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Benchmark solution for a three-dimensional mixed convection flow -Part 1: reference solutions

A solution to a benchmark problem for a three-dimensional mixed convection flow in a horizontal rectangular channel heated from below and cooled from above (Poiseuille-Rayleigh-Bénard flow) is proposed. This flow is a steady thermoconvective longitudinal roll flow in a large aspect ratio channel at moderate Reynolds and Rayleigh numbers (Re=50, Ra=5000) and Prandtl number Pr=0.7. The model is based on the Navier-Stokes equations with Boussinesq approximation. We propose reference solutions resulting from computations on large grids, Richardson extrapolation (RE) and cubic spline interpolations. The solutions obtained with one finite difference, one finite volume and two finite element codes are in good agreement and reference values for the flow and thermal fields and the heat and momentum fluxes are given with 4 to 5 significant digits.

Nomenclature

A, A e streamwise and adiabatic entrance aspect ratios of the channel, L/H, L e /H B transversal aspect ratio of the channel, l/H d f relative distance between the finest grid and extrapolated solutions,

(f f g -f ex )/|f f g | E c
kinetic energy F D,F E,F V finite differences, finite elements, finite volumes g gravitational acceleration, m/s 

Context and objectives

Mixed convection flows in channels of rectangular cross section are encountered in many industrial applications: thermal and chemical reactors, chimneys, solar collectors, thermal insulation of buildings, heat exchangers, etc. More specifically, the Poiseuille-Rayleigh-Bénard (PRB) configuration (i.e. mixed convection flows in horizontal rectangular channels heated from below) is representative of rectangular Chemical Vapor Deposition (CVD) reactors and of air flows in the cooling of printed electronic circuit boards, among others [START_REF] Nicolas | Numerical simulation of thermoconvective flows and more uniform depositions in a cold wall rectangular APCVD reactor[END_REF][START_REF] Wang | Instability and heat transfer in mixed-convection flow in a horizontal duct with discrete heat sources[END_REF][START_REF] Nicolas | Bibliographical review on the Poiseuille-Rayleigh-Bénard flows: the mixed convection flows in horizontal rectangular ducts heated from below[END_REF]. PRB flows are also studied in association with mass transfer in the case of double diffusive mixed convection flows, with or without Soret effect [START_REF] Ben Hamed | Numerical 3Dstudy of Poiseuille Rayleigh Benard Soret problem in a finite extent paralellipipedic duct[END_REF][START_REF] Rahli | Three-dimensional mixed convection heat and mass transfer in a rectangular duct: case of longitudinal rolls[END_REF]. However, to the authors' best knowledge, three-dimensional benchmark numerical solutions of mixed convection flows do not exist in the literature. In numerous numerical studies of PRB flows, for instance, numerical codes are only validated by comparisons with experimental data, particularly those of Chiu and Rosenberger [START_REF] Chiu | Mixed convection between horizontal plates -1. Entrance effects[END_REF] and Ouazzani et al. [START_REF] Ouazzani | Etude expérimentale de la convection mixte entre deux plans horizontaux à températures différentes -2[END_REF], in which laser Doppler anemometry measurements of local velocities are given. However, it is well known that a precise agreement between the experimental and numerical results is hard to obtain because the thermal and dynamical initial and boundary conditions are not perfectly controlled experimentally and are very hard to accurately reproduce numerically [START_REF] Benzaoui | Efficient vectorized finite difference method to solve the incompressible Navier-Stokes equations for 3D mixed convection flows in high aspect ratio channels[END_REF]. That is why we propose the present benchmark solution. This benchmark exercise was proposed in the framework of the French Heat Transfer Society (SFT) by several laboratories involved in the numerical analysis of thermoconvective flows in closed cavities and open channels. A call for contributions was first published in 2006 [START_REF] Medale | CALL FOR CONTRIBUTIONS: Towards numerical benchmark solutions for 3D mixed convection flows in rectangular channels heated from below[END_REF]. Initially, two configurations of PRB flows, covering two different flow ranges, were chosen. The first one concerned the present steady longitudinal roll flow in a large aspect ratio channel at Reynolds number Re=50, Rayleigh number Ra=5000 and Prandtl number Pr=0.7. The second one concerned a fully-established space and time periodic transverse roll flow in a small aspect ratio channel at small Reynolds number Re=0.1, Ra=2500 and Pr=7. In this paper, only the solution of the first test case is presented.

The computation of 3D unsteady mixed convection flows in channels often requires computational domains of long and/or wide aspect ratios, fine space and time discretizations. Therefore, efficient numerical methods are needed to solve the conservation equations. The interest of this first test case is that its computational cost is quite reasonable and it is accessible with limited computational facilities. It is indeed steady and, the computational domain being extended up to the fully-established zone, a homogeneous Neumann boundary condition at the outflow accommodates the problem solution. It is therefore much easier to compute than the second test case in which a steady state is never established since unsteady thermoconvective rolls are permanently transported by the flow.

Thus the aim of the present paper is to provide a 3D numerical benchmark solution for mixed convection flows, that can be used to validate 3D numerical codes for the computation of thermoconvective instabilities in channels for instance. More precisely, local, surface averaged and volume averaged quantities, concerning the temperature, velocity and pressure fields and their derivatives are computed. For all these quantities, reference values with their uncertainty margins are given in tables.

In the present work, we solve the first benchmark problem using four different CFD research codes and three discretization methods: finite difference (FD), finite volume (FV) and finite element (FE) methods. Two of the solvers (the FD and FV ones) are, theoretically, of second order in space, while both others (the FE solvers) are of third order. All contributors have mobilized a significant amount of computational resources to achieve reliable spatial convergence. In particular, approximate solutions have been obtained on successively refined grids so that Richardson extrapolation (RE) could be used to extent the results. This technique enables one to improve the accuracy of the discrete solutions when used in the asymptotic range of the numerical methods [START_REF] Alvin | Methodology for characterizing modeling and discretization uncertainties in computational simulation[END_REF][START_REF] Roache | Perspective: a method for uniform reporting of grid refinement studies[END_REF][START_REF] Oberkampf | Verification and validation in computational fluid dynamics[END_REF][START_REF] Roy | Review of code and solution verification procedures for computational simulation[END_REF]. In the present study, RE was mainly performed for increasing the accuracy of the second order solvers since an improvement by one unit of the space convergence order is theoretically achievable, which would allow to reach the same space order as the FE methods.

However, in the present test case, difficulties in the use of RE have appeared due to the mixed thermal boundary conditions on the channel bottom and top plates. Indeed, to try to reproduce the operating conditions of the PRB experiments by Pabiou et al. [START_REF] Pabiou | Wavy secondary instability of longitudinal rolls in Rayleigh-Bénard-Poiseuille flows[END_REF] without introducing too many parameters (a regularizing function for instance), we chose to impose adiabatic Neumann conditions near inlet and isothermal Dirichlet conditions downstream. This generates a continuous temperature field but a discontinuous temperature gradient at the boundary condition junction. The consequences of this singularity are discussed thoroughly in the second part of this article [START_REF] Nicolas | Benchmark solution for a threedimensional mixed convection flow -Part 2: analysis of Richardson extrapolation in the presence of a singularity[END_REF]. In this more technical and theoretical second part, it is shown that RE can still be used, but with precautions, and that reference solutions for the present benchmark problem can be indeed given with four to five significant digits.

The outline of the present paper is the following. The geometry, the governing equations, the boundary conditions and the flow parameters of the simulated test case are described in section §2. The solvers of the different contributors are presented in section §3 and references are given for more details. In section §4, the general principle of RE is first recalled and the methodology used to define the reference solutions is described.

The reference solutions are presented and analyzed in section §5. In §5.1, reference solutions are given for the volume averages of kinetic energy and temperature over the whole domain and for the pressure difference between inlet and outlet of the channel. In §5.2, streamwise and spanwise profiles of the velocity components, temperature and wall Nusselt number are presented and reference values for selected extrema on these profiles are given. In §5.3, reference values of the heat and momentum fluxes through the channel boundaries are presented. Finally a brief conclusion is given in section §6.

Test case description

The proposed benchmark is a PRB flow, made of ten steady longitudinal thermoconvective rolls, in the horizontal rectangular channel drawn in Figure 1. A Poiseuille flow is imposed at the channel entrance and the incoming fluid is cold, at temperature T c . After an entrance zone over which a zero heat flux is imposed on the four walls, the top horizontal wall is maintained at the cold temperature T c and the bottom wall is maintained at a higher temperature T h . The vertical lateral walls are adiabatic. A and B are the streamwise and spanwise aspect ratios of the computational domain and A e is the streamwise entrance aspect ratio (see Figure 1). The working fluid is Newtonian and the flow is governed by the 3D incompressible Navier-Stokes equations under the Boussinesq assumption. Using the channel height H, the mean flow velocity U mean , ρU 2 mean and H/U mean as reference quantities for lengths, velocities, pressure and time respectively, and using the reduced temperature θ = (T -T c )/(T h -T c ), the governing equations take the following dimensionless form:

         ∇. -→ v = 0 ∂ -→ v ∂t + ( -→ v .∇) -→ v = -∇p + 1 Re ∇ 2-→ v + Ra P r Re 2 θ -→ k ∂θ ∂t + -→ v .∇θ = 1 P r Re ∇ 2 θ (1)
where x, y, z, t, -→ v = (u, v, w) and p are the dimensionless streamwise, spanwise and vertical coordinates, time, velocity vector and pressure, -→ k is the upward unit vector, P r is Prandtl number (= ν/α), Re is Reynolds number (= U mean H/ν) and Ra is Rayleigh number (= gβ(T h -T c )H 3 /(να)). The boundary and initial conditions for u, v, w and θ are: • at y = 0 and B, -→ v = -→ 0 and ∂θ/∂y = 0;

• at z = 0, -→ v = -→ 0 
• at x = -A e , u = u P ois (y, z), v = w = 0 and θ = 0, where u P ois (y, z) is given either directly by an approximate solution of the Poisson equation ∂²u P ois ∂y² + ∂²u P ois ∂z² = Re ∂p ∂x , with no-slip boundary conditions at y = 0 and B and at z = 0 and 1, or by the analytical solution of this equation computed in [START_REF] Nicolas | Linear stability of mixed convection flows in horizontal rectangular channels of finite transversal extension heated from below[END_REF] and given in appendix A.

• at x = A-A e , an outflow non-reflective boundary condition is imposed. The choice of this boundary condition was left free in [START_REF] Medale | CALL FOR CONTRIBUTIONS: Towards numerical benchmark solutions for 3D mixed convection flows in rectangular channels heated from below[END_REF]. Note however that the standard Neumann or Orlanski boundary conditions are appropriate for this test case since the flow is dominated by convection.

• at t = 0, ∀x ∈ [-A e , A -A e ], u = u P ois (y, z), v = w = 0 and θ = 0.

The present test case is defined by: Re = 50, Ra = 5000, P r = 0.7, A = 50, B = 10 and A e = 2. The resulting flow pattern is the ten longitudinal roll steady flow presented in Figure 2. It is obtained by starting from the initial conditions given above and develops after a transient stage which will not be discussed here. It is symmetrical with respect to the median longitudinal vertical plane and can therefore be computed for y ∈ [0, B/2].

Contributors and solver description

Below, we present the solvers of the four contributors and references are given for more details. The numerical parameters for each of the four schemes are given in Table 1. In the table, we also indicate if the symmetry with respect to the median longitudinal vertical plane was used or not, the mesh sizes in each space direction, N x × N y × N z , the time step value, ∆t, an estimation of the computational time (restitution time) and the consistency orders in space1 , α°, of each space discretization method for each primitive variable. Note that, when symmetry is used, N y is the node number on the width B/2 of the computational domain. Furthermore, N i (i = x, y, z) is the node number in the direction i for the FV and FE methods and the number of computational points of scalar quantities (temperature and pressure) for the FD method. Thus, whatever the mesh used, the beginning of the bottom heated plate at x = 0 is located on a node for the FE and FV methods and at mid distance between two temperature computational points for the FD method.

Second order finite difference vectorized code: FD1

The test case solution "FD1" is computed using a FD method, optimized for vectorial computers. The time discretization scheme is a second-order scheme combining a second order backward difference formula for the time derivative term, an explicit Adams-Bashforth scheme for the convective term and an implicit treatment of the diffusive term.

The equations are discretized in space on uniform, Cartesian and staggered grids using centered differences for the diffusive terms and a central scheme for the convective terms. However, with the two finest meshes used in this study (see Table 1), to avoid numerical scheme instabilities and save CPU time, the solution is computed first with a second order upwind scheme and ∆t = 0.01. Then, starting from this converged steady solution as initial condition, a new solution is computed with the central scheme and ∆t = 0.002.

The time integration and the velocity-pressure coupling are computed by the projection method based on Goda's algorithm [START_REF] Goda | A multistep technique with implicit difference schemes for calculating twoor three-dimensional cavity flows[END_REF]. The Helmholtz equations for the temperature field and the components of the predicted velocity field are solved using an incremental factorization method of ADI type which preserves a second order time accuracy. The Poisson equation for the pressure increment is solved by a factorization method which consists in the partial diagonalizing of the mono-dimensional Laplace operators in the transverse directions y and z. The linear systems resulting from these two factorization methods are all tridiagonal and are solved by the TDMA algorithm. An Orlanski type boundary condition is used at the outflow boundary. Steady state solutions are obtained by integrating long enough in time. The stopping criterion is reached when the maximum of the velocity divergence saturates at values below 5 × 10 -12 . Since this solver is highly vectorizable, the code is very efficient on vectorial supercomputers: for instance, it runs at 12.5 Giga Flops on average on the NEC-SX8 computer at IDRIS (the CNRS supercomputing center at Orsay, France), when the peak power of this computer is 16 Giga Flops. A detailed description of this code and of its validations and performances can be found in Benzaoui et al. [START_REF] Benzaoui | Efficient vectorized finite difference method to solve the incompressible Navier-Stokes equations for 3D mixed convection flows in high aspect ratio channels[END_REF].

Third order finite element parallelized code: FE2

The numerical model "FE2" is based on a segregated approach to build up separate integral forms associated with the set of coupled governing equations [START_REF] Nicolas | Numerical simulation of thermoconvective flows and more uniform depositions in a cold wall rectangular APCVD reactor[END_REF]. The fluid flow problem is kept in primitive variable formulation and solved using an unconditionally stable projection algorithm [START_REF] Guermond | A new class of truly consistent splitting schemes for incompressible flows[END_REF]. As in most projection type algorithms the incompressibility constraint is enforced in the FE2 code through a pressure correction field computed from a pressure Poisson equation. The latter is obtained by taking the divergence of the momentum equation in equations [START_REF] Nicolas | Numerical simulation of thermoconvective flows and more uniform depositions in a cold wall rectangular APCVD reactor[END_REF] and Neumann boundary conditions. Non homogeneous Neumann boundary conditions have been implemented for the pressure Poisson equation in a form derived from [START_REF] Orszag | Boundary conditions for incompressible flows[END_REF][START_REF] Karniadakis | High-order splitting methods for the incompressible Navier-Stokes equations[END_REF]:

∂p ∂ n = (- ∂ v ∂t -v∇ v - 1 Re ∇ × (∇ × v) + Ra P rRe 2 θ k) • n (2) 
The mechanical stress and heat flux outlet boundary conditions arising at x = A for the momentum and energy equations have been treated with a formulation inspired from [START_REF] Papanastasiou | A new outflow boundary condition[END_REF] and adapted to the present framework combining a segregated approach for the mixed convection problem together with a projection algorithm. The spatial discretization of the three separate integral forms, associated with temperature, velocity and pressure unknowns, follows the standard FE method, using triquadratic hexahedral FE for the velocity and temperature fields and tri-linear approximation for the pressure field. The non-linear algebraic system resulting from the discretization of the momentum equation is solved using a Newton-Raphson procedure, despite only partial convergence is required for solving this nonlinear system during the transient solution in the segregated procedure. The time integration is performed with a second order Backward Difference Formula scheme (BDF2) [START_REF] Guermond | A new class of truly consistent splitting schemes for incompressible flows[END_REF]. At each time step the three algebraic systems corresponding to the momentum, incompressible projection and energy conservation are solved with an iterative solver (Bi-Conjugate Gradient Stabilized, preconditioned with Additive Schwartz Method) provided in the PETSc toolkit [START_REF] Balay | Petsc Web pages[END_REF]. This implementation enables us to efficiently run high performance massively parallel computers (IBM SP4 and SP6 at IDRIS). Finally, the computational domain is discretized with three meshes uniformly spaced in the x, y and z directions and whose node numbers are given in Table 1, e.g., the finest mesh consists of 675 × 135 × 45 tri-quadratic hexahedra FE, built on 1351 × 271 × 91 nodes. The stopping criterion is reached when the L 2 norm of the time derivative terms of velocity components and temperature, divided by the total number of degrees of freedom, is smaller than 10 -12 .

Second order finite volume parallelized code: FV3

The test case solution "FV3" is computed using the FV code Thétis developed at I2M Institute. Time discretization of the Navier-Stokes and energy equations is implicit. A first order Euler scheme is used, with an implicit treatment of all the terms of the equations (after linearization of the nonlinear convective term of the Navier-Stokes equations and after uncoupling with the energy equation). The incompressibility constraint that couples the velocity and the pressure is solved using a pressure correction scheme [START_REF] Timmermans | An approximate projection scheme for incompressible flow using spectral elements[END_REF]. It consists of splitting the Navier-Stokes system into two stages, a velocity prediction stage and a pressure correction stage. The spatial discretization is based on the FV method on a velocity-pressure staggered grid. Pressure and temperature unknowns are located at the cell vertices whereas velocity components are face centered. A centered scheme of order 2 is used for the nonlinear convective terms and stress terms of the Navier-Stokes equations, as well as for the pressure correction step and the diffusive term of the energy equation. The convective term of the latter equation is discretized with the Quick scheme to avoid numerical instabilities [START_REF] Leonard | A stable and accurate convection modelling procedure based on quadratic upstream interpolation[END_REF]. A Neumann boundary condition is set on the outlet boundary for velocity and temperature. The code is parallelized in a distributed way [START_REF] Ahusborde | A 2D block-structured mesh partitioner for accurate flow simulations on non-rectangular geometries[END_REF] and runs efficiently on hundreds of processors using the parallel solver library Hypre [START_REF] Falgout | The Design and Implementation of Hypre, a Library of Parallel High Performance Preconditioners, chapter in Numerical Solution of Partial Differential Equations on Parallel Computers[END_REF]. Among the different solvers and preconditioners available in this library, the most efficient for this problem are a GMRES solver for the prediction step and the energy equation with a point Jacobi preconditioner. For the correction step, a BiCGStab solver with a multigrid preconditioner is used. Three meshes were used. The first one begins with 601 cells in direction x to avoid small oscillations observed in the temperature field with coarser meshes. Simulations are stopped when both the stationary criterion (L ∞ norm of the absolute difference of temperature and velocity between two time iterations) of 10 -10 is reached and the L 2 norm of the divergence is below 10 -10 . An SGI Altix 8200 cluster was used composed of 32 eight-cores dual Intel Xeon processor blades.

Third order finite element stationary parallelized code: FE4

The numerical model "FE4" spatially discretizes equations (1) in stationary form (without the temporal derivative term) using an LBB-stable [START_REF] Ern | Theory and Practice of Finite Elements[END_REF] FE method. No upwinding of the convective term is used. To find the solution of the discrete nonlinear stationary problem, we used a defect-correction solver [START_REF] Turek | Efficient solvers for Incompressible Flow Problems -An Algorithmic and Computational Approach[END_REF]. A certain linearization of the equations and additional regularization terms give an inexact tangent matrix. This tangent matrix is then approximately factorized as in the algebraic projection method [START_REF] Quarteroni | Factorization methods for the numerical approximation of Navier-Stokes equations[END_REF].

This leads to segregation of the linear systems to be solved for each scalar incremental unknown (3 velocities, 1 pressure, 1 temperature).

The mesh is regular and consists in hexahedral elements, triquadratic (Q 2 ) for the velocity and temperature unknowns and linear discontinuous (P nc 1 ) for the pressure. Thus, the formal spatial discretization order of the method is 3 for the velocity and temperature unknowns and 2 for the pressure unknown. The total number of degrees of freedom is 16 million for the coarsest mesh and 73.3 millions for the finest one. The standard natural boundary condition on momentum for the discretization used [START_REF] Ern | Theory and Practice of Finite Elements[END_REF] is µ∂u n /∂n -P = 0. A boundary term in -P last (the last pressure estimation) is discretized and added to the right hand side of the boundary condition so that we get the desired µ∂u n /∂n = 0 when convergence is reached. The inexact tangent matrix is obtained from the following contributions: exact tangent matrix for the diffusion, pressure gradient and velocity divergence terms, fixed point linearization for the convective terms and a regularizing pseudo-time like mass term on the velocity and temperature. The linear systems are solved with BiCGSTAB preconditioned by an ILU(0) incomplete factorization [START_REF] Saad | Iterative methods for sparse linear systems[END_REF] for the velocity and temperature unknowns and FCG(1) preconditioned by algebraic multigrid for the pressure unknown. We used the algebraic multigrid method of Notay [START_REF] Notay | An aggregation-based algebraic multigrid method[END_REF] in sequential mode. To speed-up convergence towards the final steady state, a four-point acceleration method is used. For all computational results, it was checked that the L ∞ norm of the vector of the final incremental unknowns was less than 10 -10 and that the L ∞ norm of the final residual vector was less than 10 -11 . The numerical model was implemented in Cast3m [START_REF]Cast3m web site[END_REF]: a freely available FE code developed at CEA (French Atomic Energy Commission). The model was run on standard PC servers running Linux with up to 8 cores and 64 GB RAM. The most CPU intensive part of the model is the solution of the pressure linear systems.

Computation method of reference values

Principle of Richardson extrapolation

When the approximate solutions of a continuous initial and boundary value problem are computed by discretization methods such as FD, FV or FE methods, RE can be used to improve the accuracy of the discrete solutions. Indeed, provided that some assumptions are satisfied (see below), it is possible to get an order of accuracy of at least O(h p+1 ) when the convergence order of the numerical method is O(h p ), where h is the mesh size. This technique then allows one to compute extrapolated primitive variables at any point of the computational domain as well as solution functionals such as differentiated or integrated quantities (heat and momentum fluxes, volume or surface averaged quantities, and so on). A concise and elegant presentation of RE to estimate a posteriori discretization errors in computational simulations can be found in [START_REF] Alvin | Methodology for characterizing modeling and discretization uncertainties in computational simulation[END_REF]. More details and deeper discussions on the theory are given in [START_REF] Roache | Perspective: a method for uniform reporting of grid refinement studies[END_REF][START_REF] Oberkampf | Verification and validation in computational fluid dynamics[END_REF][START_REF] Roy | Review of code and solution verification procedures for computational simulation[END_REF]]. Here we present the RE principle to compute extrapolated values. The aim is to briefly remind of its general principle but for a completely rigorous presentation one should refer to the second part of this paper [START_REF] Nicolas | Benchmark solution for a threedimensional mixed convection flow -Part 2: analysis of Richardson extrapolation in the presence of a singularity[END_REF]. RE first consists of computing the numerical solutions f h i (1 ≤ i ≤ N) of the discretized boundary value problem on N different nested uniform grids of size h i , with h 1 the coarsest grid and h N the finest one. If the exact solution of the continuous problem, f exact , is sufficiently smooth to justify the use of Taylor expansion (at least up to the discretization order), then it can be written in the form:

f h i = f exact + C α h α i + O(h α+1 i ) (3) 
where C α is a coefficient which is dependent on α but independent of h i . Then, the leading order α of the truncation error due to discretization, the coefficient C α and the exact solution f exact can be approximated from the discrete solutions, if the mesh spacings h i used in the extrapolation are small enough so that the discrete solutions f h i are located in the asymptotic convergence region: that is the leading order term C α h α i of the truncation error must dominate the total discretization error f exact -f h i . Thus, using three grids (N = 3), such as h 1 h 2 = h 2 h 3 , the approximations α, Cα and f ex of α, C α and f exact in equation ( 3) are given by [START_REF] Oberkampf | Verification and validation in computational fluid dynamics[END_REF][START_REF] Roy | Review of code and solution verification procedures for computational simulation[END_REF]:

α = ln f h 1 -f h 2 f h 2 -f h 3 ln h 1 h 2 Cα = f h 2 -f h 3 h α 2 -h α 3 (4) 
f ex = f h 3 -Cα h α 3
and, using four grids (N = 4) such as h 1 h 2 = h 3 h 4 , they are given by:

α = ln f h 1 -f h 3 f h 2 -f h 4 ln h 1 h 2 Cα = f h 3 -f h 4 h α 3 -h α 4 (5) 
f ex = f h 4 -Cα h α 4
with Cα = C α +O(h N -1 ) and f ex = f exact +O(h α+1 N ). As a consequence, the approximation f ex of the asymptotic solution f exact will be better if h N is small and α is large.

The RE technique can therefore be used to increase the accuracy of discrete solutions if the problem is smooth enough. Since the present benchmark problem does not satisfy this assumption, the aim of the second part of this paper [START_REF] Nicolas | Benchmark solution for a threedimensional mixed convection flow -Part 2: analysis of Richardson extrapolation in the presence of a singularity[END_REF] is precisely to show that RE can still be used when a temperature gradient discontinuity is present in the boundary conditions of the problem. In this case however, numerous precautions and several verifications must be done in order to guarantee the RE validity. For each extrapolated quantity, it must be checked that the associated extrapolation coefficient, α, varies between the order of the regularity of the problem (equal to one in the present benchmark problem; see [START_REF] Nicolas | Benchmark solution for a threedimensional mixed convection flow -Part 2: analysis of Richardson extrapolation in the presence of a singularity[END_REF]) and the convergence order of the used numerical method (equal to two or three according to the contributors of the present paper). Of course, for all the quantities presented in the present paper, this requirement has been checked when a value extrapolated by RE is used to compute a reference value.

Criteria used to define the reference values

All the reference solutions presented in the present paper have been computed from the solutions obtained by the four contributors with their laboratory codes using the fine grids presented in Table 1 and the stringent convergence criteria described in §3. Since these codes have second and third order space accuracies, RE has mainly been used to increase the accuracy of the lower order methods in order to homogenize the accuracy of the four solutions. It has indeed been shown in [START_REF] Nicolas | Benchmark solution for a threedimensional mixed convection flow -Part 2: analysis of Richardson extrapolation in the presence of a singularity[END_REF] that, in our specific case (including the problem at hand and the particular methods and meshes used), RE is relevant to increase the accuracy of most of the quantities computed with the FD1 and FV3 second order methods, even if a singularity in the temperature gradient is present in the boundary conditions. Nevertheless, in this case, one must carefully check the validity of RE for each extrapolated quantity. On the other hand, it has also been shown in [START_REF] Nicolas | Benchmark solution for a threedimensional mixed convection flow -Part 2: analysis of Richardson extrapolation in the presence of a singularity[END_REF] that in our specific case RE couldn't be used most of the time with the FE4 method and sometimes with the FE2 method.

As a consequence, the reference solutions proposed in the present paper have been constructed by averaging the extrapolated values obtained from RE of the FD1 and FV3 solutions and the extrapolated values or the values on the finest grid of the FE2 and FE4 methods, depending on whether RE succeeds or not. More precisely, for each quantity proposed in this paper, the reference value, f ref , is equal to the arithmetic average of the extreme values of the FD1, FE2, FV3 and FE4 extrapolated values, except if the validity of RE is not satisfied by the FE solutions. In this case, each value of the FE method for which RE fails is replaced by its counterpart on the finest grid. The uncertainty margin, f marg , of the reference solution is simply defined as the half difference between the two extreme values of the four contributors. These definitions have the advantage to be very simple and to give a quick criterion to evaluate the dispersion of the best solutions of the four contributors. We have also defined the precision of the reference solution determination, f prec : it is equal to the ratio of the uncertainty margin to the reference value. The values of f ref , f marg and f prec computed for various integral, local or derivative quantities characteristic of the velocity, pressure and thermal fields of the present PRB flow are given in the result tables of §5.

5 Presentation and analysis of the reference values

Reference values for integral quantities

The reference values of integral quantities are given first. These integrals are twice the mean kinetic energy, 2E c , on the whole domain of volume D, the mean pressure difference, ∆P io , between inlet and outlet and the mean temperature, T m , on the whole domain that are defined by:

2E c = 1 D D u 2 + v 2 + w 2 dx dy dz ( 6 
)
∆P io = 1 S i S i P dy dz - 1 S o So P dy dz (7) 
T m = 1 D D θ dx dy dz (8) 
They have been computed using either the middle point rule for the FD1 and FV3 solutions or 3 × 3 × 3 Gauss integration scheme for the FE2 and FE4 solutions. The advantage of these integrals is that they only depend on the primitive variables: no differentiation and no interpolation are needed to compute their values on each grid.

Thus, the accuracy of these quantities only depend on the convergence orders of the numerical methods.

The values of f = (2E c , ∆P io , T m ) on the finest grid (noted f f g ) and extrapolated by RE (noted f ex ) are given in Table 2 with the associated convergence order αf . It can be shown that RE fails only for the FE4 2E c and ∆P io values because αEc and α∆P io do not vary between 1 (the order of the regularity of the problem) and 3 (the accuracy order of the the FE4 method). Reference solutions can nevertheless be constructed using the FE4 2E c and ∆P io values on the finest grid by following the method proposed in §4.2.

The reference values of the three integral quantities are given in Table 2 with a precision of the order of 10 -5 , with five common figures among the four extrapolated solutions for 2E c and ∆P io and four common figures for T m . The relevance of RE on the accuracy of these results is completely discussed in [START_REF] Nicolas | Benchmark solution for a threedimensional mixed convection flow -Part 2: analysis of Richardson extrapolation in the presence of a singularity[END_REF].

Reference values for temperature, velocity and Nusselt number local extrema

Space profiles of the thermal and dynamical fields

In the following, we denote by Nu t and Nu b the local Nusselt numbers on the top and bottom walls respectively. They are defined by:

Nu t,b (x, y) = - H ∂T ∂Z Z=H,Z=0 T h -T c = - ∂θ ∂z z=1,z=0 (9) 
In Figure 3, the longitudinal profiles of the primitive variables θ, u, v and w are plotted along the lines (y, z) = (2, 0.2) and (5, 0.5) and the profiles of Nu t and Nu b are plotted along the lines y = 2 and y = 5. The transverse profiles of θ, u, v and w are drawn in Figure 4 along the four lines at x = 10 and 30 and at z = 0.2 and 0.5. The transverse profiles of Nu t and Nu b are drawn in Figure 5 along the lines at x = 10 and x = 30.

Only the first half of these transverse profiles is shown because the flow is symmetrical with respect to the median vertical plane (y = 5). The transverse profiles at x = 10 are located in the entrance region, more precisely at mid-length of the forced convection triangular zone, where only two longitudinal rolls are present along each vertical wall (see Figure 2(a)). On the other hand, the transverse profiles at x = 30 are sinusoidal profiles because they are located where ten well developed longitudinal rolls are present.

All these profiles are computed from the FD1 solution on the finest mesh. The same profiles are obtained with the other numerical methods (FE2, FV3, FE4) if the comparisons are done at the same scales as those of Figures 3, 4 and5. Note that the extrapolated profiles cannot be drawn since the asymptotic convergence region does not span the whole computational domain. In particular, RE diverges at points where the profiles computed on two distinct meshes intersect. Indeed, when f h i = f h j for h i = h j , α diverges in equations ( 4) or [START_REF] Rahli | Three-dimensional mixed convection heat and mass transfer in a rectangular duct: case of longitudinal rolls[END_REF]. This is discussed in details in [START_REF] Nicolas | Benchmark solution for a threedimensional mixed convection flow -Part 2: analysis of Richardson extrapolation in the presence of a singularity[END_REF].

Temperature, velocity and Nusselt number local extrema

The reference values and the coordinates of thirty-four local extrema, identified by small filled circles on the profiles of Figures 345along the lines at (y, z) = (5, 0.5) and (2, 0.2) and at (x, z) = (30, 0.5), are given in this section. Only the reference values are given here. They are computed with the method described in §4.2. However, the method used to compute the values of these extrema on each grid and their extrapolated values requires cubic spline interpolations. This part of the method is described in [START_REF] Nicolas | Benchmark solution for a threedimensional mixed convection flow -Part 2: analysis of Richardson extrapolation in the presence of a singularity[END_REF]. The extrapolated values and the values on the finest grid computed by the four contributors for some of these extrema are also given in [START_REF] Nicolas | Benchmark solution for a threedimensional mixed convection flow -Part 2: analysis of Richardson extrapolation in the presence of a singularity[END_REF]. Among the thirty-four chosen extrema, the reference values of the local extrema of the primitive variables, θ, u, v and w are given in Table 3 with four to five significant figures. The reference values of the Nusselt numbers Nu t and Nu b are given in Table 4 with three to four significant figures. The coordinates of these extrema are generally given with three significant figures in the x direction and with four significant figures in the y direction. Note that other extrema and coordinate values are also available in [START_REF] Nicolas | Benchmark solution for a three-dimensional mixed convection flow -Detailed technical report[END_REF].

Heat and momentum fluxes through channel faces

Finally, we compare the dimensionless heat flux, Φ θ , and momentum fluxes, Φ u , Φ v and Φ w , through the boundary surfaces of the half channel obtained when the symmetry through the mid-plane at y = B/2 is taken into account. The flux definitions are given in Table 5. In this table, S i , S o , S f , S t and S b are respectively the inlet, outlet, front, top and bottom surfaces of the half channel, S s is the symmetry plane at y = B/2 and

S tot = S i ∪S o ∪S f ∪S s ∪S t ∪S b
is the total surface of the half channel Ω/2. Note that, from the Navier-Stokes equation in (1), the total momentum flux, Φ w , through S tot is equal to the integral of the buoyancy term,

I buo = Ω/2 -Ra
Re²P r θ dV , on the half computational domain.

The diagonal terms of the momentum flux tensor depend on pressure. Since pressure is defined up to a constant, we decided to fix the value of this constant such that, for each grid, the momentum flux Φ u vanishes on the inlet surface S i . Furthermore, due to the symmetry conditions and our choice of boundary conditions, several other flux components are equal to zero. These are indicated in Table 5.

We computed the fluxes defined in Table 5 on each grid, then extrapolated these values by RE. The criteria introduced in §4.2 to define the reference values and the tolerance margins are also used here for the heat and momentum fluxes. The ranges of the extrapolation coefficient α kept to choose the extrapolated values used to define the references are 1 ≤ α ≤ 2.5 for the FD1 and FV3 solutions and 1 ≤ α ≤ 3.4 for the FE2 and FE4 solutions. The reference values with their tolerance margin are given in Table 6.

The used methodology allows us to estimate the fluxes on the different surfaces with two to five significant digits, depending on the magnitude of the fluxes. More details on the methodology, the whole extrapolated values of each contributor, the values on the finest grids and the α values can be found in [START_REF] Nicolas | Benchmark solution for a three-dimensional mixed convection flow -Detailed technical report[END_REF].

Conclusions

A reference solution of a first numerical benchmark for a steady three-dimensional mixed convection flow in a horizontal rectangular channel, partially heated from below and cooled from above, has been presented. The methodology used to establish this solution is based on the use of four different numerical methods (second order FD and FV methods, and third order FE methods), Richardson extrapolations (RE) on very fine grids and cubic spline interpolations. The reference values are proposed for the dynamical and thermal fields, in the form of local, integral or differential quantities such as local extrema of the primitive variables and Nusselt numbers, surface heat and momentum fluxes, volume integrals of the temperature and kinetics energy and pressure loss. These reference solutions are generally given up to four or five significant figures. The numerical values of all the reference quantities are presented in tables with their accuracy margins. Streamwise and spanwise profiles of the velocity components, temperature and Nusselt numbers are also provided.

The difficulty in the establishment of the reference solution of the present benchmark problem is that a discontinuity takes place in the thermal gradient over the horizontal plates at x = 0, which not only significantly restricts the conditions of application of RE to establish reference solutions, but also complicates its analysis. That is why the consequences of this discontinuity on RE and on the establishment of a reference solution of the benchmark problem are discussed apart in a more theoretical paper [START_REF] Nicolas | Benchmark solution for a threedimensional mixed convection flow -Part 2: analysis of Richardson extrapolation in the presence of a singularity[END_REF]. Furthermore, a comprehensive and detailed technical report of this benchmark problem, with other reference values, is available online [START_REF] Nicolas | Benchmark solution for a three-dimensional mixed convection flow -Detailed technical report[END_REF].

average velocity U mean of the Poiseuille flow is given by:

U mean U • = 1 + 192 π 5 ∞ n=0 (-1) n+1 sinh[(2n + 1)π B 2 ] sin[(2n + 1)π/2] (2n + 1) 5 B cosh[(2n + 1)π B 2 ] (11) 
Thus the inlet dimensionless Poiseuille profile u P ois (y, z) is given by the ratio of equations [START_REF] Alvin | Methodology for characterizing modeling and discretization uncertainties in computational simulation[END_REF] and [START_REF] Roache | Perspective: a method for uniform reporting of grid refinement studies[END_REF], where about 25 terms are kept in the series to obtain a sufficiently accurate entrance velocity profile. Note that in [START_REF] Alvin | Methodology for characterizing modeling and discretization uncertainties in computational simulation[END_REF] and [START_REF] Roache | Perspective: a method for uniform reporting of grid refinement studies[END_REF], the hyperbolic cosine at the denominator diverges when n is high. To avoid any problem, the two hyperbolic cosines of the series can be transformed in real exponentials via the Euler relations. Thus, by denoting N = 2n + 1, the ratio of the two hyperbolic cosines writes:

cosh[Nπ(y -B 2 )] cosh[Nπ B 2 ] = exp[Nπ(y -B)] 1 + exp(-2Nπ(y -B 2 )) 1 + exp(-NπB) (12) 
To avoid the divergence of exp(-2Nπ(y -B 2 ) when N is high, the Poiseuille profile must only be computed for B 2 ≤ y ≤ B. The symmetry with respect to the median vertical plane is used to compute the Poiseuille profile for 0 ≤ y ≤ B 2 .

Tables

Contributor Table 2: Left columns: finest grid (f f g ) and extrapolated (f ex ) values of the integral functions f = 2E c , ∆P io and T m , and truncation error leading order, αf , from their RE. FE4 column: the symbol °indicates an erroneous value due to the extrapolation failure (thus the FE4 finest grid value replaces the FE4 extrapolated value in the reference value determination). Right column: reference solutions with their tolerance margin and the precision of their determination. Table 3: Reference values of the local extrema of f = (θ, u, v, w) and of their coordinates along the two streamwise lines at (y, z) = (5, 0.5) and (2, 0.2) and the spanwise line at (x, z) = (30, 0.5). The precision on the primitive variables f prec = f marg /f ref is also indicated. Other extrema values at intermediate coordinates y 2 along the line at (x, z) = (30, 0.5) are given in [START_REF] Nicolas | Benchmark solution for a three-dimensional mixed convection flow -Detailed technical report[END_REF] Φ 3 and4. 3. 3 and4.

f ref ± f marg x ref ± x marg at (y, z) = (5, 0.5) f ref ± f marg x ref ± x marg at (y, z) = (2, 0.2) f ref ± f marg y ref ± y marg at (x, z) = (30, 0.5) θ 1 x 1 θ 1prec (454845 ± 2) × 10 -6
θ Φ u Φ v Φ w S i S i -∂θ ∂x + RePr uθ dS S i p-

  and there is a Neumann thermal boundary condition, ∂θ/∂z = 0,for x ∈ [-A e , 0[ next to a Dirichlet condition, θ = 1, for x ∈ [0, A -A e ]; • at z = 1, -→ v = -→0and there is also a Neumann thermal boundary condition, ∂θ/∂z = 0, for x ∈ [-A e , 0[ next to a Dirichlet condition, θ = 0, for x ∈ [0, A -A e ];

7 )

 7 × 10 -5 3.9028 ± 0.0001 1.4 × 10 -4

Re²P r θ dV = I buo Table 5 :

 5 Definition of the heat and momentum fluxes through the channel faces

Figure 1 :

 1 Figure 1: Geometry and thermal boundary conditions on the top and bottom walls (the vertical lateral walls are adiabatic). The red dotted lines are the lines along which θ, u, v and w profiles and their extrema are calculated.

Figure 2 :

 2 Figure 2: Temperature fields, θ, in the horizontal mid-plane and temperature field and velocity vector field in the transverse plane at x = 30 in the longitudinal roll flow of the present test case. The yellow dashed lines are some of the lines along which θ, u, v and w profiles and their extrema are calculated. The red dash-dotted lines border the forced convection triangular zone at the entrance of the heated plate, in which no thermoconvective rolls are present.

Figure 3 :

 3 Figure 3: Longitudinal profiles of θ, u, v and w along the lines at (y, z) = (2, 0.2) and (5, 0.5) and longitudinal profiles of Nu t and Nu b along the lines at y = 2 and y = 5. These profiles are the same for the four contributors. The filled circles indicates the local extrema whose values and coordinates are given in Tables3 and 4.

Figure 4 :

 4 Figure 4: Spanwise profiles of the primitive variables θ, u, v and w obtained by the four contributors along the lines at (x, z) = (10, 0.2), (10, 0.5), (30, 0.2) and (30, 0.5). The filled circles indicates the local extrema whose values and coordinates are given in Table

Figure 5 :

 5 Figure 5: Transverse profiles of the Nusselt numbers Nu t and Nu b obtained by the four contributors along the lines at x = 10 and x = 30. The filled circles indicates the local extrema whose values and coordinates are given in Table4.
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 3 Figure 3: Longitudinal profiles of θ, u, v and w along the lines at (y, z) = (2, 0.2) and (5, 0.5) and longitudinal profiles of Nu t and Nu b along the lines at y = 2 and y = 5. These profiles are the same for the four contributors. The filled circles indicates the local extrema whose values and coordinates are given in Tables3 and 4.

Table 1 :

 1 N x × N y × N z [symmetry] Numerical parameters used by the different contributors

			∆t	User time	Consistency
				[computer type (organism/lab)]	orders α°M
	SME,	400 × 134 × 40	0.01	36 min on 1 processor	2 for θ, u, v, w;
	FD1	600 × 200 × 60	0.01	2 h 20 on 1 processor	2 for p
		800 × 268 × 80	0.002	25 h on 1 processor	
		1200×400×120	0.002	100 h on 1 processor	
		[no]		[NEC SX5 (IDRIS)]	
	IUSTI,	601 × 121 × 41	0.01	19 min on 60 cores	3 for θ, u, v, w;
	FE2	901 × 181 × 61	0.01	1 h 40 on 150 cores	2 for p
		1351 × 271 × 91	0.005	43 h 15 on 225 cores	
		[yes]		[IBM SP6 (IDRIS)]	
	I2M	601 × 161 × 41	0.1	8 h on 152 cores	2 for θ, u, v, w;
	Institute,	901 × 241 × 61	0.1	12 h on 152 cores	2 for p
	FV3	1351 × 361 × 91	0.1	56 h on 152 cores	
		[yes]		[ALTIX ICE 8200 (I2M Inst.)]	
	CEA, FE4 601 × 121 × 49	0.5	200 h on 8 cores	3 for θ, u, v, w;
		751 × 151 × 61	0.5	400 h on 8 cores	2 for p
		801 × 161 × 65	0.5	450 h on 8 cores	
		1001 × 201 × 81	0.5	1600 h on 8 cores	
		[yes]		[PC 8 cores (CEA)]	

the consistency order in space is the formal convergence order that is the leading order of the space discretization truncation error.
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Appendix A

The analytical solution of the dimensionless Poiseuille profile is equal to u P ois (y, z) = U P ois (y,z)

Umean , where the dimensional Poiseuille profile U P ois (y, z) is given by [START_REF] Nicolas | Linear stability of mixed convection flows in horizontal rectangular channels of finite transversal extension heated from below[END_REF]:

where

∂P ∂X is the average velocity of the "two-dimensional" Poiseuille flow, i.e. in a two-dimensional channel or between two infinite plates, and where the dimensional along the line at x = 30 are given in [START_REF] Nicolas | Benchmark solution for a three-dimensional mixed convection flow -Detailed technical report[END_REF]. 3. 4.