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ABSTRACT
It is acknowledged that the presence of positive or negative circuits

in regulatory networks such as genetic networks is linked to the
emergence of significant dynamical properties such as multistability
(involved in differentiation) and periodic oscillations (involved in
homeostasis). Rules proposed by the biologist R. Thomas assert
that these circuits are necessary for such dynamical properties.
These rules have been studied by several authors. Their obvious
interest is that they relate the rather simple information contained
in the structure of the network (signed circuits) to its much more
complex dynamical behaviour. We prove in this article a non-
trivial converse of these rules, namely that certain positive or
negative circuits in a regulatory graph are actually sufficient for
the observation of a restricted form of the corresponding dynamical
property, differentiation or homeostasis. More precisely, the crucial
property that we require is that the circuit be globally minimal. We then
apply these results to the vertebrate immune system, and show that
the 2 minimal functional positive circuits of the model indeed behave
as modules which combine to explain the presence of the 3 stable
states corresponding to the Th0, Th1 and Th2 cells.
Contact: ruet@iml.univ-mrs.fr

1 INTRODUCTION
The activity of a biological cell is to a large extent controlled by
genetic regulation, an interactive process usually represented by
graphs called genetic regulatory networks: in these graphs, vertices
denote genes or regulatory products (e.g., RNA, proteins) and edges
denote regulatory interactions between these genes or their products
[5, 23, 28]. These regulatory interactions are further directed and
signed (+1 or −1) to denote activatory versus inhibitory effects.

In order to relate regulatory networks to relevant dynamical
properties, biologists often use them as a basis to generate
dynamical models, using either a differential framework ora
discrete framework [5]. The biological pertinence of the model
considered is then evaluated by comparing numerical simulations
with experimental observations, for instance biochemicalcharacter-
izations of cellular states, phenotypes of genetic mutants, etc.

Since the computational complexity of these simulations is, in
general, exponentially increasing with the size of the network,
some mathematical properties could fruitfully help in controlling
the space of necessary simulations. In the early 1980’s, thebiologist
R. Thomas proposed two simple rules relating the structure of
regulatory networks to their dynamical properties [30]:

1. a necessary condition for multistability (i. e., the existence of
several stable fixed points in the dynamics) is the existenceof
a positive circuit in the regulatory network (the sign of a circuit
being defined as the product of the signs of its edges);

2. a necessary condition for the existence of an attractive cycle in
the dynamics is the existence of a negative circuit.

These two types of dynamical properties correspond to important
biological phenomena: cell differentiation processes in the first case,
homeostasis such as stable periodic behaviours (e.g., cellcycle
or circadian rhythms) in the second case. Several authors have
proposed demonstrations of these rules in a differential framework
[15, 25, 8, 26], and more recently in a discrete framework
[3, 20, 17], in which the expression levels of genes are discretised
and modelled as elements of a finite set such as{0, 1}. Discrete
approaches are indeed increasingly used in biology [9, 24, 2, 6, 22]
because of the qualitative nature of most experimental data, together
with a wide occurrence of non-linear regulatory relationships. In
[20] in particular, the dynamics of a system ofn genes is represented
by a mapf : {0, 1}n → {0, 1}n, and a signed directed graph
G(f)(x) is associated to each state of the systemx ∈ {0, 1}n. This
graph corresponds to a local notion of regulatory graph (as in [26]
for instance), and is mathematically defined by means of the discrete
Jacobian matrixJ(f)(x) [21]. The required definitions are recalled
in Section 2.

While these results provide graphic conditions which are
necessary to observe some dynamical properties, they do notgive
sufficient conditions at all, while biologists often acknowledge
certain positive or negative circuits as responsible for some
dynamical behaviour [29, 31]. In the very specific case of discrete
isolated circuits however, i. e., when the regulatory graphG(f)(x)
does not depend on the statex and consists in a circuit, [16] provide
an extensive analysis of the dynamics, recalled in Section 3.

In the present paper, we show that the presence of certain positive
or negative circuits in a local graphG(f)(x) suffices for the
observation of the corresponding dynamical property (multistability
or a restricted version of homeostasis). More precisely, the crucial
property thatC has to meet is to beglobally minimal, i. e., minimal
as a circuit in the global graphG(f) =

S

x∈{0,1}n G(f)(x)
obtained by taking the union of all local graphs. In Section 4we
define a restricted form of fixed points and attractive cyclesfor each
setI of genes, and we show that ifC is a globally minimal positive
(resp. negative) circuit with vertex set{k1, . . . , kp}, then a suitably
defined restriction off to {k1, . . . , kp} has two fixed points (resp.
an attractive cycle). These results provide:
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• a non-trivial converse to Thomas’ rules in the discrete
framework,

• a natural approach to the question of modularity of regulatory
networks, namely: given pieces of a network for which the
dynamics is known, how do they combine to produce a global
(more complex) behaviour? Our results on the effect of specific
functional circuits in a network gives insights into this line of
research.

In Section 5, we present a biological illustration of our approach:
the Th-lymphocyte differentiation in the vertebrate immune system,
and we apply the results of Section 4. The analysis of globally
minimal circuits enables to recover the presence of the 3 stable
states, which correspond to the Th0 (naive), Th1 and Th2 cells.

2 BOOLEAN DYNAMICS AND DISCRETE
JACOBIAN MATRICES

2.1 Notations
Let us start with preliminary notations. Forβ ∈ {0, 1}, we defineβ
by 0 = 1 and1 = 0. Let n be a positive integer. Forx ∈ {0, 1}n

andI ⊆ {1, . . . , n}, xI ∈ {0, 1}n is defined by:

(xI)i =

(

xi for i 6∈ I,

xi for i ∈ I.

WhenI = {i} is a singleton,x{i} is denoted byxi. The distance
d : {0, 1}n × {0, 1}n → {0, 1, . . . , n} is the Hamming distance:
d(x, y) is the number ofi ∈ {1, . . . , n} such thatxi 6= yi. Suppose
0 6 k 6 n, andI is ak-element subset of{1, . . . , n}. Then each
x ∈ {0, 1}n generates an affinek-dimensional subspacexJIK of
{0, 1}n = Fn

2 defined by:

xJIK = {y ∈ {0, 1}n such thatyj = xj for all j 6∈ I}.

2.2 Dynamics
In the context of genetic regulatory networks, we are interested
in the evolution of the system consisting ofn genes, which are
denoted by the integers1, . . . , n. We consider{0, 1}n as the set of
statesof this dynamical system. Given a statex = (x1, . . . , xn) ∈
{0, 1}n, xi denotes the (discretized) expression level of genei.
These expression levels are either0 (when the gene product is
considered absent or inactive) or1 (when the gene product is present
and active).

In discrete models, a dynamics is a binary relationR which we
assume to be irreflexive:R gives the rule for updating a state, i. e., it
is the set of pairs of states(x, y) such that statex can lead to statey.
In particular, astable stateis a statex such that for noy, (x, y) ∈ R.

In the context considered in this paper (genetic networks),it is not
realistic to assume a simultaneous update of all variables.Indeed,
the Boolean dynamical systems we are interested in can be seen as
discretizations of piecewise-linear differential systems [7, 30, 5, 27],
and for these systems, the set of trajectories meeting more than one
threshold hyperplane at a time has measure0. We shall therefore
considerasynchronous dynamics, i. e., relationsR such that:

(x, y) ∈ R impliesd(x, y) = 1,

(0, 1) (1, 1)

(0, 0) (1, 0)

1 2

(a) (b)

Fig. 1. (a) Asynchronous dynamics: the states of a system consisting in
two variables1 (horizontal axis) and2 (vertical axis) are pictured; an arrow
from statex to statexi means thatfi(x) 6= xi. (b) The regulatory graph
G(f)(x), which turns out not to depend onx. Edges represent activations
or inhibitions and are respectively denoted by arrows→ and T-end notation

⊣, which are more standard in biological literature than
+1
→,

−1
→ .

i. e., y = xi for some i. Clearly, the asynchronous dynamics
encompasses, among many others, the realistic trajectories, and
a more refined analysis would take into account, e.g., delaysand
probabilistic issues. Such an asynchronous dynamicsR may be non-
deterministic (it needs not be a function), but even then, itis possible
and convenient to represent it by a mapf : {0, 1}n → {0, 1}n with
coordinate functionsf1, . . . , fn, defined by:

fi(x) 6= xi when(x, x
i) ∈ R. (1)

Observe that a stable state is then a fixed pointx for f (f(x) = x).
More generally, ifI ⊆ {1, . . . , n}, anI-fixed pointis anx such that
fi(x) = xi for all i ∈ I , i. e., the coordinates inI are fixed underf .

Given such a mapf , the corresponding asynchronous dynamics
is defined in a straightforward way, and for eachx ∈ {0, 1}n and
i = 1, . . . , n, fi(x) denotes the value to whichxi, the expression
level of genei, tends when the system is in statex.

For instance, the asynchronous dynamics corresponding to the
map f : {0, 1}2 → {0, 1}2 defined byf(x) = (x2, x1) is
illustrated in Figure 1.

A trajectory in the dynamics is a sequence of states(x1, . . . , xr)
such that for eachi = 1, . . . , r − 1, (xi, xi+1) ∈ R, and acycleis
a trajectory of the form(x1, . . . , xr, x1) with r > 2. We shall be
especially interested in a specific class of cycles which correspond
to periodic oscillations: a cycle(x1, . . . , xr, x1) is said to be
attractivewhen no trajectory may leave it, i. e., for alli = 1, . . . , r,
d(xi, f(xi)) = 1. More generally, ifI ⊆ {1, . . . , n}, a cycle
(x1, . . . , xr, x1) is said to beI-attractivewhen for alli = 1, . . . , r,
by considering indices modulor:

• the only coordinateϕ(i) such thatxi+1 = xi
ϕ(i)

belongs toI ,

• the setJ such thatf(xi) = xi
J∪{ϕ(i)}

= xi+1
J

is disjoint
from I .

Figure 2 shows an example of dynamics with two attractive cycles:

((0, 0), (1, 0), (0, 0)) and((0, 1), (1, 1), (0, 1)).

We shall see examples ofI-attractive cycles in Section 5.
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(0, 1) (1, 1)

(0, 0) (1, 0)

1 2

Fig. 2. A dynamics with no fixed point but a positive loop in the (constant)
regulatory graph. The notation is the same as in Figure 1.

2.3 Discrete Jacobian matrices and signed directed
graphs

Givenf : {0, 1}n → {0, 1}n, we attach to eachx ∈ {0, 1}n its
discrete Jacobian matrixJ(f)(x) as defined in [21]:J(f)(x) is the
n × n matrix with (i, j)-entry

J(f)(x)i,j =

(

1 if fi(x
j) 6= fi(x),

0 otherwise.

A signed directed graphis a directed graph with a sign,+1 or −1,
attached to each edge. Givenf : {0, 1}n → {0, 1}n and x ∈
{0, 1}n, define

G(f)(x)

to be the signed directed graph with vertex set{1, . . . , n} and with
an edge fromj to i whenJ(f)(x)i,j = 1, with positive sign when

xj = fi(x),

and negative sign otherwise. Asigned edgeof a signed graphG is a
triple (i, j, ε) such thatG has an edge with signε from i to j. Such
a triple will be denoted byi

ε
→ j.

A circuit in a signed graphG is a non-empty sequence

k1
ε1→ k2

ε2→ · · ·
εp−1

→ kp

εp
→ k1

of signed edges ofG. Thesign of a circuitC is the product of the
signs of its edges.

For instance, in the example of Figure 1 corresponding tof(x) =
(x2, x1), it is easy to check that the Jacobian matrix associated to
any statex is therefore given by:

J(x) =

„

x2 + x2 x2 + x2

x1 + x1 x1 + x1

«

=

„

0 1
1 0

«

,

where the sum here is the sum of{0, 1} identified with the fieldF2.
Therefore, the graphG(x) at any state consists in a circuit between
1 and2, hence a{1, 2}-circuit. Sincex1 6= f2(x) andx2 6= f1(x),
the two edges are negative and the circuit is:

1 2 1,
−1 −1

or simply 1 2 1,

with T-end notation for inhibitions, and is positive.

2.4 Functionality
The signed directed graphG(f)(x) attached to each statex
encompasses a subset of the regulatory interactions found in
the complete regulatory network. These graphs are analogous

to the local interaction graphs considered in [26] for instance.
Consequently, in our discrete framework, a regulatory interaction
and its sign may depend on the context, i. e., on the state of the
system, in particular on the values of co-regulators actingon the
same target. By taking unions of graphs on statesx, we lose some
details on the regulatory network and recover more global notions,
closer to the objects usually manipulated by biologists: let G(f) =
S

x∈{0,1}n G(f)(x) be the graph with a positive (resp. negative)
edge fromj to i when there existsx ∈ {0, 1}n such thatG(f)(x)
contains a positive (resp. negative) edge fromj to i. Note thatG(f)
may have both a positive and a negative edge between two given
vertices.

This discussion motivates the following definition of the
functionality context of a signed edgee: intuitively the set of states
at whiche is effective, or functional [18]. The functionality context
of a circuit is then a notion of particular significance (as weshall see
in Section 4). It is defined in the obvious way as follows.

DEFINITION 1 (Functionality context).Let f : {0, 1}n →
{0, 1}n, i, j ∈ {1, . . . , n}, ε ∈ {+1,−1}, and lete = (i, j, ε).
Thefunctionality contextΦ(f)(e) of e is the set ofx ∈ {0, 1}n such
that G(f)(x) has an edge fromi to j with signε. If C is a circuit,
thenΦ(f)(C) =

T

Φ(f)(e) wheree runs over signed edges ofC.
A circuit C is said to befunctionalwhenΦ(f)(C) 6= ∅.

Clearly,x ∈ Φ(f)(C) if and only if C is a circuit ofG(f)(x).

2.5 Globally minimal circuits
We shall be interested in a specific kind of circuits in regulatory
graphs, namely circuitsC occurring in someG(f)(x), with the
additional property that the global graphG(f) has no other edge
between vertices ofC than the edges ofC itself.

DEFINITION 2 (Minimal circuit). LetΓ be a directed graph. The
set of circuits ofΓ is (partially) ordered as follows: ifC1, C2 are
circuits with vertex setsX1, X2 respectively, thenC1 < C2 if and
only if X1 ( X2. A circuit C is then said to beminimal when it is
minimal for this order.

DEFINITION 3 (Globally minimal circuit). Let f : {0, 1}n →
{0, 1}n andx ∈ {0, 1}n such thatG(f)(x) contains a circuitC.
We shall say thatC is globally minimalif it is minimal as a circuit
in G(f).

3 ISOLATED CIRCUITS
We reformulate the following result proved in [16]. According to
the definition of the asynchronous dynamics, see (1), this result
determines the dynamics of an isolated circuit, i. e., a regulatory
graph constantly equal to a circuit.

THEOREM 1. If f : {0, 1}n → {0, 1}n is such that for any
x ∈ {0, 1}n, G(f)(x) equals the circuit

1
ε1→ 2

ε2→ · · ·
εn−1
→ n

εn→ 1,

then for anyx ∈ {0, 1}n, fi(x) 6= xi if and only if

(

xi−1 6= xi whenεi−1 = +1,

xi−1 = xi whenεi−1 = −1,

3
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if and only if (−1)xi−1+xi 6= εi−1, where indices are considered
modulon (i. e.,n + 1 = 1) and the sum in the last inequality is the
sum of the fieldF2.

4 GLOBALLY MINIMAL CIRCUITS
Let us start with some notations. Ifκ = xJIK is a face of{0, 1}n,
let πκ : {0, 1}n → κ be the projection onto the affine subspaceκ

(identified with{0, 1}I ), i. e., πκ(y)i = yi for any i ∈ I , and let
σκ : κ → {0, 1}n be inclusion map ofκ into {0, 1}n, i. e.,

σκ(y)i =

(

yi if i ∈ I ,

xi otherwise.

It is immediate that the definition ofσκ does not depend on the
choice ofx such thatκ = xJIK, and thatπκ ◦σκ is the identity. The
folllowing Lemma, an equivalent simpler reformulation of Lemma
1 in [17], is a commutation property between the Jacobian and
projection (or restriction).

LEMMA 1. If f : {0, 1}n → {0, 1}n, κ = xJIK is a face of
{0, 1}n andy ∈ κ, then:

G(πκ ◦ f ◦ σκ)(y) = G(f)(σκ(y))↾I .

Proof— Let i, j ∈ I andy ∈ κ. Sincei, j ∈ I ,

(πκ ◦ f ◦ σκ)j(y
i) = fj(σκ(yi)) = fj

“

σκ(y)
i
”

.

Similarly, (πκ ◦ f ◦ σκ)j(y) = fj(σκ(y)). Therefore,

(πκ ◦ f ◦ σκ)j(y
i) 6= (πκ ◦ f ◦ σκ)j(y)

if and only if

fj

“

σκ(y)
i
”

6= fj(σκ(y)).

Moreover, sincei ∈ I , yi = (σκ(y))i, and:

yi + (πκ ◦ f ◦ σκ)j(y) = (σκ(y))i + fj(σκ(y)).

Consequently, signed edges inG(πκ ◦ f ◦ σκ)(y) and
G(f)(σκ(y))↾I are the same. �

Then we show that the presence of a globally minimal circuitC

has some important consequences on the dynamics restrictedto the
coordinates involved inC. Essentially, it enables to considerC as
an isolated circuit.

THEOREM 2. Let f : {0, 1}n → {0, 1}n, x ∈ {0, 1}n, and
suppose thatG(f)(x) contains a circuit

C = k1
ε1→ k2

ε2→ · · ·
εp−1

→ kp

εp
→ k1

which is globally minimal. Letκ = xJ{k1, . . . , kp}K. Then
Φ(f)(C) ⊇ κ and the dynamics ofπκ ◦ f ◦ σκ : κ → κ is given by
Theorem 1.

Proof — Let us first prove thatΦ(f)(C) ⊇ κ. To this end, let
us considery ∈ Φ(f)(C) andi ∈ {1, . . . , p} and let us show that

yki ∈ Φ(f)(C). Sincey ∈ Φ(f)(C), G(f)(y) has a signed edge
(kj , kj+1, εj) for eachj ∈ {1, . . . , p}, i. e.:

fkj+1
(y) 6= fkj+1

(ykj )

and

εj = (−1)
ykj

+fkj+1
(y)

,

where indices are considered modulop. Now, if j = i, it is
straightforward that the signed edge(kj , kj+1, εj) is in G(f)(yki)
too; for the sign, simply observe that:

(ykj )kj
+ fkj+1

(ykj ) = ykj
+ fkj+1

(y) = ykj
+ fkj+1

(y).

On the other hand, ifj 6= i, since the circuitC is globally minimal,
G(f) has no signed edge fromki to kj+1, and in particular:

fkj+1
(yki) = fkj+1

(y) (2)

and

fkj+1
(yki,kj ) = fkj+1

(ykj ),

therefore:

fkj+1
(yki) 6= fkj+1

(yki,kj )

andG(f)(yki) has an edge fromkj to kj+1. Moreover, by (2) and
i 6= j, we have:

(yki)kj
+ fkj+1

(yki) = ykj
+ fkj+1

(y),

and the sign of this edge isεj . This holds for anyj ∈ {1, . . . , p},
and as a consequence,yki ∈ Φ(f)(C) wheny ∈ Φ(f)(C) andi ∈
{1, . . . , p}. Sincey ∈ κ ∩ Φ(f)(C), it follows thatΦ(f)(C) ⊇ κ.

Let us now prove that the dynamics ofπκ ◦ f ◦ σκ satisfies this
hypothesis of Theorem 1, i. e., that for anyy ∈ κ, G(πκ◦f ◦σκ)(y)
equals the circuitC. By Lemma 1, it suffices to observe that
G(πκ ◦ f ◦ σκ)(y) is the restriction ofG(f)(σκ(y)) to vertices
in I , and by the previous discussion, this coincides withC, q.e.d.�

We are now in position to combine Theorem 1 and Theorem 2 and
delineate the dynamical properties implied by a globally minimal
circuit.

THEOREM 3. Under the hypotheses of Theorem 2, ifC is
positive, thenf has two{k1, . . . , kp}-fixed points; and ifC is
negative, thenf has a{k1, . . . , kp}-attractive cycle.

Proof— If C is positive, by Theorem 1 and Theorem 2,πκ◦f ◦σκ

has two fixed pointsP (0) andP (1) defined by:

P (0)k1
= 0,

P (1)k1
= 1,

P (α)ki
6= P (α)ki+1

⇔ εi = −1, α = 0, 1, i = 1, . . . , p − 1.

Of course,P (0) and P (1) are fixed points off because, by the
positivity of C, P (α)k1

6= P (α)kp if and only if εp = −1.
Therefore, for eachα = 0, 1, σκ(P (α)) andf(σκ(P (α))) have
the same projection underπκ. Hence,σκ(P (0)) andσκ(P (1)) are
{k1, . . . , kp}-fixed points.

4



(0, 1) (1, 1)

(0, 0) (1, 0)

1 2

(a) (b)

Fig. 3. (a) A perturbation of the dynamics of Figure 1. (b) The regulatory
graph.

(0, 1) (1, 1)

(0, 0) (1, 0)

1 2

(a) (b)

Fig. 4. (a) An example of dynamics with a globally minimal circuit (loop
on2), two 2-fixed points, but a single global fixed point. (b) The regulatory
graph.

If C is negative, by Theorem 1 and Theorem 2, it is easy to check
thatπκ ◦ f ◦ σκ has an attractive cycle

P (0), P (0)
k1

, P (0)
k1,k2

, . . . , P (0)
k1,...,kp

= P (1),

P (1)
k1

, P (1)
k1,k2

, . . . , P (1)
k1,...,kp

= P (0).

Hence the image

σκ(P (0)), σκ

“

P (0)
k1

”

, . . .

of this cycle underσκ is a{k1, . . . , kp}-attractive cycle off . �

The global minimality hypothesis in Theorems 2 and 3 cannot
be simply avoided. For instance, the dynamics corresponding to
the mapf : {0, 1}2 → {0, 1}2 defined byf(x) = (x2, x1)
gives rise to a globally minimal positive circuit and indeedhas two
fixed points(0, 1) and (1, 0) (Figure 1), whereas the perturbated
dynamics corresponding tog(x) = (x1x2, x1) has a single fixed
point (1, 0): the {1, 2}-circuit is no more globally minimal, it is
perturbated by the negative loop on1 (Figure 3).

It is not true either that the localised dynamics predicted by
the above results leads necessarily to the corresponding global
behaviour. In particular, the presence of a globally minimal positive
circuit does not imply the existence of disjoint stable subspaces
in general. This can be seen by considering the maph(x) =
(1, x1∨x2). The positive circuit consisting in a loop on2 is globally
minimal and its functionality context is given byx1 = 0. The
dynamics, which is given in Figure 4, has two1-fixed points(0, 0)
and(0, 1), but the only global fixed point ofh is (1, 1): the positive
loop on2 acts as a “partial separator” between the subspacesx2 = 0
and x2 = 1. A natural question is therefore to understand more
precisely under which conditions these modules combine to produce
global separators and global differentiation.

STAT1 TBet GATA3 STAT6

IFNγR IFNγ IL4 IL4R

STAT4 IL12R

SOCS1 IL12

Fig. 5. Regulatory graph of the network controlling Th lymphocyte
differentiation. The nodes represent transcription regulatory factors (Tbet,
GATA3), signaling transduction factors (STAT1, STAT4, STAT6, SOCS1),
lymphokines (IFNγ, IL4, IL12) and receptors (IFNγR, IL4R, IL12R).
Remark that IL12 acts as an input of the system.

5 APPLICATION
We present here a biological illustration and then apply theresults
proved in the previous Section.

We consider the network involved in the control of the Th-
lymphocyte differentiation. The vertebrate immune systemcontains
various cell populations. Among B and T lymphocytes, CD4+
T helper lymphocytes can further differentiate into T-helper 1
(Th1) or Th2 cells, which respectively enable cell mediated
immunity and humoral responses. Th1 and Th2 cells can be
distinguished according to their pattern of cytokine secretion.
Immune responses biased towards the Th1 phenotype result in
autoimmune diseases, while enhanced Th2 responses originate
allergic reactions [1, 13]. Various mathematical models have been
proposed for the differentiation, activation and proliferation of Th-
lymphocytes. Many of them were focusing on interactions between
immunological cell populations at a macroscopic level [4, 33, 34].
Other model analyses aim at understanding the mechanism of the
generation of antibody and T-cell receptorsdiversity, as well as
the dynamical properties of the large networks defined by the
interactions between cytokines [10] or between immunoglobulins
(see, e.g., [32]). We consider here a very simplified Boolean
modelling of this Th-lymphocyte differentiation already presented
in [18], which involves 12 regulatory components (Figure 5). Other
regulatory graphs using the same discrete modelling (Boolean or
multivalued) have been proposed [12, 14].

It has been shown [11] that the system can reach the three stable
states given in Table 1. The first stable states1 corresponds to the
virgin Th cells (Th0), whereas the second and third oness2, s3

correspond respectively to Th2 and Th1 differentiated lymphocytes.

5.1 Functional circuits
The regulatory graph represented in Figure 5 contains 18 circuits.
Only 4 of them are functional, in the sense of Definition 1. Among
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Stable
states

s1 0 0 0 0 0 0 0 0 0 0 0 0
s2 0 1 0 0 1 0 0 1 0 0 0 1
s3 1 0 0 0 0 0 0 0 0 1 1 0

Table 1. The three stable statess1, s2, s3, which represent respectively the
naive, Th2 and Th1 cells.

these functional circuits, three are positive:

C1 =
“

IL4R
+
→ STAT6

+
→ GATA3

+
→ IL4

+
→ IL4R

”

,

C2 =
“

Tbet
+
→ Tbet

”

,

C3 =
“

GATA3
−
→ Tbet

−
→ GATA3

”

,

and one is negative:

C4 =
“

IFNγR
+
→ STAT1

+
→ SOCS1

−
→ IFNγR

”

.

Let f : {0, 1}12 → {0, 1}12 be the map corresponding to the
asynchronous dynamics (not shown here for sake of space). The
graphG(f) represented Figure 5 is the union of all the local graphs
G(f)(x) for x ∈ {0, 1}12. Only C1, C2 and C4 are globally
minimal, C3 is not because of the loopC2. Let us compute the
functionality contexts of these circuits.

• Circuit C1 is functional when Tbet, STAT1 and SOCS1 are not
expressed, thereforeΦ(f)(C1) = {x | xTbet = xSTAT1 =
xSOCS1= 0}.

• Circuit C2 (self-regulation of Tbet) is functional when STAT1
and GATA3 are not expressed, i. e.,Φ(f)(C2) = {x |
xGATA3 = xSTAT1 = 0}.

• The non globally minimal circuitC3 is functional when STAT6
and STAT1 are expressed, i. e.,Φ(f)(C3) = {x | xSTAT6 =
xSTAT1 = 1}.

• Finally, the negative circuitC4 is functional when Tbet is
not expressed and IFNγ expressed, i. e.,Φ(f)(C4) = {x |
xIFNγ = 1, xTbet = 0}.

Note that the functionality contexts ofC1 andC2 are compatible
and overlap: they both require the absence of STAT1. On the other
hand, when STAT1 is expressed, circuitC3 is functional.

5.2 Analysis and comments
Let us consider the circuitC1. By Theorem 2, we know the structure
of the states space of any facexJ{IL4R, STAT6, GATA3, IL4}K
with x ∈ Φ(f)(C1). Moreover, by Theorem 3, as
C1 is positive, there are two{IL4R, STAT6, GATA3, IL4}-
fixed points. Here, s1 and s2 belong to Φ(f)(C1), and
they differ only in the four coordinates which correspond to
the four genes ofC1: s1J{IL4R, STAT6, GATA3, IL4}K =
s2J{IL4R, STAT6, GATA3, IL4}K. These two local fixed points are
also stable for the whole dynamics.

We can do the same type of analysis for the circuitC2. Theorem
2 gives the structure of the states space of any facexJ{Tbet}K
with x ∈ Φ(f)(C2). Moreover, asC2 is positive, there are two
{Tbet}-fixed points (Theorem 3). Here again, two of the three
global fixed points belong to the context of functionality ofC2:
s1, s2 ∈ Φ(f)(C2).

When Tbet is not expressed (for example by the indirect effect of
a perturbation of IL4, as proposed in [12]), GATA3 can be activated,
and the circuitC1 is functional. Hence, the system reaches the
differentiated states2 (which represents Th2 cells). But if the
expression of Tbet increases, for example because the lymphokines
IFNγ is transiently expressed, thenC1 is no more functional, but
C2 is, and this self-regulation maintains Tbet expressed. Then, the
system reaches the differentiated state Th1 (s3).

Concerning the negative circuitC4, by Theorems 2 and 3,
we know that any facexJ{IFNγR, STAT1, SOCS1}K with x ∈
Φ(f)(C4) has a {IFNγR, STAT1, SOCS1}-attractive cycle. In
fact, the dynamics restricted toΦ(f)(C4), i. e., the restriction
of f to

S

x∈Φ(f)(C4) xJ{IFNγR, STAT1, SOCS1}K, contains an
attractive cycle, where all the genes not inC4 and Φ(f)(C4)
are not expressed. The negative circuitC4 is functional when the
lymphokine IFNγ is expressed and Tbet is not expressed. This
functionality context is therefore fragile: as Tbet is an activator of
IFNγ, the absence of Tbet implies that the expression level of IFNγ

tends to0, henceC4 should stay functional for a short time.
As it is proved in Section 4, when a circuit is considered in a

state which belongs to its functionality context, then, letting only
the variables of the circuit free, the structure of the dynamics is the
same as the one of an isolated circuit. Hence, we have a precise local
knowledge of the dynamics.

In this application, the functionality contexts of the 3 positive
circuits cover all the phase space. Each positive circuit creates in
its functionality context 2 basins of attraction, and finally, the whole
space is divided into 3 basins corresponding to the 3 stable states
(their maximal number is23 in general [3]). Therefore, one of
the challenges is now to be able to describe more precisely the
position of the basins of attraction, where they separate and how
they possibly connect each other.

6 CONCLUSION
Even when the dynamics, i. e., the functionf is known, the study
of the phase space is not easy, and often not computationally
feasible. The idea of getting as more information as possible on
the dynamics from the structure of the regulatory graph —which
is much smaller— is really attractive. The property of functionality
of a circuit is well suited for this purpose. Indeed, the important
role of the circuits on the dynamics of the systems is well-known,
but the number of circuits in a typical regulatory graph is generally
quite large. Fortunately, the circuits which have a real incidence on
the dynamics are the functional ones, at least the globally minimal
functional ones according to Section 4, and their number is much
more accessible. For instance, in the illustration considered in
Section 5, the model contains 18 circuits, but only 4 of them are
functional. Actually, the proportion of functional circuits can be
often much smaller in practice.

An interesting current line of research is therefore to decompose
regulatory graphs into modules. The notion of modularity isnot
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trivial, and the definition of a module is not straightforward, and,
at least, not unique. This article leads to naturally define modules
around the notion of globally minimal functional circuits.

While the example studied in Section 5 provides a good
illustration of the potentiality of the method, the presentwork is
clearly in progress, and many improvements can certainly bedone.
The generalisation of our results to multivalued dynamics,as in [19],
requires a careful definition of regulatory graphs and functionality
of circuits. The possibility of a sufficient condition on theJacobian
matrix of differential or piecewise-linear systems [27, 8,25] is worth
exploring too.

On the other hand, relaxing the minimality constraint on circuits
in Theorems 2 and 3 seems to require further work. The presence of
a non minimal functional circuit is indeed not so rare. For instance,
the self-regulations of “clue-genes”, involved in functional circuits,
should create this situation. Therefore, this constraint prevents us
from analysing some important circuits.
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[26]C. Soulé. Graphic requirements for multistationarity.
ComPlexUs, 1:123–133, 2003.
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