matrices of these systems are triangular. Of course, for more general systems, such exact calculations no longer hold in general.

An Example with a Three-Leveled System

We consider the system (4.1)

x 4 dY dx = 2 6 6 6 6 4

0 0 0 0 0 2x 4 x 2 + x 3 3 0 0 0 3x 3 2x 3 2x 2 0 0 x 2 0 0 2x + x 2 0 x 4 + x 5 0 0 0 1 3 7 7 7 7 5 Y
and its formal fundamental solution e Y (x) = e F (x)x L e Q(1=x) where

Q 1 x = diag 0; 1 x ; 2 x ; 1 x 2 1 
x ; 1 3x 3 , L = diag 0; We denote as before by e f (x) the …rst column of e F (x).

System (4.1) has levels (1; 2; 3) and the set 1 of …rst level's Stokes values associated with e f (x) is 1 = f0; 1; 2g. In particular, System (4.1) admits the direction = 0 (direction of maximal decay of the exponentials e 1=x and e 2=x ) as unique …rst level's anti-Stokes directions associated with e f (x). Note that this direction is also a second and a third level's anti-Stokes direction associated with e f (x). Obviously, the Stokes-Ramis matrix I 5 + C 0 is of the form The Stokes multipliers c 4 0 and c 5 0 are respectively a second level's and a third level's Stokes multiplier.

Our aim is the calculation of c 2 0 and c 3 0 . Observe that, due to Theorem 3.12, c 2 0 (resp. c 3 0 ) is expressed in terms of the connection constants of b f ( ) at = 1 (resp. = 2). Indeed, the two …rst level's Stokes values 1 and 2 are both with monomial front.

According to (3.16), e f (x) is uniquely determined by the system

x 2 df dx = 2 6 6 6 6 4 
0 0 0 0 0 2x 2 1 + x 3 0 0 0 3x 2x 2 0 0 1 0 0 2 x + 1 0 x 2 + x 3 0 0 0 1 x 2 3 7 7 7 7 5 f
jointly with the initial condition e f (0) = I 5;1 (…rst column of the identity matrix of size 5). Therefore, the e f j 's are the unique formal series solutions of the equations

x 2 d e f 2 dx 1 + x 3 e f 2 = 2x 2 x 2 d e f 4 dx 2 x e f 4 + e f 4 = 1 x 2 d e f 3 dx 2 e f 3 = 3x + 2x e f 2 x 2 d e f 5 dx 1 x 2 e f 5 = x 2 + x 3
satisfying the condition e f j (x) = O(x). As a result, their Borel transforms b f j 's verify the equations 

8 > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > : ( 1) d b f 2 d + 2 3 b f 2 = 2 ; b f 2 (0) = 0 ( 2) b f 3 = 3 + 2 b f 2 2 d b f 4 d + ( + 1) b f 4 = 0 ; b f 4 (0) = 1 2 d 2 b f 5 d + b f 5 = + 2 2 ; b f 5 (0) = d b f 5 d (0) = 0 : Hence, for all j j < 1, b f 2 ( ) = 3(1 ) 2=3 + 3 b f 3 ( ) = 21 + 6 + 18(1 ) 1=3 2 b f 4 ( ) = 1 2 exp 2 4 + 2 b f 5 ( ) = 1 + 2 0 F 1 ; 2 3 ; 
f + 2;1 (1 + ) = 3+3i p 3 2 2=3 + 3 b f + 2;2 (2 + ) 2 Cf g b f + 3;1 (1 + ) 2 Cf g + 1=3 Cf g b f + 3;2 (2 + ) = 9+6 +(9+9i p 3)(1+ ) 1=3 :
Consequently, the connection matrices K 1;+ and K 2;+ of b f ( ) at the points = 1 and = 2 are given by Since the matrix L of exponents of formal monodromy is diagonal, it results from (3.14) that the Stokes multipliers c 2 0 and c 3 0 are related to the connection constants k 2 1;+ and k 3 2;+ above by the relations

K 1;+ =
c 2 0 = 2i e i =3 (2=3) k 2 1;+ c 3 0 = 2i k 3 2;+
(recall that 1 = e 2i and k = 0 since r 1 = 1). Hence,

c 2 0 = 6i (2=3) c 3 0 = 18 p 3 :

An Example with Rank Reduction

We consider now the system (1=x) where

Q 1 x = diag 0; 1 x 2 ; 1 x 3 1 x , e F (x) = 2 4 1 0 0 e f 2 (x) 1 0 e f 3 (x) 0 1 3 5 veri…es e F (x) = I 3 + O(x 3 ). More precisely, (4.3) e f 2 (x) = x 3 2 +x 4 3x 5 4 +O(x 6
) and e f 3 (x) = x 3 3

x 5 9 +O(x 6 ):

System (4.2) has levels (2; 3) and 1 = f0; 1g. In particular, the …rst level's anti-Stokes directions of System (4.2) associated with the …rst column e f (x) of e F (x) are given by the unique collection ( 0 = 0; Indeed, e f (x) is the unique column of e F (x) which is divergent. As in the previous example, the …rst level's Stokes value = 1 is with monomial front. Hence, Theorem 3.12 implies that the two …rst level's Stokes multipliers c 2 0 and c 2 are expressed in terms of the connection constants of b f [0] ( ) and b f [1] ( ) at = 1.

According to Relation (3.2), the 2-reduced series of e f (x) are of the form

e f [0] (t) = 2 4 1 e f 2 (t) e f 3 (t) 3 
5 and e f [1] (t) = for all j j < 1. In particular, the analytic continuations b f

0 0 0 0 0 0 2t 2 2 0 t 2 0 0 t 0 0 0 0 3 + t 0 0 0 t 0 0 t 0 0 2t 2 2 t 0 0 0 3 t + 1 t 0 t 3 
> > < > > : ( 1) b f 2 = ( 1) d b f 5 d + 3 2 b f 5 = 0 ; b f 5 (0) = 1 
3 0 2 3 d 2 ' d + 1 2 4 1 d' d + 0 3 0 0 ' = 0 '(0) = 0 1 3 ; d' d ( 
+ j;1 's of the b f j 's to the right of 1 verify b f + 2;1 (1 + ) = + 1 b f + 5;1 (1 + ) = i 2 3=2 b f + 3;1 (1 + ) 2 Cf g b f + 6;1 (1 + ) 2 Cf g :
Consequently, the connection matrices K From Theorem 3.12 and more precisely Formula (3.14) (recall that L = 0), we deduce that the two …rst level's Stokes multipliers c 2 0 and c 2 are related to the connection constants k 

c 2 0 = 2i k [0]2 1;+ + 2i e i =2 (3=2) k [1]2 1;+ c 2 = 2i k [0]2 1;+ + 2i e i e i =2 (3=2) k [1]2 1;+ (recall that 1 = e i since r 1 = 2). Hence, c 2 0 = 2i( p ) c 2 = 2i( + p ) :

An Example with a Singularity with Non-Monomial Front

Let us now consider the system (4.4)

x 5 dY dx = 2 4 0 0 0 x 7 x 2 + x 3 0 x 4 0 1 3 5 Y
together with its formal fundamental solution e Y (x) = e F (x)e Q(1=x) where

Q 1 x = diag 0; 1 2x 2 1 x ; 1 4x 4 , e F (x) = 2 4 1 0 0 e f 2 (x) 1 0 e f 3 (x) 0 1 3 5 veri…es e F (x) = I 3 + O(x 4 ).
System (4.4) has the levels (2; 4) and 1 = f0; 1=2g. In particular, the …rst level's anti-Stokes directions of System (4.4) associated with the …rst column of e F (x) are given by the unique collection ( 0 = 0; 1 = ) generated by = 1=2. Note that these two directions are also second level's anti-Stokes directions.

Since just the …rst column of e F 5 and e h [1] (t) = where 1 F 1 1 2 ; 3 2 ; denotes the con ‡uent hypergeometric function with parameters 1 2 and 3 2 .

T [0] 1 (t) = 4e 1=2 (1 + t)t 3 ( 1 

(1. 1 )

 1 x r+1 dY dx = A(x)Y ; A(x) 2 M n (Cfxg); A(0) 6 = 0together with a formal fundamental solution at 0 e Y (x) = e F (x)x L e Q(1=x)

  1=x) of System (3.10) (cf. Thm. 3.3, 3.),[START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF] Thm. 4.3] and[START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] Thm. 4.4] tell us that the …rst level's Stokes multipliers of e f (x) are expressed in terms of the connection constants of the b f 0[u] ( )'s. Hence, to state the …rst level's connection-to-Stokes formulae, we are left to prove that the connection constants of the b f 0[u] ( )'s are also connection constants of the b f [u] ( )'s. To this end, we shall compare the structure of the singularities of the Borel transforms b f [u] ( ) and b f 0[u] ( ) for all u = 0; :::; r 1 1. Lemma 3.4 below allows us to connect b f [u] and b f 0[u] .

  function on all C with exponential growth of order r k =(r k r 1 ) at in…nity ([1, p. 81]). Denoting r 1;k := r k =(r k r 1 ), we have r 1;p < ::: < r 1;2 . Hence, since the Borel transformed identity of (3.11) reads b f = b F p ::: b F 2 b f 1 ; the following lemma: Lemma 3.4 The Borel transforms b f [u] ( ) of e f [u] (t) and the Borel transforms b f 0[u] ( ) of e f 0[u] (t) are related, for all u = 0; :::; r 1 1, by the relations b

[ 9 ,

 9 Def. 2.3]) and are de…ned for all > 0 small enough by the data of an open disc D centered at 0 2 C, an open sector with bounded opening at in…nity, a tubular neighborhood N of a piecewise-C 1 path connecting D to after a …nite number of turns around points of , such that the distance of D to = nf0g and the distance of N [ to have to be greater than . De…nition 3.5 (Resurgent function with exponential growth of order )

Figure 3 .

 3 Figure 3.1 -A -sectorial region

  the singularity de…ned by the analytic continuation of b f [u] ( ) (resp. b f 0[u] ( )) along the path .

  !; at any point ! 2 1 nf0g with monomial front was displayed in [9, Thm. 3.7] (case r 1 = 1) and [16, Thm. 3.5] (case r 1 2). More precisely: Proposition 3.8 (Singularities with monomial front of b f 0[u] ) Fix u 2 f0; :::; r 1 1g and ! 2 1 nf0g a singular point of b f 0[u] ( ) with monomial front.For any path on Cn 1 from 0 to a neighborhood of !, the singularity

[ 9 ,

 9 Def. 3.10] and[START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] Def. 4.3]) that the connection constants of b f 0[u] ( ) at ! are the entries of the non-trivial matrices K 0[u]j;! ? ;+ := K 0[u]j;!; + obtained with the following choices:+ is a path going along the straight line [0; !] from 0 to a point close to ! and avoiding all singular points of 1 \]0; !] to the right (see Figure3.2 below), we choose the principal determination of the variable around !, say arg( ) 2] 2 ; 0] as in Section 2.2 (cf. Note 1).

Figure 3 . 2

 32 Figure 3.2

De…nition 3 . 10 (

 310 f1; :::; J 1 g or a j;r 1 6 = ! K 0[u]j; ;!; (X) denotes a polynomial matrix with coe¢cients in d Res r 1;2 1 ! , the columns of which are of log-degree N [`] (cf. notation just above).Observe that the non-trivial constant matrices K 0[u]j; 3.8 and Theorem 3.9 coincide. In particular, the connection constants of b f 0[u] ( ) at ! can be directly calculate by considering the singularity Connection constants of b f [u] ( ) at !) Given u 2 f0; :::; r 1 1g, we call connection constants of b f [u] ( ) at ! the entries of the non-trivial constant matrices K [u]j; ! ? ;+ := K 0[u]j;

  ), we obtain convolution equations satis…ed by the Borel transforms b f [u] ( )'s, u = 0; :::; r 1 1. In the special case wherer 1 = 1, we simply denote b f ( ) for b f [0] ( ).Recall that the formal Borel transformation is an isomorphism from the C-di¤erential algebra C[[t]]; +; ; t 2 d dt to the C-di¤erential algebra ( C C[[ ]]; +; ; ) that changes ordinary product into convolution product and changes derivation t 2 d dt into multiplication by . It also changes multiplication by 1 t into derivation d d allowing thus to extend the isomorphism from the meromorphic series C

F

  (x) = I 5 + O(x). More precisely, e f 2 (x) = O(x 2 ); e f 3 (x) = 3x 2 +O(x 2 ); e f 4 (x) = x 2 +O(x 2 ); e f 5 (x) = O(x 4 ):

The Stokes multipliers c 2 0 and c 3 0

 3 are respectively the …rst level's Stokes multipliers of e f (x) associated with the …rst level's Stokes values = 1 and = 2.

9 where 0 F 1 (

 901 ; b; ) denotes the con ‡uent hypergeometric function with parameters ( ; b). In particular, b f 4 and b f 5 are entire on all C and, for j = 2; 3, the analytic continuations b f + j;! ? 's of the b f j 's to the right of points ! 2 f1; 2g verify b

5 Y

 5 and its formal fundamental solution e Y (x) = e F (x)e Q

1 = ) generated by = 1 .

 11 Note that 0 = 0 is also a second level's anti-Stokes direction associated with e f (x). Obviously, the Stokes-Ramis matrices I 3 + C 0 and I 3 + C are of the form

2 ;

 2 

9 :a result, b f 3 and b f 6 are entire on all C and b f 2 and b f 5 are de…ned by b f 2 (

 92 As

  above by the relations

c 2 0

 2 x) is divergent, the Stokes-Ramis matrices I 3 + C 0 and I 3 + C are of the form and c 2 are the …rst level's Stokes multipliers associated with the …rst level's Stokes value = 1=2. Our aim is the calculation of c 2 0 and c 2 . However, since = 1=2 is not with monomial front, we can not directly apply Theorem 3.12 as in the previous examples.Let us …rst reduce the Stokes value = 1=2 into a …rst level's Stokes value with monomial front by considering the change of variable

3 7 5 Y

 35 and its formal fundamental solution e Y(y) := e Y (x(y)) reads in the form e Y(y) = e G(y)e P (1=y) where

f 2 3 5 2

 232 (x(y)) e 1=2 0 e f 3 (x(y)) 0 e 1=4 M 3 (C[[y]]).To normalize e G(y) to I 3 + O(y 4 ), we consider the constant gauge transformation

  series in y such that e H(y) = I 3 + O(y 4 ). More precisely, (4.6) e h 2 (y) = e 1=2 y 5 + O(y 6 ) and e h 3 (y) = e 1=4 y 4 4e 1=4 y 5 + O(y 6 ): System (4.5) has, like System (4.4), the levels (3; 4) and the set of …rst level's Stokes values associated with the …rst column e h(x) of e H(x) is again 1 = f0; 1=2g. Due to Lemma 3.13, the Stokes-Ramis matrices I 3 + C 0 and I 3 + C of System (4.4) are also Stokes-Ramis matrices of System (4.5).Moreover, since the …rst level's Stokes value = 1=2 of System (4.5) is now with monomial front, Theorem 3.12 applies allowing thus to make explicit the two …rst level's Stokes multipliers c 2 0 and c 2 in terms of the connection constants of b h [0] ( ) and b h[1] ( ) at = 1=2.According to Relations (3.2) and (4.6), the 2-reduced series of e h(x) are of

3

 3 

h

  jointly with the initial condition e h(0) = I 6;1 (…rst column of the identity matrix of size 6) where8 > > > > > > > > > > > > < > > > > > > > > > > > > :

b h 3 and b h 6

 6 are entire on all C and, for j = 2; 5, the analytic continuations b h + j;1=2 's of the b h j 's to the right of = 1=2 verify

  De…nition 2.3 (Stokes-Ramis matrices)One calls Stokes-Ramis matrix associated with e Y in the direction the matrix of St ? in the basis Y + 2 . We denote it by I n + C ? .

2 ;:::;rp; + ( e F ) of e F are not analytic continuations from each other in general. This fact is the Stokes phenomenon of System (1.1). It is characterized by the collection, for all anti-Stokes directions 2 R=2 Z of System (1.1), of the automorphisms St ? : Y + 7 ! Y that one calls Stokes-Ramis automorphisms relative to e Y . The Stokes-Ramis matrices of System (1.1) are de…ned as matrix representations in GL n (C) of the St ? 's.

  Proof. Point 1. is proved by applying [9, Thm. 2.7] (case r 1 = 1) and [16, Thm. 1.2] (case r 1 2) to the single-leveled system (3.10). Point 2. is straigthforward from Point 1. and Lemma 3.4.

	r 1;2 1	where r 1;2 =	r 2 r 2 r 1	:

1 1, e f [u] (t) 2 g

Res

  (t)'s are power series in t verifying e h 2 (t) = O(t 3 ) e h 5 (t) = e 1=2 t 2 + O(t 3 ) e h 3 (t) = e 1=4 t 2 + O(t 3 ) e h 6 (t) = 4e 1=4 t 2 + O(t 3 )

						2	0	3
						4 h 6 (t) e e h 5 (t)	5
	where the e h j :
	Following (3.17), the matrix		
			e h(t) :=	"	e h [0] (t) e h [1] (t)	#	2 M 6;1 (C[[t]])
	is uniquely determined by the system
	2t 2 dh dt	=	2 6 6 6 6 6 4 6 6 T 1 (t) 1 0 0 [0] T [0] 2 (t) 0 1 t + 3 tT 0 0 tT 1 (t) 0 [1]	0 0	0 0

:

  Therefore, the e h j 's are the unique formal series solutions of the equations

	2t 2 d e h 2 dt	e h 2 = T 1 (t) [0]		2t 2 d e h 3 dt	1 t	+ 3 e h 3 = T 2 (t) (3 + t) e [0] h 6
	2t 2 d e h 5 dt	(1 t) e h 5 = T 1 (t) [1]	2t 2 d e h 6 dt	1 t	+ 3 t e h 6 = T 2 (t) [1]	3 t	+ 3 e h 3
	satisfying the conditions e h j (t) = O(t 2 ). Hence,
	the Borel transforms b h 2 and b h 5 verify the equations
			8 > > <				
			> > :				
				t) 4	=	2e 1=2 3	m 3 X	(m 1)(m 2)(2m 3)t m
	T 1 (t) = [1]	e 1=2 (1 + 6t + t 2 )t 2 (1 t) 4	=	e 1=2 3	m 2 X	(m 1)(2m 1)(2m 3)t m
	T 2 (t) = T [0] 2 (t) = [1]	e 1=4 t 1 t	= e 1=4	m 1 X	t m

Any choice is convenient. However, to be compatible, on the Riemann sphere, with the usual choice 0 arg(z = 1=x) <

of the principal determination at in…nity, we suggest to choose 2 < arg(x) 0 as principal determination about 0 as well as about any ! at …nite distance.[START_REF] Balser | A general theory of invariants for meromorphic di¤erential equations; Part I, formal invariants[END_REF] In the literature, a Stokes matrix has a more general meaning where one allows to compare any two asymptotic solutions whose domains of de…nition overlap. According to the custom initiated by J.-P.Ramis ([15]) in the spirit of Stokes' work, we exclude this case here. We consider only matrices providing the transition between the sums on each side of a same anti-Stokes direction.

2 M r 1 n;n 1 (C[[t]]):

The elements of C are also called micro-functions by B.Malgrange ([11]) by analogy with hyper-and micro-functions de…ned by Sato, Kawai and Kashiwara in higher dimensions.

Consequently, the connection matrices

From Theorem 3.12 and more precisely Formula (3.14) (recall that L = 0), we deduce that the two …rst level's Stokes multipliers c 2 0 and c 2 are related to the connection constants k