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Abstract

Given a multi-leveled meromorphic linear differential system, we
deduce from the factorization theorem explicit formulæ allowing to
express all the first level’s Stokes multipliers in terms of connection
constants in the Borel plane, generalizing thus the formulæ displayed
by M. Loday—Richaud and the author in the case of single-leveled sys-
tems. As an illustration, we develop three examples. No assumption
of genericity is made.
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1 Introduction

All along the article, we are given a linear differential system (in short, a
differential system or a system) of dimension n ≥ 2 with meromorphic coef-
ficients of order r + 1 at 0 in C, r ∈ N∗, of the form

(1.1) xr+1
dY

dx
= A(x)Y , A(x) ∈Mn(C{x}), A(0) 6= 0

together with a formal fundamental solution at 0

Ỹ (x) = F̃ (x)xLeQ(1/x)

normalized as follows:
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• F̃ (x) ∈ Mn(C[[x]]) is a formal power series in x satisfying F̃ (x) =
In + O(x

r1), where In is the identity matrix of size n and where r1 is
an integer ≥ 1 fixed below,

• L =
J⊕

j=1

(λjInj + Jnj) where J is an integer ≥ 2, the eigenvalues λj

verify 0 ≤ Re(λj) < 1 and where

Jnj =





0 if nj = 1




0 1 · · · 0
...

. . .
. . .

...
...

. . . 1
0 · · · · · · 0




if nj ≥ 2

is an irreductible Jordan block of size nj,

• Q(1/x) is a diagonal matrix with polynomial entries in 1/x of the form

Q

(
1

x

)
=

J⊕

j=1

qj

(
1

x

)
Inj , qj

(
1

x

)
∈ 1
x
C

[
1

x

]
.

Recall that any meromorphic linear differential system with an irregular
singular point at 0 can always be reduced to System (1.1) by means of a finite
algebraic extension x 7−→ xν , ν ∈ N∗, of the variable x and a meromorphic
gauge transformation Y 7−→ T (x)Y where T (x) has explicit computable
polynomial entries in x and 1/x ([2]).
In addition, we suppose that there exist j and ` such that qj 6≡ q`, other-

wise F̃ (x) is a convergent series and System (1.1) has no Stokes phenomenon.

Under the hypothesis that System (1.1) has the unique level r ≥ 1 (see
Def. 2.1 below for the exact definition of levels), M. Loday—Richaud and the
author displayed in [9] (case r = 1) and [16] (case r ≥ 2) formulæ making
explicit the Stokes multipliers of F̃ (x) in terms of connection constants in the
Borel plane. More precisely, these constants are given by the singularities of
the Borel transforms F̂ [u](τ) of the sub-series F̃ [u](t), u = 0, ..., r − 1 and
t = xr, of terms r by r of F̃ (x), also called r-reduced series of F̃ (x).

In the present paper, we suppose that System (1.1) is a multi-leveled
system. Our aim is to make explicit formulæ similar to those in [9, 16] for
the first level’s Stokes multipliers of F̃ (x) (Section 3.6, Theorem 3.12), i.e.,
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the Stokes multipliers of F̃ (x) associated with the smallest level r1 ≥ 1 of
System (1.1).
Such formulæ, obtained by various integral methods such as Cauchy-

Heine integral and Laplace transform, were already given by many authors
under sufficiently generic hypothesis (see [1,3,4] for instance).

Here, besides no assumption of genericity is made, our approach is quite
different and is based on the factorization theorem of F̃ (x) ([7,14,15], Section
2.3 below) and on the results of [9,16].
More precisely, we proceed in two steps. First, we show that a “good

normalization” of the r1-summable factor of F̃ (x) allows to see the first level’s
Stokes multipliers of F̃ (x) as Stokes multipliers of convenient systems with a
single level equal to r1 (Section 3.2). Thus, according to [9,16], the first level’s
Stokes multipliers of F̃ (x) are expressed in terms of connection constants in
the Borel plane relative to these single-leveled systems.
Second, we prove that these connection constants are actually given by

the singularities of the Borel transforms F̂ [u](τ), u = 0, ..., r1 − 1, of the
r1-reduced series of F̃ (x) (Sections 3.4 and 3.5). To this end, we prove
a resurgence theorem for the r1-reduced series F̃ [u](t) of F̃ (x) (Theorem
3.7) and we display a precise description of the singularities of the Borel
transforms F̂ [u](τ) (Theorem 3.9).
In Section 4, as an illustration of the first level’s connection-to-Stokes

formulæ, we develop three examples.

2 Preliminaries

2.1 Some Definitions and Notations

We recall here below some definitions about levels and singular directions
−also called anti-Stokes directions− of System (1.1).

• Given a pair (qj, q`) such that qj 6≡ q`, we denote

(qj − q`)
(
1

x

)
= − αj,`

xrj,`
+ o

(
1

xrj,`

)
, αj,` 6= 0.

Definition 2.1 (Levels of System (1.1))
One calls levels of System (1.1) all the degrees rj,` of polynomials qj− q` 6≡ 0.
Notice that, according to normalizations of System (1.1), levels are integers.
One refers sometimes this case as the unramified case.
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We denote by R := {r1 < r2 < ... < rp}, p ∈ N∗, the set of all levels
of System (1.1). Notice that r1 ≥ 1 and rp ≤ r the rank of System (1.1).
Actually, if rp < r, all the polynomials qj, j = 1, ..., J , have the same degree
r and the terms of highest degree coincide. One then reduces this case to the
case rp = r by means of a change of unknown vector of the form Y = Zeq(1/x)

with a convenient polynomial q(1/x) ∈ x−1C[x−1]. Recall that such a change
does not affect levels or Stokes—Ramis matrices of System (1.1).
When p = 1, System (1.1) is said to be with the unique level r1. Recall

that, for such a system, the connection-to-Stokes formulæ were already dis-
played in [9] (case r1 = 1) and [16] (case r1 ≥ 2). Henceforth, we suppose
p ≥ 2, i.e., System (1.1) has at least two levels.

• Let us now split the matrix F̃ (x) into J column-blocks

F̃ (x) =
[
F̃ •;1(x) F̃ •;2(x) · · · F̃ •;J(x)

]

fitting to the Jordan structure of L (the size of F̃ •;`(x) is n× n` for all `).

Definition 2.2 (Anti-Stokes directions, Stokes values)

1. The anti-Stokes directions of System (1.1) (or F̃ (x)) are the directions
of maximal decay of the exponentials e(qj−q`)(1/x) with qj − q` 6≡ 0. The
coefficients αj,` generating these directions are called Stokes values of
System (1.1).

The kth level’s anti-Stokes directions of System (1.1) (or F̃ (x)) are
the anti-Stokes directions of System (1.1) given by the exponentials
e(qj−q`)(1/x) with rj,` = rk. In this case, αj,` is called k

th level’s Stokes
value of System (1.1).

2. Let ` ∈ {1, ..., J}.
The anti-Stokes directions associated with F̃ •;`(x) are the anti-Stokes

directions of F̃ (x) given by the exponentials e(qj−q`)(1/x) for all j such
that qj − q` 6≡ 0.
The kth level’s anti-Stokes directions associated with F̃ •;`(x) are the

anti-Stokes directions of F̃ (x) given by the exponentials e(qj−q`)(1/x) for
all j such that qj − q` 6≡ 0 and rj,` = rk. In this case, αj,` is called kth
level’s Stokes value of System (1.1) associated with F̃ •;`(x).

Notice that a given anti-Stokes direction of System (1.1) or of F̃ •;`(x)
may be with several levels. Notice also that the denomination “anti-Stokes
directions” is not universal. Indeed, such directions are called sometimes
“Stokes directions”.
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2.2 Stokes—Ramis Automorphisms

Given a non anti-Stokes direction θ ∈ R/2πZ of System (1.1) and a choice of
an argument of θ, say its principal determination θ? ∈]− 2π, 0]1, we consider
the sum of Ỹ in the direction θ given by

Yθ(x) = sr1,r2,...,rp;θ(F̃ )(x)Y0,θ?(x)

where sr1,r2,...,rp;θ(F̃ ) is the uniquely determined (r1, r2, ..., rp)-sum of F̃ at θ
and where Y0,θ?(x) is the actual analytic function Y0,θ?(x) := xLeQ(1/x) defined
by the choice arg(x) close to θ? (denoted below arg(x) ' θ?). Recall that
sr1,r2,...,rp;θ(F̃ ) is an analytic function defined on a sector bisected by θ with
opening larger than π/rp ([12]).
When θ ∈ R/2πZ is an anti-Stokes direction of System (1.1), we consider

the two lateral sums sr1,r2,...,rp;θ−(F̃ ) and sr1,r2,...,rp;θ+(F̃ ) respectively obtained
as analytic continuations of sr1,r2,...,rp;θ−ε(F̃ ) and sr1,r2,...,rp;θ+ε(F̃ ) to a sector
with vertex 0, bisected by θ and opening π/rp. Notice that such analytic
continuations exist without ambiguity when ε > 0 is small enough. We de-
note by Yθ− and Yθ+ the two sums of Ỹ respectively defined for arg(x) ' θ? by
Yθ−(x) := sr1,r2,...,rp;θ−(F̃ )(x)Y0,θ?(x) and Yθ+(x) := sr1,r2,...,rp;θ+(F̃ )(x)Y0,θ?(x).
The two lateral sums sr1,r2,...,rp;θ−(F̃ ) and sr1,r2,...,rp;θ+(F̃ ) of F̃ are not

analytic continuations from each other in general. This fact is the Stokes
phenomenon of System (1.1). It is characterized by the collection, for all
anti-Stokes directions θ ∈ R/2πZ of System (1.1), of the automorphisms

Stθ? : Yθ+ 7−→ Yθ−

that one calls Stokes-Ramis automorphisms relative to Ỹ .
The Stokes-Ramis matrices of System (1.1) are defined as matrix repres-

entations in GLn(C) of the Stθ?’s.

Definition 2.3 (Stokes—Ramis matrices)

One calls Stokes—Ramis matrix associated with Ỹ in the direction θ the matrix
of Stθ? in the basis Yθ+

2. We denote it by In + Cθ?.

1Any choice is convenient. However, to be compatible, on the Riemann sphere, with
the usual choice 0 ≤ arg(z = 1/x) < 2π of the principal determination at infinity, we
suggest to choose −2π < arg(x) ≤ 0 as principal determination about 0 as well as about
any ω at finite distance.

2In the literature, a Stokes matrix has a more general meaning where one allows to
compare any two asymptotic solutions whose domains of definition overlap. According to
the custom initiated by J.—P. Ramis ([15]) in the spirit of Stokes’ work, we exclude this
case here. We consider only matrices providing the transition between the sums on each
side of a same anti-Stokes direction.
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Notice that the matrix In + Cθ? is uniquely determined by the relation

Yθ−(x) = Yθ+(x)(In + Cθ?) for arg(x) ' θ?.

Split the matrix Cθ? = [C
j;`
θ? ] into blocks fitting to the Jordan structure

of L (Cj;`θ? is a nj × n`-matrix). The block Cj;`θ? is zero as soon as e(qj−q`)(1/x)
is not flat in the direction θ. When e(qj−q`)(1/x) is flat in the direction θ and
rj,`(= deg(qj − q`)) = rk, the entries of the block C

j;`
θ? are called k

th level’s

Stokes multipliers of F̃ •;`(x) in the direction θ.
Recall that the aim of this article is to display formulæ making explicit

the first level’s Stokes multipliers in terms of connection constants in the
Borel plane. Our approach is based on the factorization theorem of F̃ (x)
which we recall in Section 2.3 below.

2.3 Factorization Theorem and Stokes-Ramis Matrices

The factorization theorem (Theorem 2.4 below) states that F̃ (x) can be
written essentially uniquely as a product of rk-summable formal series F̃k(x)
for the different levels rk of System (1.1). It was first proved by J.—P. Ramis
in [14, 15] by using a technical way based on Gevrey estimates. A quite
different proof based on Stokes cocycles and mainly algebraic was given later
by M. Loday—Richaud in [7]. Both proofs are nonconstructive. However,
as we shall see in Section 3, the factorization theorem provides sufficient
informations about the first level to allow to make explicit the first level’s
connection-to-Stokes formulæ in full generality.

Theorem 2.4 (Factorization theorem, [7,14,15])
Let R = {r1 < r2 < ... < rp} denote the set of levels of System (1.1) 3.

Then, F̃ (x) can be factored in F̃ (x) = F̃p(x)...F̃2(x)F̃1(x) where, for all k =

1, ..., p, F̃k(x) ∈ Mn(C[[x]]) is a rk-summable formal series with singular
directions the kth level’s anti-Stokes directions of System (1.1).

This factorization is essentially unique: let F̃ (x) = G̃p(x)...G̃2(x)G̃1(x) be

another decomposition of F̃ (x); then, there exist p − 1 invertible matrices
P1(x), ..., Pp−1(x) ∈ GLn(C{x}[x−1]) with meromorphic entries at 0 such that
G̃1 = P1F̃1, G̃k = PkF̃kP

−1
k−1 for k = 2, ..., p− 1 and G̃p = F̃pP−1p−1.

In particular, we can always choose F̃k so that F̃k(x) = In + O(x
r1) for all

k = 1, ..., p 4.

3Recall that we suppose p ≥ 2 in this paper.
4Actually, such conditions, like the initial condition F̃ (x) = In + O(x

r1), allow us to
have “good” normalizations for the r1-reduced series and thus to simplify calculations
below (see Sections 3.3 to 3.6).
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Denote G̃(x) := F̃p(x)...F̃2(x). Denote also by

A1(x) := G̃
−1A(x)G̃− xr+1G̃−1dG̃

dx

the matrix of the system obtained from System (1.1) by the formal gauge
transformation Y = G̃(x)Y1. Then ([7]), A1(x) is analytic at 0 and the matrix
Ỹ1(x) := F̃1(x)x

LeQ(1/x) is a formal fundamental solution of the system

(2.1) xr+1
dY

dx
= A1(x)Y.

Notice that System (2.1) has, like System (1.1), the levels r1 < r2 < ... < rp.
Notice also that Ỹ1(x) has same normalizations as Ỹ (x).
The structure of A1(x) will be precised in Theorem 3.3 below. In par-

ticular, we shall show that the matrix A1(x) (and, consequently, the matrix
F̃1(x)) can always be chosen with a convenient “block-diagonal form”.

Consider now θ ∈ R/2πZ a first level’s anti-Stokes direction of System
(1.1). Recall that θ may also be a kth level’s anti-Stokes direction for some
k ∈ {2, ..., p}.
By construction, θ is also a first level’s anti-Stokes direction of System

(2.1). Denote then by In+C1,θ? the Stokes—Ramis matrix associated with Ỹ1
in the direction θ and split as before C1,θ? = [C

j;`
1,θ? ] into blocks C

j;`
1,θ? of size

nj × n` fitting to the Jordan structure of L. Recall that Cj;`1,θ? = 0 as soon as
e(qj−q`)(1/x) is not flat in the direction θ. Proposition 2.5 below precises the
Stokes multipliers of F̃1(x) in the direction θ.

Proposition 2.5 ([7,13,15])
Let j, ` ∈ {1, ..., J} be such that e(qj−q`)(1/x) is flat in the direction θ.
Let rj,` denote the degree of (qj − q`)(1/x) (see Section 2.1).
Then,

Cj;`1,θ? =

{
Cj;`θ? if rj,` = r1
0nj×n` if rj,` ∈ {r2, ..., rp}

.

In other words, Proposition 2.5 states that

1. the non-trivial Stokes multipliers of the `th column-block F̃ •;`
1 (x) are

those of the first level,

2. the first level’s Stokes multipliers of F̃ •;`1 (x) and F̃
•;`(x) coincide.
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3 Main Results

Any of the J column-blocks F̃ •;`(x) (` = 1, ..., J) of F̃ (x) associated with the
Jordan structure of L (matrix of exponents of formal monodromy) can be
positionned at the first place by means of a permutation P on the columns
of Ỹ (x). Observe that the same permutation P acting on the rows of Ỹ (x)
allows to keep initial normalizations of Ỹ (x). More precisely, the new formal
fundamental solution PỸ (x)P reads PỸ (x)P = PF̃ (x)PxP

−1LP eP
−1Q(1/x)P

with PF̃ (x)P = In +O(xr1).
Thereby, we can restrict our study to the first column-block F̃ •;1(x) de-

noted below f̃(x) (the size of f̃(x) is n×n1). Note that f̃(x) = In,n1+O(xr1)
where In,n1 denotes the first n1 columns of the identity matrix In.

Remark 3.1 It is worth to notice here that, by means of a convenient per-
mutation on the columns and the rows with indices ≥ n1+1 of Ỹ (x), we can
always order the polynomials qj, j = 2, ..., J , as we want, while maintaining
the initial normalizations of Ỹ (x) and the first place of f̃(x).

3.1 Setting the Problem

In addition to normalizations of Ỹ (x), we suppose that

(3.1) λ1 = 0 and q1 ≡ 0,

conditions that can be always fulfilled by means of the change of unknown
vector Y = xλ1eq1(1/x)Z.
According to (3.1), the anti-Stokes directions of System (1.1) associated

with f̃(x) are the directions of maximal decay of the exponentials eqj(1/x)

with qj 6≡ 0 (cf. Def. 2.2, 2.). Denote then by

R′ := {r′1 < ... < r′p′} , p′ ≥ 1,

the set of degrees in 1/x of polynomials qj 6≡ 0. Obviously, R′ ⊆ R (the
degrees r′j’s are levels of System (1.1)), r′p′ = rp the highest level of System
(1.1) and r1 ≤ r′1 ≤ rp. Notice that, when r′1 > r1, there exists no first
level’s anti-Stokes direction (hence, no first level’s Stokes multipliers) for
f̃(x). Henceforward, we suppose p′ ≥ 2 and r′1 = r1.

The aim of Section 3 is to display formulæ making explicit the first level’s
Stokes multipliers of f̃(x) in terms of the connection constants of the Borel
transforms f̂ [u](τ) of the r1-reduced series f̃ [u](t) of f̃(x) (Theorem 3.12),
generalizing thus formulæ given in [9,16] for single-leveled systems.
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Recall that the r1-reduced series of f̃(x) ∈ Mn,n1(C[[x]]) are the formal
series f̃ [u](t) ∈Mn,n1(C[[t]]), u = 0, ..., r1 − 1, defined by the relation

(3.2) f̃(x) = f̃ [0](xr1) + xf̃ [1](xr1) + ...+ xr1−1f̃ [r1−1](xr1).

Notice that the normalization f̃(x) = In,n1 +O(x
r1) implies f̃ [0](t) = In,n1 +

O(t) and f̃ [u](t) = O(t) for u = 1, ..., r1 − 1.
Our approach is based on the relation between F̃ (x) and F̃1(x) (Factoriz-

ation Theorem 2.4 and Proposition 2.5) and on Block—Diagonalisation The-
orem 3.3 below allowing to “reduce” System (2.1) into a convenient single-
leveled system.

3.2 A Block—Diagonalisation Theorem

According to Remark 2.1, we suppose from now on that the polynomials qj
for j = 2, ..., J are ordered so that the matrix Q read in the form

(3.3) Q = Q1 ⊕Q2 ⊕ ...⊕Qp′

where

• Q1 is formed by all the polynomials qj ≡ 0 and all the polynomials qj
of degree r1, i.e., by all the polynomials qj of degrees ≤ r1,

• for k = 2, ..., p′, Qk is formed by all the polynomials qj of degree r′k
and its leading term Qk := xr

′
kQk |x=0 has a block-decomposition of

the form
⊕sk

`=1Qk,`Imk,`
with Qk,` ∈ C∗ and Qk,` 6= Qk,`′ if ` 6= `′.

We denote by Nk, k = 1, ..., p′, the size of the square matrix Qk and we split
the matrix L of exponents of formal monodromy like Q:

L = L1 ⊕ L2 ⊕ ...⊕ Lp′ with Lk ∈MNk(C).

Observe that each sub-matrix Lk has a Jordan structure induced by the one
of L.

Block—Diagonalisation Theorem 3.3 below states that, up to analytic
gauge transformation, System (2.1) can be split into p′ sub-systems fitting
to the block—decomposition (3.3), i.e., the matrix A1(x) can be reduced into
a block-diagonal form like Q.
Recall that a (formal, meromorphic) gauge transformation Z = T (x)W

transforms any system of the form

xr+1
dW

dx
= A(x)W
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into the system

xr+1
dZ

dx
= TA(x)Z where TA(x) = TA(x)T−1 + xr+1dT

dx
T−1.

Let us start with a technical lemma based on the results of [10].

Lemma 3.2 Let d ∈ {2, ..., p′}. Denote

• N<d = N1 + ...+Nd−1 and N≤d = N<d +Nd,

• L<d = L1 ⊕ ...⊕ Ld−1 and L≤d = L<d ⊕ Ld,

• Q<d = Q1 ⊕ ...⊕Qd−1 and Q≤d = Q<d ⊕Qd.

Consider a system

(3.4) xr
′
d+1
dW

dx
= A(x)W , A(x) ∈MN≤d(C{x})

together with a formal fundamental solution at 0 of the form

W̃ (x) = H̃(x)xL≤deQ≤d(1/x)

where H̃(x) ∈MN≤d(C[[x]]) verifies H̃(x) = IN≤d +O(x
r1).

Suppose that H̃(x) is r1-summable.
Then, there exists an invertible matrix Td(x) ∈ GLN≤d(C{x}) with analytic
entries at 0 such that

1. Td(x) = IN≤d +O(x
r1),

2. the gauge transformation Z = Td(x)W transforms System (3.4) into a
system

(3.5) xr
′
d+1
dZ

dx
=

[
A<d(x) 0
0 Ad(x)

]
Z

with A<d(x) ∈MN<d(C{x}) and Ad(x) ∈MNd(C{x}),

3. the formal fundamental solution Z̃(x) = Td(x)W̃ (x) of System (3.5)
has a block-diagonal decomposition

Z̃(x) = H̃<d(x)x
L<deQ<d(1/x) ⊕ H̃d(x)xLdeQd(1/x)

where
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(a) the formal series H̃<d(x) ∈MN<d(C[[x]]) and H̃d(x) ∈MNd(C[[x]])

verify H̃<d(x) = H̃d(x) = I∗ +O(x
r1),

(b) the matrix Z̃<d(x) = H̃<d(x)x
L<deQ<d(1/x) is a formal fundamental

solution of the system

(3.6) xr
′
d−1+1

dZ<d
dx

= A<d(x)Z<d,

(c) the matrix Z̃d(x) = H̃d(x)x
LdeQd(1/x) is a formal fundamental solu-

tion of the system

xr
′
d+1
dZd
dx

= Ad(x)Zd.

Moreover, both formal series H̃<d(x) and H̃d(x) are r1-summable.

Proof. Since H̃(0) = IN≤d , the matrix A(x) of System (3.4) reads

A(x) = xr′d+1dQ≤d
dx

+ xr
′
dB(x)

with B(x) analytic at 0. Hence, according to the block-decomposition (3.3)
of the matrix Q, the heading term A(0) = 0N<d ⊕ (−r′dQd) of A(x) has the
block-decomposition

A(0) = 0N<d ⊕
(

sd⊕

`=1

−r′dQd,`Imd,`

)

with Qk,` 6= 0 and Qk,` 6= Qk,`′ if ` 6= `′. Thus, by applying [10, Thm.
1.5], there exists an invertible matrix Td,1(x) ∈ GLN≤d(C[[x]]1/r′d [x−1]) with
meromorphic 1/r′d-Gevrey entries at 0

5 such that the matrix Td,1A(x) has
a block-decomposition like A(0). Observe that the entries of Td,1A(x) are in
general meromorphic 1/r′d-Gevrey and not convergent.
Denote then by A(`)(x), ` = 0, ..., sd, the blocks of Td,1A(x). By construction,
the sub-systems

xr
′
d+1
dW

dx
= A(`)(x)W , ` = 0, ..., sd

have levels < r′d. Therefore, [10, Thm. 1.4] applies: for all ` = 0, ..., sd, there
exists an invertible matrix T (`)d,2(x) with meromorphic 1/r

′
d-Gevrey entries at

5Recall that a series
∑
amx

m ∈ C[[x]] is said to be 1/k-Gevrey and denoted∑ amx
m ∈

C[[x]]1/k when the series
∑ am

(m!)1/k
xm is convergent.
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0 such that the matrix T
(`)
d,2A(`)(x) has meromorphic entries at 0.

Finally, by normalizing if neccessary the formal fundamental solutions of
these last systems by means of convenient polynomial gauge transformations
in x and 1/x, we deduce from calculations above that there exists a matrix
Td(x) ∈ GLN≤d(C[[x]]1/r′d [x−1]) satisfying Points 2. and 3. of Lemma 3.2.
Notice that Point 1. results from equalities

(3.7) Td(x)H̃(x) = H̃<d(x)⊕ H̃d(x) = IN≤d +O(xr1)

and from the assumption H̃(x) = IN≤d + O(x
r1). Notice also that, by con-

struction, the formal series H̃<d(x) and H̃d(x) are both summable of levels
< r′d. In particular, the first equality of (3.7) and the hypothesis “H̃(x) is
r1-summable” show that Td(x) is both 1/r′d-Gevrey and summable of levels
< r′d (indeed, r1 < r

′
d for all d = 2, ..., p

′). Thus, due to [12, Prop. 7, p. 349],
Td(x) is analytic at 0. Therefore, Td(x)H̃(x) keeps being r1-summable and,
consequently, H̃<d(x) and H̃d(x) are also both r1-summable. This ends the
proof of Lemma 3.2.

Note that the hypothesis “H̃(x) is r1-summable” plays a fundamental
role in the proof of Lemma 3.2. Note also that Lemma 3.2 can be again
applied to sub-system (3.6) when d ≥ 3... and so on as long as d 6= 2.

In the case of System (2.1), an iterative application of Lemma 3.2 starting
with d = p′ allows us to state the following result:

Theorem 3.3 (Block—Diagonalisation Theorem)
There exists an invertible matrix T (x) ∈ GLn(C{x}) with analytic entries at
0 such that

1. T (x) = In +O(x
r1),

2. the gauge transformation Z1 = T (x)Y1 transforms System (2.1) into a
system

(3.8) xr+1
dZ

dx
= TA1(x)Z

where the matrix TA1(x) ∈ Mn(C{x} has a block-diagonal decomposi-
tion like Q:

TA1(x) =

p′⊕

k=1

A1,k(x) with A1,k(x) ∈MNk(C{x}),
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3. the formal fundamental solution Z̃1(x) = T (x)Ỹ1(x) of System (3.8)
has a block-diagonal decomposition

Z̃1(x) =

p′⊕

k=1

F̃1,k(x)x
LkeQk(1/x)

where, for all k = 1, ..., p′,

(a) F̃1,k(x) ∈MNk(C[[x]]) verifies F̃1,k(x) = INk +O(x
r1),

(b) the matrix Z̃1,k(x) = F̃1,k(x)x
LkeQk(1/x) is a formal fundamental

solution of the system

(3.9) xr
′
k+1
dZ1,k
dx

= A1,k(x)Z1,k

(recall that r′k is the degree of Qk, r
′
1 = r1 and r

′
p′ = rp = r).

In particular, the matrix T (x)F̃1(x) has the block-decomposition

T (x)F̃1(x) =

p′⊕

k=1

F̃1,k(x)

and all the formal series F̃1,k(x) are r1-summable.

Notice that, by construction, System (3.9) has (multi)-levels ≤ r′k when
k = 2, ..., p′ and has the unique level r1 when k = 1 (indeed, r1 is the smallest
level of System (1.1), hence, of Systems (3.9) for all k).

Let us now make two remarks about the interest of Block—Diagonalisation
Theorem 3.3:

1. Since T (x) is analytic at 0, the “unicity” of Factorization Theorem 2.4
implies that we can respectively choose for F̃1(x) and A1(x) the two
matrices

⊕p′

k=1 F̃1,k(x) and
TA1(x).

2. With these choices, Proposition 2.5 implies that the first level’s Stokes
multipliers of f̃(x) are actually the Stokes multipliers of the system
with the unique level r1

(3.10) xr1+1
dZ1,1
dx

= A1,1(x)Z1,1

associated with the first n1 columns f̃ ′(x) of F̃1,1(x).
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Denote as before by f̃ ′[u](t), u = 0, ..., r1−1, the r1-reduced series of f̃ ′(x)
and by f̂ ′[u](τ) their Borel transforms. According to Point 2. above and nor-
malizations of the formal fundamental solution Z̃1,1(x) = F̃1,1(x)xL1eQ1(1/x)

of System (3.10) (cf. Thm. 3.3, 3.), [9, Thm. 4.3] and [16, Thm. 4.4] tell us
that the first level’s Stokes multipliers of f̃(x) are expressed in terms of the
connection constants of the f̂ ′[u](τ)’s.
Hence, to state the first level’s connection-to-Stokes formulæ, we are left

to prove that the connection constants of the f̂ ′[u](τ)’s are also connection
constants of the f̂ [u](τ)’s. To this end, we shall compare the structure of the
singularities of the Borel transforms f̂ [u](τ) and f̂ ′[u](τ) for all u = 0, ..., r1−1.
Lemma 3.4 below allows us to connect f̂ [u] and f̂ ′[u].

3.3 A Fundamental Identity

According to Factorization Theorem 2.4, the first n1 columns f̃(x) of F̃ (x)
are related to the first n1 columns f̃ ′(x) of F̃1,1(x) by the relation

f̃(x) = F̃p(x)...F̃2(x)f̃1(x) , f̃1(x) :=

[
f̃ ′(x)

0(N2+...+Np′ )×n1

]

where

• F̃k(x) is rk-summable and F̃k(x) = In +O(xr1) for all k = 2, ..., p,

• 0(N2+...+Np′ )×n1 denotes the null-matrix of size (N2 + ...+Np′)× n1.

Denote by

• f̃(t) :=



f̃ [0](t)
...

f̃ [r1−1](t)


 ∈Mr1n,n1(C[[t]]) the matrix of size r1n×n1 formed

by the r1-reduced series of f̃(x),

• f̃ [u]1 (t) :=
[

f̃ ′[u](t)
0(N2+...+Np′ )×n1

]
for all u = 0, ..., r1 − 1 and

f̃ 1(t) :=



f̃
[0]
1 (t)
...

f̃
[r1−1]
1 (t)


 ∈Mr1n,n1(C[[t]]).
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Denote also by F̃ [u]
k (t), u = 0, ..., r1 − 1, the r1-reduced series of F̃k(x).

Then, the r1-reduced series f̃ [u](t) of f̃(x) are related to the r1-reduced
series f̃ ′[u](t) of f̃ ′(x) by the relation

(3.11) f̃(t) = F̃ p(t)...F̃ 2(t)f̃ 1(t)

where

F̃ k(t) :=




F̃
[0]
k (t) tF̃

[r1−1]
k (t) · · · · · · tF̃

[1]
k (t)

F̃
[1]
k (t) F̃

[0]
k (t)

. . .
...

...
. . . . . . . . .

...
...

. . . F̃
[0]
k (t) tF̃

[r1−1]
k (t)

F̃
[r1−1]
k (t) · · · · · · F̃

[1]
k (t) F̃

[0]
k (t)




for all k.

Notice that F̃ k(t) = Ir1n + O(t) and F̃ k(t) is
rk
r1
-summable with rk

r1
> 1

for all k = 2, ..., p. In particular, the Borel transform F̂ k(τ) of F̃ k(t) reads
for all k in the form F̂ k = δIr1n + Ĝk with Ĝk an entire function on all
C with exponential growth of order ≤ rk/(rk − r1) at infinity ([1, p. 81]).
Denoting r1,k := rk/(rk−r1), we have r1,p < ... < r1,2. Hence, since the Borel
transformed identity of (3.11) reads

f̂ = F̂ p ∗ ... ∗ F̂ 2 ∗ f̂ 1,

the following lemma:

Lemma 3.4 The Borel transforms f̂ [u](τ) of f̃ [u](t) and the Borel transforms

f̂ ′[u](τ) of f̃ ′[u](t) are related, for all u = 0, ..., r1 − 1, by the relations

f̂ [u] =

[
f̂ ′[u]

0(N2+...+Np′ )×n1

]
+Eu ∗

[
f̂ ′[u]

0(N2+...+Np′ )×n1

]

where Eu is an entire function on all C with exponential growth of order
≤ r1,2 at infinity. Recall that r1,2 = r2/(r2 − r1).

We are now able to compare the structure of the singularities of the Borel
transforms f̂ [u] and f̂ ′[u] for all u = 0, ..., r1 − 1.
Let us first start by a resurgence theorem to locate their possible singular

points.
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We denote below

Q1

(
1

x

)
=

J1⊕

j=1

qj

(
1

x

)
Inj

where qj(1/x) is a polynomial in 1/x of the form

qj

(
1

x

)
= −aj,r1

xr1
− aj,r1−1
xr1−1

− ...− aj,1
x
∈ 1
x
C

[
1

x

]
.

Recall that nj denotes the size of the jth Jordan block of the matrix L of
exponents of formal monodromy of System (1.1) (cf. page 2). In particular,
the sub-matrix L1 of L corresponding to Q1 has the Jordan structure

L1 =

J1⊕

j=1

(λjInj + Jnj).

Recall also that, by definition of Q1 (cf. Section 3.2), the polynomials qj for
j = 1, ..., J1 are zero or of degree r1. In particular,

qj ≡ 0⇔ aj,r1 = 0.

We denote also by

• S1(Q) := {qj ; j = 1, ..., J1} the set of polynomials qj of degree ≤ r1 of
Q, i.e., the set of all the polynomials of Q1,

• Ω1 := {aj,r1 ; j = 1, ..., J1} the set of first level’s Stokes values of
System (1.1) associated with f̃(x) (cf. Def. 2.2, 2.)

Notice that, following Section 3.1, a1,r1 = 0 (since q1 ≡ 0) and there exists
j ∈ {1, ..., J1} such that aj,r1 6= 0. Notice also that Ω1 is also the set of Stokes
values of System (3.10) associated with f̃ ′(x).

3.4 Resurgence Theorem

Recall that a resurgent function is an analytic function at 0 ∈ C which can be
analytically continued to an adequate Riemann surface RΩ associated with
a so-called singular support Ω ⊂ C. For a more precise definition, we refer
to [17] and [9, Def. 2.1 and 2.2]. Recall that the difference between RΩ and
the universal cover of C\Ω lies in the fact that RΩ has no branch point at 0
in the first sheet.
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In the linear case, the singular support Ω is a finite set containing 0.
In a more general framework, convolutions of singularities may occur what
requires to consider for Ω a lattice, possibly dense in C (cf. [5, 11, 17] for
instance).

To state Resurgence Theorem 3.7 below, we need to extend the classical
definition of sectorial regions of C used in summation theory into the one
of sectorial regions of RΩ. These regions are called ν-sectorial regions (cf.
[9, Def. 2.3]) and are defined for all ν > 0 small enough by the data of

• an open disc Dν centered at 0 ∈ C,

• an open sector Σν with bounded opening at infinity,

• a tubular neighborhood Nν of a piecewise-C1 path γ connecting Dν to
Σν after a finite number of turns around points of Ω,

such that the distance of Dν to Ω∗ = Ω\{0} and the distance of Nν ∪ Σν to
Ω have to be greater than ν.

Definition 3.5 (Resurgent function with exponential growth of order ≤ ρ)

Given ρ > 0, a resurgent function defined on RΩ is said to be with expo-
nential growth of order ≤ ρ and with singular support Ω when it grows at
most exponentially at infinity with an order ≤ ρ on any ν-sectorial region ∆ν

of RΩ.

We denote by R̂es≤ρΩ the set of resurgent functions with exponential growth
of order ≤ ρ and with singular support Ω.

When ρ = 1, any function of R̂es≤1Ω is said to be summable-resurgent with

singular support Ω. Following notations of [9], we denote R̂essumΩ for R̂es≤1Ω
the set of summable-resurgent functions with singular support Ω.

Definition 3.6 (Resurgent series with exponential growth of order ≤ ρ)

Given ρ > 0, a formal series is said to be a resurgent series with expo-
nential growth of order ≤ ρ and with singular support Ω when its formal

Borel transform belongs to R̂es≤ρΩ .
The set of resurgent series with exponential growth of order ≤ ρ and with

singular support Ω is denoted R̃es≤ρΩ .
As above, we denote R̃essumΩ for R̃es≤1Ω the set of summable-resurgent series
with singular support Ω.
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Figure 3.1 - A ν-sectorial region

We are now able to state the result in view in this section:

Theorem 3.7 (Resurgence Theorem)
With notations as above:

1. For all u = 0, ..., r1 − 1,

f̃ ′[u](t) ∈ R̃essumΩ1 .

2. For all u = 0, ..., r1 − 1,

f̃ [u](t) ∈ R̃es≤r1,2Ω1
where r1,2 =

r2
r2 − r1

.

Proof. Point 1. is proved by applying [9, Thm. 2.7] (case r1 = 1) and
[16, Thm. 1.2] (case r1 ≥ 2) to the single-leveled system (3.10). Point 2. is
straigthforward from Point 1. and Lemma 3.4.

In particular, Theorem 3.7 tells us that, for all u = 0, ..., r1− 1, the Borel
transforms f̂ ′[u](τ) and f̂ [u](τ) are all analytic on the same Riemann surface
RΩ1, their possible singular points being the first level’s Stokes values of Ω1,
including 0 out of the first sheet. Section 3.5 below is devoted to the analysis
of these singularities.
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3.5 Singularities in the Borel Plane

For the convenience of the reader, we first recall some vocabulary used in
resurgence theory (see [5,11,17] for instance).
Denote by O the space of holomorphic germs at 0 on C and Õ the space

of holomorphic germs at 0 on the Riemann surface C̃ of the logarithm. One
calls singularity at 0 any element of the quotient space C := Õ/O 6.
A singularity is usually denoted with a nabla. A representative of the

singularity
∇
ϕ in Õ is called a major of

∇
ϕ and is often denoted by ϕ

̂

.
Given ω 6= 0 in C, the space of the singularities at ω is the space C

translated from 0 to ω. Then, a function ϕ

̂

ω is a major of a singularity at ω
if ϕ

̂

ω(ω + τ) is a major of a singularity at 0.

3.5.1 Front of a Singularity

For any ω ∈ Ω1, we call first level’s front of ω (or simply front of ω when
we refer to the single-leveled system (3.10)) the set

Fr1(ω) := {qj ∈ S1(Q) ; aj,r1 = ω}

of polynomials qj(1/x)’s of degree r1, the leading term of which is −ω/xr1 .
Since r1 is the smallest level of Systems (1.1) and (3.10), Fr1(ω) is a

singleton:

Fr1(ω) =

{
− ω

xr1
+ q̇1,ω

(
1

x

)}

where q̇1,ω ≡ 0 or q̇1,ω(1/x) is a polynomial in 1/x of degree ≤ r1 − 1 and
with no constant term.
When q̇1,ω ≡ 0, ω is said to be with monomial front ; the corresponding

singularities of f̂ [u](τ) and f̂ ′[u](τ), u = 0, ..., r1 − 1, at ω are then called
singularities with monomial front. As in the case of single-leveled systems,
the study of these singularities is sufficient to state the first level’s connection-
to-Stokes formulæ in full generality (see Section 3.6.2 below).

3.5.2 Structure of Singularities with Monomial Front

For all u = 0, ..., r1 − 1, the behavior of the functions f̂ [u](τ) and f̂ ′[u](τ) at
any point ω ∈ Ω1 depends on the sheet of the Riemann surface RΩ1 where
we are, i.e., it depends on the “homotopic class of” the path γ of analytic

6The elements of C are also called micro-functions by B. Malgrange ([11]) by ana-
logy with hyper- and micro-functions defined by Sato, Kawai and Kashiwara in higher
dimensions.
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continuation followed from 0 (first sheet) to a neighborhood of ω. We denote

by
∇
f
[u]
ω,γ (resp.

∇
f
′[u]
ω,γ) the singularity defined by the analytic continuation of

f̂ [u](τ) (resp. f̂ ′[u](τ)) along the path γ.

Besides, given a matrixM split into blocks fitting to the Jordan structure
of L (matrix of exponents of formal monodromy of System (1.1), cf. p. 2)
or L1 (matrix of exponents of formal monodromy of System (3.10), cf. p.
16), we denote by M j;• the jth row-block of M . So, M j;• is a nj × p-matrix
for all j = 1, ..., J (resp. j = 1, ..., J1) when M is a n × p-matrix (resp.
N1 × p-matrix). Recall that nj is the size of the jth Jordan block of L and
L1.

Since System (3.10) has the unique level r1, the structure of the singu-

larities
∇
f
′[u]
ω,γ at any point ω ∈ Ω1\{0} with monomial front was displayed in

[9, Thm. 3.7] (case r1 = 1) and [16, Thm. 3.5] (case r1 ≥ 2). More precisely:

Proposition 3.8 (Singularities with monomial front of f̂ ′[u])

Fix u ∈ {0, ..., r1 − 1} and ω ∈ Ω1\{0} a singular point of f̂ ′[u](τ) with
monomial front.

For any path γ on C\Ω1 from 0 to a neighborhood of ω, the singularity
∇
f
′[u]
ω,γ

admits a major f

̂
′[u]
ω,γ of the form

f

̂

′[u]j;•
ω,γ (ω + τ) = τ

λj−u

r1
−1
τ
Jnj
r1 K ′[u]j;•

ω,γ τ
−Jn1

r1 + rem
′[u]j;•
ω,γ (τ)

for all j = 1, ..., J1 with a remainder

rem′[u]j;•
ω,γ (τ) =

∑

λ`;a`,r1=ω

r1−1∑

v=0

τ
λ`−v

r1 R
′[u]j;•
λ`,v;ω,γ

(ln τ)

where

• K ′[u]j;•
ω,γ denotes a constant nj×n1-matrix such that K ′[u]j;•

ω,γ = 0 as soon
as aj,r1 6= ω,

• R′[u]j;•
λ`,v;ω,γ

(X) denotes a polynomial matrix with summable-resurgent coef-

ficients in R̂essumΩ1−ω, the columns of which are of log-degree

N [`] =





[
(n` − 1) (n` − 1) + 1 · · · (n` − 1) + (n1 − 1)

]
if λ` 6= 0

[
n` n` + 1 · · · n` + (n1 − 1)

]
if λ` = 0

.
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The constants K ′[u]j;•
ω,γ and the remainders rem′[u]j;•

ω,γ depend on the path
of analytic continuation γ and on the chosen determination of the argument
around ω. Recall (cf. [9, Def. 3.10] and [16, Def. 4.3]) that the connection
constants of f̂ ′[u](τ) at ω are the entries of the non-trivial matricesK ′[u]j;•

ω?,+ :=

K
′[u]j;•
ω,γ+ obtained with the following choices:

• γ+ is a path going along the straight line [0, ω] from 0 to a point τ
close to ω and avoiding all singular points of Ω1∩]0, ω] to the right (see
Figure 3.2 below),

• we choose the principal determination of the variable τ around ω, say
arg(τ) ∈]− 2π, 0] as in Section 2.2 (cf. Note 1).

Figure 3.2

By using Lemma 3.4 and [9, Lem. 3.2], we deduce from Proposition 3.8
above the following theorem:

Theorem 3.9 (Singularities with monomial front of f̂ [u])

Fix u ∈ {0, ..., r1 − 1} and ω ∈ Ω1\{0} a singular point of f̂ [u](τ) with
monomial front.

For any path γ on C\Ω1 from 0 to a neighborhood of ω, the singularity
∇
f
[u]
ω,γ

admits a major f

̂

[u]
ω,γ of the form

f

̂

[u]j;•
ω,γ (ω + τ) = τ

λj−u

r1
−1
τ
Jnj
r1 K [u]j;•

ω,γ τ
−Jn1

r1 + rem
[u]j;•
ω,γ (τ)

for all j = 1, ..., J with a remainder

rem[u]j;•
ω,γ (τ) =

∑

λ`;a`,r1=ω

r1−1∑

v=0

τ
λ`−v

r1 R
[u]j;•
λ`,v;ω,γ

(ln τ)

where

• K [u]j;•
ω,γ denotes a constant nj × n1-matrix such that

K [u]j;•
ω,γ =




0nj×n1 if j /∈ {1, ..., J1} or aj,r1 6= ω

K ′[u]j;•
ω,γ if not

,
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• R[u]j;•
λ`,v;ω,γ

(X) denotes a polynomial matrix with coefficients in R̂es≤r1,2Ω1−ω,
the columns of which are of log-degree N [`] (cf. notation just above).

Observe that the non-trivial constant matrices K ′[u]j;•
ω,γ and K [u]j;•

ω,γ ob-
tained in Proposition 3.8 and Theorem 3.9 coincide. In particular, the con-
nection constants of f̂ ′[u](τ) at ω can be directly calculate by considering the

singularity
∇
f
[u]
ω?,+ :=

∇
f
[u]

ω,γ+ .

Definition 3.10 (Connection constants of f̂ [u](τ) at ω)

Given u ∈ {0, ..., r1 − 1}, we call connection constants of f̂ [u](τ) at ω the

entries of the non-trivial constant matrices K
[u]j;•
ω?,+ :=K

′[u]j;•
ω?,+ for j = 1, ..., J1

and aj,r1 = ω.

Notice that, in practice, the matrix K [u]j;•
ω?,+ for j = 1, ..., J1 and aj,r1 = ω

can be determined as the coefficient of the monomial τ (λj−u)/r1−1 in the major
f

̂

[u]j;•
ω?,+ (ω + τ).

We are now able to state the first level’s connection-to-Stokes formulæ.

3.6 First Level’s Connection-to-Stokes Formulæ

Recall (cf. Def. 2.2, 2.) that the first level’s anti-Stokes directions of
System (1.1) associated with f̃(x) are the directions of maximal decay of
the exponentials eqj(1/x) with qj ∈ S1(Q) and qj 6≡ 0 (we refer to page
16 for the notations). Therefore, each non-zero first level’s Stokes value
aj,r1 ∈ Ω∗1 := Ω1\{0} generates a collection of r1 first level’s anti-Stokes
directions θ0, θ1, ..., θr1−1 ∈ R/2πZ respectively given by the rth1 roots of
aj,r1. Of course, when r1 = 1, such a collection just reduces to the direction
θ0 ∈ R/2πZ given by aj,r1. Note besides that, when r1 ≥ 2, the directions
θk’s are regularly distribued around the origin x = 0.
Such a collection (θk) being chosen, we assume, to fix ideas, that their

principal determinations θ?k ∈]− 2π, 0] verify
−2π < θ?r1−1 < ... < θ?1 < θ?0 ≤ 0

Notice that a first level’s Stokes value ω ∈ Ω∗1 generates the collection
(θk)k=0,...,r1−1 if and only if ω ∈ Ω1,r1θ0 the set of non-zero first level’s Stokes
values of System (1.1) associated with f̃(x) and with argument r1θ0.

For all k = 0, ..., r1−1, we denote by In+Cθ?k the Stokes—Ramis matrix of
Ỹ in the direction θk. Let cθ?k be the first n1 columns of Cθ?k . As previously,
we split cθ?k into row-blocks c

j;•
θ?k
fitting to the Jordan structure of L.
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The first level’s Stokes multipliers of f̃(x) in the direction θk are the
entries of cj;•θ?k for j = 1, ..., J1 and aj,r1 ∈ Ω1,r1θ0. We shall make explicit here
below formulæ to express these entries in terms of the connection constants
of the f̂[u]’s, u = 0, ..., r1−1. To this end, we need the following more precise
definition:

Definition 3.11 When j = 1, ..., J1 and aj,r1 = ω ∈ Ω1,r1θ0, the entries of
the matrix cj;•θ?k

are called first level’s Stokes multipliers of f̃(x) associated with

ω in the direction θk.

3.6.1 Case of Singularities with Monomial Front

We denote by

• ρ1 := e−2iπ/r1,

• Λj := λjInj + Jnj the jth Jordan block of the matrix L of exponents of
formal monodromy of System (1.1).

Let ω ∈ Ω1,r1θ0 be a non-zero first level’s Stokes value of System (1.1)
associated with f̃(x) generating the collection (θk)k=0,...,r1−1. We assume
besides, in this section, that the front of ω is monomial.
As we said at the end of Section 3.2, [9, Thm. 4.3] and [16, Thm. 4.4]

tell us that the first level’s Stokes multipliers of f̃(x) associated with ω in
the directions θk, k = 0, ..., r1 − 1, are expressed in terms of the connection
constants at ω of the Borel transforms f̂ ′[u](τ)’s, u = 0, ..., r1 − 1. On the
other hand, we showed in Section 3.5 above that these connection constants
are also the connection constants at ω of the Borel transforms f̂ [u](τ)’s.
Consequently, the connection-to-Stokes formulæ relative to f̃ ′(x) displayed
in [9,16] coincide with the first level’s connection-to-Stokes formulæ relative
to f̃(x). Hence, the theorem:

Theorem 3.12 (First level’s connection-to-Stokes formulæ)
For all j = 1, ..., J1 such that aj,r1 = ω, the data of (cj;•θ?k

)k=0,...,r1−1 and of

(K
[u]j;•
ω?,+ )u=0,...,r1−1 are equivalent and are related, for all k = 0, ..., r1 − 1, by

the relations

(3.12) cj;•θ?k
=

r1−1∑

u=0

ρ
k(uInj−Λj)
1 I

[u]j;•
ω? ρ

kJn1
1
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where

(3.13) I
[u]j;•
ω? :=

∫

γ0

τ
λj−u

r1
−1
τ
Jnj
r1 K

[u]j;•
ω?,+ τ

−Jn1
r1 e−τdτ

and where γ0 is a Hankel type path around the non-negative real axis R
+ with

argument from −2π to 0.

An expanded form providing each entry of First Level’s Connection-to-
Stokes Formulæ (3.12) is given in [16, Cor. 4.6]. This can be useful for
effective numerical calculations. We recall this expanded form below in the
particular case where the matrix L of exponents of formal monodromy is
diagonal: L =

⊕n
j=1 λj (we keep denoting by j = 1, ..., J1 the indices of

polynomials qj ∈ S1(Q)). In this case, the matrices cj;•θ?k and K [u]j;•
ω?,+ are

reduced to just one entry which we respectively denote cjθ?k and K
[u]j
ω?,+.

Since the Jordan blocks Jnj are zero for all j, Identity (3.13) becomes

∫

γ0

τ
λj−u

r1
−1
K

[u]j
ω?,+e

−τdτ = 2iπ
e
−iπ

λj−u

r1

Γ
(
1− λj−u

r1

)K [u]j
ω?,+.

Therefore, for all j = 1, ..., J1 such that aj,r1 = ω, the first level’s Stokes
multipliers cjθ?k are related to the connection constantsK

[u]j
ω?,+ by the formulæ

(3.14)
cjθ?k
= 2iπ

r1−1∑

u=0

ρ
k(u−λj)
1

e
−iπ

λj−u

r1

Γ
(
1− λj−u

r1

)K [u]j
ω?,+

for all k = 0, ..., r1 − 1.

3.6.2 General Case

Let us now consider a non-zero first level’s Stokes value ω ∈ Ω1,rθ0 of System
(1.1) associated with f̃(x) generating the collection (θk)k=0,...,r1−1. Recall
that the first level’s front of ω reads

Fr1(ω) =

{
q1,ω

(
1

x

)
:= − ω

xr1
+ q̇1,ω

(
1

x

)}

where q̇1,ω ≡ 0 or q̇1,ω(1/x) is a polynomial in 1/x of degree ≤ r1 − 1 and
with no constant term (cf. Section 3.5.1).
When ω is with monomial front (i.e., q̇1,ω ≡ 0), Theorem 3.12 above allows

us to express the first level’s Stokes multipliers of f̃(x) associated with ω in
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terms of connection constants in the Borel plane. In particular, in the special
case where r1 = 1, Theorem 3.12 allows us to calculate all the first level’s
Stokes multipliers since all the singularities of f̂ are with monomial front.
In the case when r1 ≥ 2 and ω is not with monomial front (i.e., q̇1,ω 6≡ 0),

a result of the same type exists, but requires to reduce ω into a first level’s
Stokes value with monomial front by means of a convenient change of the
variable x in System (1.1) (see Lemma 3.13 below). Recall that such a method
was already used in [16] to state the connection-to-Stokes formulæ in the case
of systems with a single level ≥ 2.

Lemma 3.13 (M. Loday—Richaud, [6])

1. There exists, in the x-plane (also called Laplace plane), a change of the
variable x of the form

(3.15) x =
y

1 + α1y + ...+ αr−1yr−1
, α1, ..., αr−1 ∈ C

such that the polar part p1,ω(1/y) of q1,ω(1/x(y)) reads

p1,ω

(
1

y

)
= − ω

yr
.

2. The Stokes—Ramis matrices of System (1.1) are preserved by the change
of variable (3.15).

Observe that, although Lemma 3.13 be proved in [6] in the case of systems
of dimension 2 (hence, with a single level), it can be extended to any system
of dimension n ≥ 3. Indeed, the change of variable (3.15) being tangent to
identity, it “preserves” levels, Stokes values and summation operators.
Lemma 3.13 allows us to construct a new system, denoted below (S),

verifying the following properties:

• (S) has levels r1 < r2 < ... < rp and satisfies normalizations as System
(1.1) (cf. page 1),

• (S) has the same first level’s Stokes values as System (1.1),

• ω is a first level’s Stokes value of (S) with monomial front,

• (S) has the same Stokes—Ramis matrices as System (1.1).

Hence, applying Theorem 3.12 to System (S), we can again express the
first level’s Stokes multipliers of f̃(x) associated with ω in terms of connec-
tion constants in the Borel plane. Note however that these constants are
calculated from System (S) and not from System (1.1).
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3.6.3 Effective Calculation of the First Level’s Stokes Multipliers

According to Theorem 3.12, the effective calculation of the first level’s Stokes
multipliers of f̃(x) is reduced, after possibly applying Lemma 3.13, to the
effective calculation of the connection constants of the Borel transforms
f̂ [u](τ)’s of the r1-reduced series f̃ [u](t)’s of f̃(x).
For the convenience of the reader, we briefly recall here below how to

characterize the series f̃ [u](t)’s and their Borel transforms f̂ [u](τ)’s.

• Case r1 = 1:
The series f̃ [u](t)’s are reduced to just one series f̃ [0](t) = f̃(x); we keep
denoting the variable x for t.
According to normalizations of the formal fundamental solution Ỹ (x) of Sys-
tem (1.1) (cf. p. 1), the formal series F̃ (x) is uniquely determined by the
homological system

xr+1
dF

dx
= A(x)F − FA0(x) , A0(x) := x

r+1dQ

dx
+ xrL

of System (1.1) jointly with the initial condition F̃ (0) = In ([2]). Hence, by
considering its first n1 columns, we deduce that f̃(x) is uniquely determined
by the system

(3.16) x2
df

dx
= x1−rA(x)f − xfJn1

jointly with the initial condition f̃(0) = In,n1 (first n1 columns of the identity
matrix of size n). Recall that q1 ≡ 0 and λ1 = 0 (cf. Assumption (3.1)).

• Case r1 ≥ 2:
In this case, a system characterizing the formal series f̃ [u](t)’s, u = 0, ..., r1−
1, is provided by the classical method of rank reduction ([8]) by considering
the homological system of the r1-reduced system associated with System
(1.1). More precisely, writing System (1.1) in the form

xr1+1
dY

dx
= A(x)Y , A(x) := xr1−rA(x) ∈Mn(C{x}[x−1])

one can prove, similarly as in the case r1 = 1, that the formal series

f̃(t) =



f̃ [0](t)
...

f̃ [r1−1](t)


 ∈Mr1n,n1(C[[t]])
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is uniquely determined by the system

(3.17) r1t
2df

dt
= A(t)f − tfJn1

jointly with the initial condition f̃(0) = Ir1n,n1 (first n1 columns of the iden-
tity matrix of size r1n); the matrix A(t) ∈Mr1n(C{t}[t−1]) is defined by

A(t) =




A[0](t) tA[r1−1](t) · · · · · · tA[1](t)
A[1](t) A[0](t) . . .

...
...

. . . . . . . . .
...

...
. . . A[0](t) tA[r1−1](t)

A[r1−1](t) · · · · · · A[1](t) A[0](t)



−
r1−1⊕

u=0

utIn

where A[u](t), u = 0, ..., r1 − 1, denote the r1-reduced series of A(x).

• Then, by applying the formal Borel transformation to Systems (3.16)
and (3.17), we obtain convolution equations satisfied by the Borel transforms
f̂ [u](τ)’s, u = 0, ..., r1−1. In the special case where r1 = 1, we simply denote
f̂(ξ) for f̂ [0](τ).

Recall that the formal Borel transformation is an isomorphism from the
C-differential algebra

(
C[[t]],+, ·, t2 d

dt

)
to the C-differential algebra (δC ⊕

C[[τ ]],+, ∗, τ ·) that changes ordinary product · into convolution product ∗
and changes derivation t2 d

dt
into multiplication by τ . It also changes mul-

tiplication by 1
t
into derivation d

dτ
allowing thus to extend the isomorphism

from the meromorphic series C[[t]][t−1] to C[δ(k), k ∈ N]⊕ C[[τ ]].

4 Examples

To end this article, we develop three examples. Although the given systems
may seem a little bit involved, they are simple enough to allow the exact
calculation of the connection constants and so of the first level’s Stokes mul-
tipliers. This “simplicity” is due to the fact that the matrices of these systems
are triangular. Of course, for more general systems, such exact calculations
no longer hold in general.
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4.1 An Example with a Three—Leveled System

We consider the system

(4.1) x4
dY

dx
=




0 0 0 0 0

2x4 x2 + x3

3
0 0 0

−3x3 2x3 2x2 0 0
x2 0 0 2x+ x2 0

x4 + x5 0 0 0 1



Y

and its formal fundamental solution Ỹ (x) = F̃ (x)xLeQ(1/x) where

• Q
(
1
x

)
= diag

(
0,− 1

x
,− 2

x
,− 1

x2
− 1

x
,− 1

3x3

)
,

• L = diag
(
0, 1

3
, 0, 0, 0

)
,

• F̃ (x) =




1 0 0 0 0

f̃2(x) 1 0 0 0

f̃3(x) ∗ 1 0 0

f̃4(x) 0 0 1 0

f̃5(x) 0 0 0 1



verifies F̃ (x) = I5+O(x). More precisely,

f̃2(x) = O(x
2), f̃3(x) =

3x

2
+O(x2), f̃4(x) = −

x

2
+O(x2), f̃5(x) = O(x

4).

We denote as before by f̃(x) the first column of F̃ (x).

System (4.1) has levels (1, 2, 3) and the set Ω1 of first level’s Stokes values
associated with f̃(x) is Ω1 = {0, 1, 2}. In particular, System (4.1) admits the
direction θ = 0 (direction of maximal decay of the exponentials e−1/x and
e−2/x) as unique first level’s anti-Stokes directions associated with f̃(x). Note
that this direction is also a second and a third level’s anti-Stokes direction
associated with f̃(x).
Obviously, the Stokes—Ramis matrix I5 + C0 is of the form

C0 =




0 0 0 0 0
c20 0 0 0 0
c30 ∗ 0 0 0
c40 0 0 0 0
c50 0 0 0 0



.

The Stokes multipliers c20 and c
3
0 are respectively the first level’s Stokes mul-

tipliers of f̃(x) associated with the first level’s Stokes values ξ = 1 and ξ = 2.
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The Stokes multipliers c40 and c
5
0 are respectively a second level’s and a third

level’s Stokes multiplier.
Our aim is the calculation of c20 and c

3
0. Observe that, due to Theorem

3.12, c20 (resp. c
3
0) is expressed in terms of the connection constants of f̂(ξ)

at ξ = 1 (resp. ξ = 2). Indeed, the two first level’s Stokes values 1 and 2 are
both with monomial front.

According to (3.16), f̃(x) is uniquely determined by the system

x2
df

dx
=




0 0 0 0 0
2x2 1 + x

3
0 0 0

−3x 2x 2 0 0
1 0 0 2

x
+ 1 0

x2 + x3 0 0 0 1
x2



f

jointly with the initial condition f̃(0) = I5,1 (first column of the identity
matrix of size 5). Therefore, the f̃j’s are the unique formal series solutions
of the equations

x2
df̃2
dx

−
(
1 +

x

3

)
f̃2 = 2x

2 x2
df̃4
dx

− 2

x
f̃4 + f̃4 = 1

x2
df̃3
dx

− 2f̃3 = −3x+ 2xf̃2 x2
df̃5
dx

− 1

x2
f̃5 = x

2 + x3

satisfying the condition f̃j(x) = O(x). As a result, their Borel transforms
f̂j’s verify the equations





(ξ − 1)df̂2
dξ

+
2

3
f̂2 = 2 , f̂2(0) = 0

(ξ − 2)f̂3 = −3 + 2 ∗ f̂2

−2df̂4
dξ

+ (ξ + 1)f̂4 = 0 , f̂4(0) = −
1

2

−d
2f̂5
dξ

+ ξf̂5 = ξ +
ξ2

2
, f̂5(0) =

df̂5
dξ
(0) = 0

.
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Hence, for all |ξ| < 1,

f̂2(ξ) = −3(1− ξ)−2/3 + 3

f̂3(ξ) =
−21 + 6ξ + 18(1− ξ)1/3

ξ − 2

f̂4(ξ) = −
1

2
exp

(
ξ2

4
+
ξ

2

)

f̂5(ξ) = 1 +
ξ

2
− 0F1

(
·, 2
3
;
ξ3

9

)
− ξ
2
0F1

(
·, 4
3
;
ξ3

9

)

where 0F1(·, b; ξ) denotes the confluent hypergeometric function with para-
meters (·, b). In particular, f̂4 and f̂5 are entire on all C and, for j = 2, 3,
the analytic continuations f̂ +j,ω?’s of the f̂j’s to the right of points ω ∈ {1, 2}
verify

f̂ +2,1(1 + ξ) =
3+3i

√
3

2
ξ−2/3 + 3 f̂ +2,2(2 + ξ) ∈ C{ξ}

f̂ +3,1(1 + ξ) ∈ C{ξ}+ ξ1/3C{ξ} f̂ +3,2(2 + ξ) =
−9+6ξ+(9+9i

√
3)(1+ξ)1/3

ξ

.

Consequently, the connection matricesK1,+ andK2,+ of f̂(ξ) at the points
ξ = 1 and ξ = 2 are given by

K1,+ =




0

k21,+ =
3 + 3i

√
3

2
0
0




K2,+ =




0
0

k32,+ = 9i
√
3

0


 .

Since the matrix L of exponents of formal monodromy is diagonal, it
results from (3.14) that the Stokes multipliers c20 and c

3
0 are related to the

connection constants k21,+ and k
3
2,+ above by the relations

c20 = 2iπ
e−iπ/3

Γ(2/3)
k21,+ c30 = 2iπk

3
2,+

(recall that ρ1 = e−2iπ and k = 0 since r1 = 1). Hence,

c20 =
6iπ

Γ(2/3)
c30 = −18π

√
3 .
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4.2 An Example with Rank Reduction

We consider now the system

(4.2) x4
dY

dx
=




0 0 0
x4 − 2x5 2x 0
−x3 0 3 + x2


Y

and its formal fundamental solution Ỹ (x) = F̃ (x)eQ(1/x) where

• Q
(
1
x

)
= diag

(
0,− 1

x2
,− 1

x3
− 1

x

)
,

• F̃ (x) =




1 0 0

f̃2(x) 1 0

f̃3(x) 0 1


 verifies F̃ (x) = I3 +O(x3). More precisely,

(4.3) f̃2(x) = −
x3

2
+x4− 3x

5

4
+O(x6) and f̃3(x) =

x3

3
−x

5

9
+O(x6).

System (4.2) has levels (2, 3) and Ω1 = {0, 1}. In particular, the first level’s
anti-Stokes directions of System (4.2) associated with the first column f̃(x) of
F̃ (x) are given by the unique collection (θ0 = 0, θ1 = −π) generated by τ = 1.
Note that θ0 = 0 is also a second level’s anti-Stokes direction associated with
f̃(x). Obviously, the Stokes—Ramis matrices I3 +C0 and I3 +C−π are of the
form

C0 =



0 0 0
c20 0 0
∗ 0 0


 and C−π =



0 0 0
c2−π 0 0
0 0 0


 .

Indeed, f̃(x) is the unique column of F̃ (x) which is divergent.
As in the previous example, the first level’s Stokes value τ = 1 is with

monomial front. Hence, Theorem 3.12 implies that the two first level’s Stokes
multipliers c20 and c

2
−π are expressed in terms of the connection constants of

f̂ [0](τ) and f̂ [1](τ) at τ = 1.

According to Relation (3.2), the 2-reduced series of f̃(x) are of the form

f̃ [0](t) =




1

f̃ 2(t)

f̃ 3(t)


 and f̃ [1](t) =




0

f̃ 5(t)

f̃ 6(t)



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where the f̃ j(t)’s are power series in t satisfying f̃ j(t) = O(t). More precisely,
it results from (4.3) that

f̃ 2(t) = t
2 +O(t3) f̃ 5(t) = −

t

2
− 3t

2

4
+O(t3)

f̃ 3(t) = O(t
3) f̃ 6(t) =

t

3
− t

2

9
+O(t3)

/

Following (3.17), the matrix

f̃(t) :=

[
f̃ [0](t)

f̃ [1](t)

]
∈M6,1(C[[t]])

is uniquely determined by the system

2t2
df

dt
=




0 0 0 0 0 0
−2t2 2 0 t2 0 0
−t 0 0 0 0 3 + t
0 0 0 −t 0 0
t 0 0 −2t2 2− t 0
0 0 3

t
+ 1 −t 0 −t



f

jointly with the initial condition f̃(0) = I6,1. Then, the f̃ j’s are the unique
formal series solutions of the equations

2t2
df̃ 2
dt

− 2f̃ 2 = −2t2 2t2
df̃ 5
dt

− (2− t) f̃ 5 = t

2t2
df̃ 3
dt

= −t+ (3 + t)f̃ 6 2t2
df̃ 6
dt

+ tf̃ 6 =

(
3

t
+ 1

)
f̃ 3

satisfying the conditions f̃ j(t) = O(t). Hence,

• the Borel transforms f̂ 2 and f̂ 5 verify the equations




(τ − 1)f̂ 2 = −τ

(τ − 1)df̂ 5
dτ

+
3

2
f̂ 5 = 0 , f̂ 5(0) = −

1

2

,
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• denoting ϕ :=
[
f̂ 3
f̂ 6

]
, the Borel transforms f̂ 3 and f̂ 6 verify the system





[
3 0
−2τ 3

]
d2ϕ

dτ
+

[
1 −2τ
−4 1

]
dϕ

dτ
+

[
0 −3
0 0

]
ϕ = 0

ϕ(0) =

[
0
1
3

]
,
dϕ

dτ
(0) =

[
0
−1
9

] .

As a result, f̂ 3 and f̂ 6 are entire on all C and f̂ 2 and f̂ 5 are defined by

f̂ 2(τ) =
τ

1− τ and f̂ 5(τ) = −
1

2
(1− τ)−3/2

for all |τ | < 1. In particular, the analytic continuations f̂ +j,1’s of the f̂ j’s to
the right of 1 verify

f̂ +2,1(1 + τ) = −
τ + 1

τ
f̂ +5,1(1 + τ) = −

i

2
τ−3/2

f̂ +3,1(1 + τ) ∈ C{τ} f̂ +6,1(1 + τ) ∈ C{τ}
.

Consequently, the connection matricesK [u]
1,+ of f̂

[u](τ) at the point τ = 1
are given by

K
[0]
1,+ =




0

k
[0]2
1,+ = −1
0


 K

[1]
1,+ =




0

k
[1]2
1,+ = −

i

2
0


 .

FromTheorem 3.12 and more precisely Formula (3.14) (recall that L = 0),
we deduce that the two first level’s Stokes multipliers c20 and c

2
−π are related

to the connection constants k[0]21,+ and k
[1]2
1,+ above by the relations

c20 = 2iπk
[0]2
1,+ + 2iπ

eiπ/2

Γ(3/2)
k
[1]2
1,+ c2−π = 2iπk

[0]2
1,+ + 2iπe

−iπ e
iπ/2

Γ(3/2)
k
[1]2
1,+

(recall that ρ1 = e−iπ since r1 = 2). Hence,

c20 = −2i(π −
√
π) c2−π = −2i(π +

√
π) .
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4.3 An Example with a Singularity with Non-Monomial

Front

Let us now consider the system

(4.4) x5
dY

dx
=



0 0 0
−x7 x2 + x3 0
x4 0 1


Y

together with its formal fundamental solution Ỹ (x) = F̃ (x)eQ(1/x) where

• Q
(
1
x

)
= diag

(
0,− 1

2x2
− 1

x
,− 1

4x4

)
,

• F̃ (x) =




1 0 0

f̃2(x) 1 0

f̃3(x) 0 1


 verifies F̃ (x) = I3 +O(x4).

System (4.4) has the levels (2, 4) and Ω1 = {0, 1/2}. In particular, the first
level’s anti-Stokes directions of System (4.4) associated with the first column
of F̃ (x) are given by the unique collection (θ0 = 0, θ1 = −π) generated by
τ = 1/2. Note that these two directions are also second level’s anti-Stokes
directions.
Since just the first column of F̃ (x) is divergent, the Stokes—Ramis matrices

I3 + C0 and I3 + C−π are of the form

C0 =



0 0 0
c20 0 0
∗ 0 0


 and C−π =



0 0 0
c2−π 0 0
∗ 0 0




where c20 and c
2
−π are the first level’s Stokes multipliers associated with the

first level’s Stokes value τ = 1/2. Our aim is the calculation of c20 and c
2
−π.

However, since τ = 1/2 is not with monomial front, we can not directly apply
Theorem 3.12 as in the previous examples.

Let us first reduce the Stokes value τ = 1/2 into a first level’s Stokes
value with monomial front by considering the change of variable

x =
y

1− y .

System (4.4) becomes

y5
dY
dy

=




0 0 0

− y7

(1−y)4 y2 0
y4

1−y 0 (1− y)3


Y
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and its formal fundamental solution Ỹ(y) := Ỹ (x(y)) reads in the form
Ỹ(y) = G̃(y)eP (1/y) where

• P
(
1
y

)
= diag

(
0,− 1

2y2
,− 1

4y4
+ 1

y3
− 3

2y2
+ 1

y

)
,

• G̃(y) = F̃ (x(y))



1 0 0
0 e1/2 0
0 0 e−1/4


 =




1 0 0

f̃2(x(y)) e1/2 0

f̃3(x(y)) 0 e−1/4


 ∈M3(C[[y]]).

To normalize G̃(y) to I3 +O(y4), we consider the constant gauge transform-
ation

Z =



1 0 0
0 e−1/2 0
0 0 e1/4


Y .

Hence, the system

(4.5) y5
dZ

dy
=




0 0 0

−y7e−1/2

(1−y)4 y2 0
y4e1/4

1−y 0 (1− y)3


Z

and its formal fundamental solution Z̃(y) = H̃(y)eP (1/y) where

H̃(y) =




1 0 0

h̃2(y) 1 0

h̃3(y) 0 1




is a power series in y such that H̃(y) = I3 +O(y4). More precisely,

(4.6) h̃2(y) = e
−1/2y5 +O(y6) and h̃3(y) = −e1/4y4 − 4e1/4y5 +O(y6).

System (4.5) has, like System (4.4), the levels (3, 4) and the set of first
level’s Stokes values associated with the first column h̃(x) of H̃(x) is again
Ω1 = {0, 1/2}. Due to Lemma 3.13, the Stokes—Ramis matrices I3 + C0 and
I3 + C−π of System (4.4) are also Stokes—Ramis matrices of System (4.5).
Moreover, since the first level’s Stokes value τ = 1/2 of System (4.5) is now
with monomial front, Theorem 3.12 applies allowing thus to make explicit
the two first level’s Stokes multipliers c20 and c

2
−π in terms of the connection

constants of ĥ[0](τ) and ĥ[1](τ) at τ = 1/2.
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According to Relations (3.2) and (4.6), the 2-reduced series of h̃(x) are
of the form

h̃ [0](t) =




1

h̃2(t)

h̃3(t)


 and h̃ [1](t) =




0

h̃5(t)

h̃6(t)




where the h̃j(t)’s are power series in t verifying

h̃2(t) = O(t
3) h̃5(t) = e

−1/2t2 +O(t3)

h̃3(t) = −e1/4t2 +O(t3) h̃6(t) = −4e1/4t2 +O(t3)
.

Following (3.17), the matrix

h̃(t) :=

[
h̃ [0](t)

h̃ [1](t)

]
∈M6,1(C[[t]])

is uniquely determined by the system

2t2
dh

dt
=




0 0 0 0 0 0

T
[0]
1 (t) 1 0 tT

[1]
1 (t) 0 0

T
[0]
2 (t) 0 1

t
+ 3 tT

[1]
2 (t) 0 −3− t

0 0 0 −t 0 0

T
[1]
1 (t) 0 0 T

[0]
1 (t) 1− t 0

T
[1]
2 (t) 0 −3

t
− 1 T

[0]
2 (t) 0 1

t
+ 3− t



h

jointly with the initial condition h̃(0) = I6,1 (first column of the identity
matrix of size 6) where





T
[0]
1 (t) = −

4e−1/2(1 + t)t3

(1− t)4 = −2e
−1/2

3

∑

m≥3

(m− 1)(m− 2)(2m− 3)tm

T
[1]
1 (t) = −

e−1/2(1 + 6t+ t2)t2

(1− t)4 = −e
−1/2

3

∑

m≥2

(m− 1)(2m− 1)(2m− 3)tm

T
[0]
2 (t) = T

[1]
2 (t) =

e1/4t

1− t = e
1/4
∑

m≥1

tm

.
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Therefore, the h̃j’s are the unique formal series solutions of the equations

2t2
dh̃2
dt

− h̃2 = T [0]1 (t) 2t2
dh̃3
dt

−
(
1

t
+ 3

)
h̃3 = T

[0]
2 (t)− (3 + t)h̃6

2t2
dh̃5
dt

− (1− t) h̃5 = T [1]1 (t) 2t2
dh̃6
dt

−
(
1

t
+ 3− t

)
h̃6 = T

[1]
2 (t)−

(
3

t
+ 3

)
h̃3

satisfying the conditions h̃j(t) = O(t2). Hence,

• the Borel transforms ĥ2 and ĥ5 verify the equations




(2τ − 1)ĥ2 = T̂ [0]
1 (τ)

(2τ − 1)dĥ5
dτ

+ 3ĥ5 =
dT̂

[1]
1

dτ
(τ) , ĥ5(0) = 0

where the Borel transforms T̂ [u]
1 (τ) of T

[u]
1 (t) are defined by





T̂
[0]
1 (τ) = −

2e−1/2

3

∑

m≥2

(2m− 1)
(m− 2)! τ

m = −2τ
2(2τ + 3)

3
eτ−1/2

T̂
[1]
1 (τ) = −

e−1/2

3

∑

m≥1

4m2 − 1
(m− 1)!τ

m = −τ(4τ
2 + 12τ + 3)

3
eτ−1/2

,

• denoting ϕ :=
[
ĥ3

ĥ6

]
, the Borel transforms ĥ3 and ĥ6 verify the system





[
1 0
3 1

]
d2ϕ

dτ
+

[
3− 2τ −3
0 3− 2τ

]
dϕ

dτ
+

[
−2 1
0 −3

]
ϕ = − d

dτ

[
T̂
[0]
2

T̂
[1]
2

]

ϕ(0) = 0,
dϕ

dτ
(0) =

[
−e1/4
−4e1/4

]

where the Borel transforms T̂ [u]
2 (τ) of T

[u]
2 (t) are defined by

T̂
[0]
2 (τ) = T̂

[1]
2 (τ) = e

1/4
∑

m≥0

τm

m!
= eτ+1/4.
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As a result, ĥ3 and ĥ6 are entire on all C and, for j = 2, 5, the analytic
continuations ĥ+j,1/2’s of the ĥj’s to the right of τ = 1/2 verify

ĥ+2,1/2

(
1

2
+ τ

)
= −(1 + 2τ)

2(2 + τ)

6τ
eτ ĥ+5,1/2

(
1

2
+ τ

)
= −iατ−3/2 + E(τ)

with E(τ) an entire function on C and

α =
1

8

√
2

e
+

√
2

6
1F1

(
1

2
,
3

2
;−1
2

)

where 1F1
(
1
2
, 3
2
; τ
)
denotes the confluent hypergeometric function with para-

meters 1
2
and 3

2
.

Consequently, the connection matrices K [u]
1/2,+ of f̂ [u](τ) at the point

τ = 1/2 are given by

K
[0]
1/2,+ =




0

k
[0]2
1/2,+ = −

1

3
0


 K

[1]
1/2,+ =




0

k
[1]2
1/2,+ = iα

0


 .

FromTheorem 3.12 and more precisely Formula (3.14) (recall that L = 0),
we deduce that the two first level’s Stokes multipliers c20 and c

2
−π are related

to the connection constants k[0]21,+ and k
[1]2
1,+ above by the relations

c20 = 2iπk
[0]2
1/2,+ + 2iπ

eiπ/2

Γ(3/2)
k
[1]2
1/2,+ c2−π = 2iπk

[0]2
1/2,+ + 2iπe

−iπ e
iπ/2

Γ(3/2)
k
[1]2
1/2,+

(recall that ρ1 = e−iπ since r1 = 2). Hence,

c20 = −
2i

3
(π + 6α

√
π) c2−π = −

2i

3
(π − 6α√π) .
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